ILLiad TN: 309905

Journal Title: Journal of combinatorial theory

(series A)

Volume: 42

Issue:

Month/Year: 1986 Pages: 144-149

Article Author: Promel and Rodl

Article Title: An elementary proof of the canonizing version of the Gallai-Witt Theorem

Imprint: sfxit.com:citation (via SFX)

Call #: UMCP EPSL Periodical Stacks

QA164.J61

Location:

Item #:

CUSTOMER HAS REQUESTED:

Mail to Address

William Gasarch (00000350541) College Park, MD 20742

An Elementary Proof of the Canonizing Version of Gallai-Witt's Theorem

Hans JÜRGEN PRÖMEL*

University of California, Los Angeles, California 90024 Department of Mathematics,

VOJTĚCH RÖDI

11000 Praha 1, Czechoslovakia FJFI CVUT, Husova 5,

Communicated by the Managing Editors

Received July 1, 1984

1. INTRODUCTION

lation vector and d is a positive integer describing a dilatation. is a mapping $h: \mathbb{N}' \to \mathbb{N}'$ of the form $h(\mathbf{b}) = \mathbf{a} + d\mathbf{b}$, where $\mathbf{a} \in \mathbb{N}'$ is a trans A homothetic mapping (homothety) of the *t*-dimensional lattice grid \mathbb{N}'

references see [5]). It asserts that for every mapping $\Delta: \{0,..., n-1\}' \rightarrow$ progressions is independently due to Gallai and to Witt (for general $\mathbb{N}' \to \mathbb{N}'$ such that $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ for all $\mathbf{b}, \mathbf{c} \in \{0, ..., m-1\}'$. $\{0,1\}$, where $n \ge n(t,m)$ is sufficiently large, there exists a homothety kA multidimensional version of van der Waerden's theorem on arithmetic

on each coset of U and different cosets get different images. the property that $\Delta_U(\mathbf{b}) = \Delta_U(\mathbf{c})$ iff $\mathbf{b} - \mathbf{c} \in U$. Of course, Δ_U acts constantly sional vector space over the rationals. Let $\Delta_U : \mathbb{N}' \to \mathbb{N}$ be a mapping with Prömel, and Voigt [1]. Let $U \subseteq \mathbb{Q}^t$ be a linear subspace of the t-dimen-A canonizing version of this theorem was proved by Deuber, Graham,

Thus, Δ_U induces the same pattern on all homothetic copies of Obviously, $\Delta_U(h(\mathbf{b})) = \Delta_U(h(\mathbf{c}))$ iff $\Delta_U(\mathbf{b}) = \Delta_U(\mathbf{c})$ for every homothety

that the affine line $\{a + \lambda b \mid \lambda \in \mathbb{Q}\}$ intersects S in at least two points. Let A vector $\mathbf{b} \in \mathbb{Q}'$ is called *admissible* for $S \subseteq \mathbb{N}'$ iff there exists $\mathbf{a} \in \mathbb{Q}'$ such

5300 Bonn 1, West Germany *Current address: Institut für Operations Research, Universität Bonn, Nassestr.2,

> admissible vectors. Additionally the null-space $\{0\}$ belongs to $\mathscr{A}(S)$. $\mathscr{A}(S)$ denote the set of linear subspaces of \mathbb{Q}' possessing a basis of

Gallai-Witt theorem is best possible: by A_U and A_V are different. Hence the following canonizing version of the Note that $\Delta_{\{0\}}$ is an one-to-one mapping. Furthermore for every two different subspaces U and V in $\mathcal{A}(S)$ the partitions on S which are induced

 $\Delta(h(\mathbf{c}))$ iff $\mathbf{b} - \mathbf{c} \in U$ for every $\mathbf{b}, \mathbf{c} \in S$. $\mathbb{N}' \to \mathbb{N}'$ and a linear subspace $U \in \mathcal{A}(S)$ with the property that $\Delta(h(\mathbf{b})) =$ $T \subseteq \mathbb{N}'$ such that for every mapping $\Delta \colon T \to \mathbb{N}$ there exists a homothety h: **THEOREM** [1]. Let $S \subseteq \mathbb{N}'$ be a finite set. Then there exists a finite set

elementary proof of the canonizing version of Gallai-Witt's theorem. version of the Gallai-Witt result. Since Fürstenberg and Katznelson use heavy ergodic tools, the question remained open (cf. [1, 2, 4]) to find an The original proof is based on Fürstenberg and Katznelson's [3] density

to Spencer [6] which characterizes the canonical partitions of finite subsets of \mathbb{R}' with respect to the group of homotheties acting on \mathbb{R}' . a slight modification of this proof also yields a canonization theorem due The aim of the note is to give such an elementary proof. As it turns out

PROOF OF THEOREM

following: Put $n' = \{0,..., n-1\}'$. The main tool for proving the theorem is the

n = n(t, m) such that for every mapping $\Delta: n' \to \mathbb{N}$ there exists a homothety h: $\mathbb{N}' \to \mathbb{N}'$ such that for every line $L \in \mathcal{A}(m')$ the following is valid: LEMMA. Let t, m be positive integers. Then there exists a positive integer

if
$$\Delta(h(\mathbf{y}_0)) = \Delta(h(\mathbf{y}_1))$$
 for some $\mathbf{y}_0, \mathbf{y}_1 \in m'$ satisfying $\mathbf{y}_1 - \mathbf{y}_0 \in L$,

then
$$\Delta(h(\mathbf{z}_0)) = \Delta(h(\mathbf{z}_1))$$
 for every $\mathbf{z}_0, \mathbf{z}_1 \in m'$ satisfying $\mathbf{z}_1 - \mathbf{z}_0 \in L$.

sufficiently large with respect to k. Let $\{x_0,..., x_{s-1}\} \subseteq k'$ be a maximal Assume that the assertion of the lemma holds for some m = m(k) which is linear independent set (considered as a subset of Q') with the property that loss of generality let S = k' for some nonnegative integer $k = \{0, ..., k-1\}$. First, we show how the theorem can be deduced from the lemma: Without

 $\Delta(\mathbf{x}_i) = \Delta(\mathbf{0})$ for every $i \in s$ and let X be the linear subspace of \mathbb{Q}^t generated by $\{\mathbf{x}_0, ..., \mathbf{x}_{s-1}\}$. We claim that

$$\Delta \upharpoonright (X \cap k') = \text{const.} \tag{1}$$

Assuming (1), from the lemma it follows that $\Delta \uparrow ((\mathbf{b} + X) \cap k')$ is constant for every coset $\mathbf{b} + X$. Thus, since $\{\mathbf{x}_0, \dots, \mathbf{x}_{s-1}\}$ is maximal independent we can infer the theorem.

To prove (1) let $\mathbf{z} \in X \cap k'$. Then there exist $\lambda_0, ..., \lambda_{s-1} \in \mathbb{Q}$ such that $\mathbf{z} = \sum_{i=0}^{s-1} \lambda_i \mathbf{x}_i$. Furthermore there exists (a minimal) $p \in \mathbb{N}$ such that $p\lambda_i \in \mathbb{Z}$ for every $i \in s$. For m = m(k) large enough, we have $\sum_{i=0}^{s-1} p \cdot |\lambda_i| \cdot \mathbf{x}_i \in m'$. Hence, also $p\mathbf{z} \in m'$. Note that $A(p\mathbf{z}) = A(\mathbf{0})$ implies $A(\mathbf{z}) = A(\mathbf{0})$. Thus, it remains to show that

$$\Delta(p\mathbf{z}) = \Delta(\mathbf{0}).$$

We do this by induction on the length of the basis representation of z. If $pz = p\lambda_0 x_0$ then (2) follows from $A(p\lambda_0 x_0) = A(x_0) = A(0)$. Thus, assume that for all $pz = \sum_{i=0}^{r-1} p\lambda_i x_i \in m^i$ for some r < s, it holds that

$$\Delta\left(\sum_{i=0}^{r-1} p\lambda_i \mathbf{x}_i\right) = \Delta(\mathbf{0}). \tag{3}$$

Let $p\mathbf{z} = \sum_{i=0}^{r} p\lambda_i \mathbf{x}_i$. Note that from (3), the lemma and the fact that $\Delta(\mathbf{x}_r) = \Delta(\mathbf{0})$ it follows that

$$\Delta\left(\sum_{i=0}^{r-1}p\cdot|\lambda_i|\cdot\mathbf{x}_i+p\cdot|\lambda_r|\cdot\mathbf{x}_r\right)=\Delta\left(\sum_{i=0}^{r-1}p\cdot|\lambda_i|\cdot\mathbf{x}_i\right)=\Delta(\mathbf{0}).$$

Assume that for some l, where $0 < l \le r$, it is valid that $\Delta(\sum_{i=0}^{l} p | \lambda_i | \mathbf{x}_i + \sum_{i=l+1}^{r} p \hat{\lambda}_i \mathbf{x}_i) = \Delta(\mathbf{0})$. Then, using $\Delta(\mathbf{x}_i) = \Delta(\mathbf{0})$ and the lemma we have

$$\Delta\left(\sum_{i=0}^{t-1} p \cdot |\lambda_i| \cdot \mathbf{x}_i + \sum_{i=t}^{r} p \lambda_i \mathbf{x}_i\right) = \Delta(\mathbf{0}).$$

Thus we get $\Delta(\sum_{i=0}^{r} p \lambda_i \mathbf{x}_i) = \Delta(p\mathbf{z}) = \Delta(\mathbf{0})$, which proves the theorem.

Proof of the Lemma. Let $(L_{\mu})_{\mu < \xi}$ be the family of all lines in $\mathscr{A}(m')$. We shall proceed by induction on μ . Let $N = n_{\xi - \nu}(t, m)$ be very large and suppose $\Delta \colon N' \to \mathbb{N}$ satisfies the assertion of the lemma for every line L_{μ} with $\mu < \nu < \xi$. Our object will be to find a homothetic copy h(n') of n' in N', where $n = n_{\xi - \nu - 1}(t, m)$ is sufficiently large, so that Δ restricted on the set h(n') satisfies the assertion of the lemma for every L_{μ} where $\mu \leqslant \nu$.

Repeating this ξ times we finally obtain a homothetic copy of m', $m = n_0(t, m)$, satisfying the lemma. Choose $p = \lfloor N/n \rfloor$ and let Δ^* : $p'^{+1} \rightarrow B_{n'}$ (where $B_{n'}$ is the n'th "Bellnumber") be the mapping which associates to every (t+1)-tuple $(\mathbf{a}, d) \in p'^{+1}$ the pattern of equivalence on the homothetic copy $\{\mathbf{a} + d\lambda \mid \lambda \in n'\}$ of n'. More formally, let $\Delta^*(\mathbf{a}, d) = \Delta^*(\mathbf{a}', d')$ iff $(\Delta(\mathbf{a} + d\lambda)) = \Delta(\mathbf{a} + d\lambda')$ iff $\Delta(\mathbf{a}' + d'\lambda) = \Delta(\mathbf{a}' + d'\lambda')$ for every λ , $\lambda' \in n'$. Put $r = n^2$. According to the Gallai-Witt theorem there exists (for N is large enough with respect to n) a homothety $\{(\mathbf{a}, b) + d\lambda \mid \lambda \in r'^{+1}\}$ of r'^{+1} in p'^{+1} on which Δ^* is constant. Thus, the homothetic copies of n' in N' given by $\{(\mathbf{a} + d\tilde{\mathbf{a}}) + (b + dj) \lambda \mid \lambda \in n'\}$, where $\tilde{\mathbf{i}} \in r'$, $j \in r$, have the same pattern with respect to Δ .

Assume that there exist $x_0, x_1 \in m'$ satisfying $x_1 - x_0 \in L$, such that

$$\Delta((\mathbf{a}+\mathbf{d}i)+(b+dj)\mathbf{x}_0)=\Delta((\mathbf{a}+\mathbf{d}i)+(b+dj)\mathbf{x}_1).$$

Fix $\mathbf{i}_0 \in r'$ and let $\mathbf{y}_0 = (\mathbf{a} + d\mathbf{i}_0) + b\mathbf{x}_0$ (setting j = 0). Denote by $M(\mathbf{y}_0)$ the set of all points in \mathbf{x}_1 -position with respect to \mathbf{y}_0 , i.e.,

$$M(\mathbf{y}_0) = \{ \mathbf{y} \in n' \mid \exists \mathbf{i} \in r', j \in r \text{ such that}$$
$$\mathbf{y} = (\mathbf{a} + d\mathbf{i}) + (b + d\mathbf{j}) \mathbf{x}_1$$

and
$$\mathbf{y}_0 = (\mathbf{a} + d\mathbf{i}) + (b + d\mathbf{j}) \mathbf{x}_0$$

Clearly,

$$\Delta \upharpoonright M(\mathbf{y}_0) = \text{const.} \tag{4}$$

We show that

$$M(\mathbf{y}_0) = \{\mathbf{a} + d\mathbf{i}_0 + b\mathbf{x}_1 + d\mathbf{j}(\mathbf{x}_1 - \mathbf{x}_0) | \mathbf{j} \in r \text{ satisfying } \mathbf{i}_0 - \mathbf{j}\mathbf{x}_0 \in r'\}.$$
 (5)

If $y = (a + di) + (b + dj) x_1 \in M(y_0)$, then

$$\mathbf{y}_0 = (\mathbf{a} + d\mathbf{i}) + (b + d\mathbf{j}) \,\mathbf{x}_0 = (\mathbf{a} + d\mathbf{i}_0) + b\mathbf{x}_0.$$

Therefore $\mathbf{i} = \mathbf{i}_0 - j\mathbf{x}_0$. Hence, every $\mathbf{y} \in M(\mathbf{y}_0)$ can be written as

$$\mathbf{y} = \mathbf{a} + d\mathbf{i}_0 + b\mathbf{x}_1 + dj(\mathbf{x}_1 - \mathbf{x}_0),$$

where $j \in r$ and $\mathbf{i} = \mathbf{i}_0 - j\mathbf{x}_0 \in r'$

6)

On the other hand, if y' satisfies (6) then

$$\mathbf{y}' = \mathbf{a} + d(\mathbf{i}_0 - j\mathbf{x}_0) + (b + dj) \mathbf{x}_1$$

and as

$$\mathbf{y}_0 = \mathbf{a} + d(\mathbf{i}_0 - j\mathbf{x}_0) + (b + dj) \mathbf{x}_0$$

we infer that $y' \in M(y_0)$.

already that $g \cdot \rho \in n$. Then, in particular, $g \in n$. some $\rho \in \mathbb{Q}^+$ we have that $g \cdot \rho \in \mathbb{N}$. For n sufficiently large it follows Let $g \in \mathbb{N}$ be such that for any $z, c \in m'$ satisfying $z - c = \rho(x_1 - x_0)$ for

 $\rho_1, \rho_2 \in \mathbb{Q}^+$. Then parallel line to L_{ν} in n'. Without loss of generality we can assume that to A. Let $z_1 = c + \rho_1(x_1 - x_0)$, $z_2 = c + \rho_2(x_1 - x_0)$ be two points on a points on a line which is parallel to L_{ν} have the same image with respect of n' in N', where $s = (r - mn, ..., r - mn) \in r'$, has the property that any two We claim that the homothetic copy $h(n') = \{(\mathbf{a} + b\mathbf{x}_1 + d\mathbf{s}) + dg\lambda \mid \lambda \in n'\}$

$$h(\mathbf{z}_{i}) = (\mathbf{a} + b\mathbf{x}_{1} + d\mathbf{s}) + dg(\mathbf{c} + \rho_{i}(\mathbf{x}_{1} - \mathbf{x}_{0}))$$

$$= \mathbf{a} + d(\mathbf{s} + g\mathbf{c}) + b\mathbf{x}_{1} + d(g\rho_{i})(\mathbf{x}_{1} - \mathbf{x}_{0})$$
for $i = 1, 2$,

where $\mathbf{s} + g\mathbf{c} \in r'$ and $(\mathbf{s} + g\mathbf{c}) - (g\rho_i) \mathbf{x}_0 \in r'$. Let $\mathbf{z}_0 = \mathbf{a} + d(\mathbf{s} + g\mathbf{c}) + b\mathbf{x}_0$. Then $\mathbf{z}_1, \mathbf{z}_2 \in M(\mathbf{z}_0)$ and we infer from (4) that $\Delta(h(\mathbf{z}_1)) = \Delta(h(\mathbf{z}_2))$.

3. CONCLUDING REMARKS

there exists a homothety $h: \mathbb{R}' \to \mathbb{R}'$ such that $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ for all $\mathbf{a} + d\mathbf{b}$, where $\mathbf{a} \in \mathbb{R}'$ and $d \in \mathbb{R} \setminus \{0\}$. Then the following version of the there exists a finite $W \subseteq \mathbb{R}'$ such that for every mapping $\Delta: W \to \{0,1\}$ Gallai-Witt theorem is also true (cf. [5, p.38]). For every finite $V \subseteq \mathbb{R}^{t}$ More generally, $h: \mathbb{R}' \to \mathbb{R}'$ is a homothety iff h is of the form $h(\mathbf{b}) =$

concerning the different structure of $S \subseteq \mathbb{R}'$) can be used to obtain also the above with respect to subspaces of \mathbb{R}' . following theorem of Spencer. For $S \subseteq \mathbb{R}^r$, S finite, let $\mathscr{A}(S)$ be defined as Using this result, the same proof as before (with technical modifications

iff $\mathbf{b} - \mathbf{c} \in U$ for every $\mathbf{b}, \mathbf{c} \in S$. $\mathbb{R}' \to \mathbb{R}'$ and a linear subspace $U \in \mathcal{A}(S)$ with the property $\Delta(h(\mathbf{b})) = \Delta(h(\mathbf{c}))$ $T \subseteq \mathbb{R}^t$ such that for every mapping $\Delta: T \to \mathbb{R}$ there exists a homothety h. THEOREM [6]. Let $S \subseteq \mathbb{R}'$ be a finite set. Then there exists a finite set

Details are left to the reader.

REFERENCES

GALLAI-WITT'S THEOREM

- 1. W. DEUBER, R. L. GRAHAM, H. J. PRÖMEL, AND B. VOIGT, A canonical partition theorem for equivalence relation on Z', J. Combin. Theory Ser. A 34 (1983), 331-339
- 2. W. DEUBER AND B. VOIGT, Der Satz von van der Waerden über arithmetische Progressionen, Jahresber. Disch. Math.-Verein. 85 (1983), 66-85.
- 3. H. FÜRSTENBERG AND Y. KATZNELSON, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.
- 4. R. L. Graham, Recent developments in Ramsey theory, in "Proc. of the International Congress of Mathematicians, Aug. 16-24, 1983, Warszawa" (Z. Ciesielski, C. Olech, Eds.), pp. 1555-1569, Polish Scientific Publishers, Warszawa, 1984.
- 5. R. L. Graham, B. L. Rothschild, and J. H. Spencer, "Ramsey Theory," Wiley, New
- 6. J. H. Spencer, Canonical configurations, J. Combin. Theory: Ser. A 34 (1983), 325-330