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1. INTRODUCTION

A homothetic mapping (homothety) of the -dimensional lattice grid N'
is a mapping /: N > N’ of the form A(b) =a + db, where ae N’ is a trans -
lation vector and d is a positive integer describing a dilatation. |

A multidimensional version of van der Waerden’s theorem on arithmetic
progressions is independently due to Gallai and to Witt (for general
references see [5]). It asserts that for every mapping 4: {0,..,n—1}'=
{0, 1}, where n>n(t, m) is sufficiently large, there exists a homothety &
N’ — N’ such that A(h(b))= 4(h(c)) for all b, ce {0,.., m—1}". !

A canonizing version of this theorem was proved by Deuber, Graham,

Promel, and Voigt [1]. Let U< Q' be a linear subspace of the ¢-dimen- ¢

sional vector space over the rationals. Let 4,: N'— N be a mapping with
the property that 4,(b)=4,(c) iff b—ce U. Of course, 4 acts constantly
on each coset of U and different cosets get different images. :
Obviously, 4,(h(b))=4,(h(c)) iff 4,(b)=4,(c) for every homothety.
Thus, 4, induces the same pattern on all homothetic copies of
10,.., m—1}". b
A vector be Q' is called admissible for S< N iff there exists a € Q" such
that the affine line {a+ Ab|4i€Q} intersects S in at least two points. Let -
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#(S) denote the set of linear subspaces of Q' possessing a basis of
admissible vectors. Additionally the null-space {0} belongs to «/(S).

Note that 4 4, is an one-to-one mapping. Furthermore for every two dif-
ferent subspaces U and ¥V in /(S) the partitions on S which are induced
by 4, and 4, are different. Hence the following canonizing version of the
Gallai-Witt theorem is best possible:

THEOREM [1]. Let SSN' be a finite set. Then there exists a finite set
Tc N’ such that for every mapping A. T — N there exists a homothety h:
N'— N* and a linear subspace U e oZ(S) with the property that A(h(b))
A(h(e)) iff b—ce U for every b, ce S.

The original proof is based on Fiirstenberg and Katznelson’s [3] density
version of the Gallai-Witt result. Since Firstenberg and Katznelson use
heavy ergodic tools, the question remained open (cf. [1, 2,4]) to find an
elementary proof of the canonizing version of Gallai-Witt’s theorem.

The aim of the note is to give such an elementary proof. As it turns out,
a slight modification of this proof also yields a canonization theorem due
to Spencer [6] which characterizes the canonical partitions of finite subsets
of R with respect to the group of homotheties acting on R".

2. PrOOF OF THEOREM

Put n'={0,..,n—1}". The main tool for proving the theorem is the
following:

LEMMA. Let t, m be positive integers. Then there exists a positive integer

“m=n{t, m) such that for every mapping A: n' > N there exists a homothety

h: N — N’ such that for every line L e of/(m') the following is valid.

if  A(h(yo))=4(h(y,)) for some y,,y,em’ satisfying y, —yq,eL,

A(h(zy)) = A(h(z;)) for every z,,z, e m’ satisfying z, —z,¢ L.

First, we show how the theorem can be deduced from the lemma: Without
loss of generality let S=k' for some nonnegative integer k = {0,.., k—1}.
Assume that the assertion of the lemma holds for some m = m(k) which is
sufficiently large with respect to k. Let {Xg,...., X,_;} & k' be a maximal

: linear independent set (considered as a subset of Q‘) with the property that
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ANMX Nnk')=const. (N
Assuming (1), from the lemma it follows that 4 M(b+ X)nk’) is constant
for every coset b+ X. Thus, since {Xg,., X, - .} is maximal independent we
can infer the theorem.

To prove (1) let ze X nk'. Then there exist 4,,..., A, ,€Q such thatz=
S_ ¢ 4:x,. Furthermore there exists (a minimal) p € N such that pi e Z for
every ies. For m=m(k) large enough, we have Szl pial .f.miw.
Hence, also pzem'. Note that A(pz)= 4(0) implies A(z) = 4(0). Thus, it
remains to show that

A(pz)= 4(0). 2)
We do this by induction on the length of the basis representation of z. If
pL= pigX, then (2) follows from A(phoXo) = 4(xo) = 4(0). Thus, assume
that for all pz=37_4 pA,;x;em’ for some r <s, it holds that

3)

Let pz=3Y"_, pix,.

mi=0 £

Note that from (3), the lemma and the fact that

A(x,) = 4(0) it follows that .

/r—1

4 ﬁ Y m.:_,.x._+u.F_.fvuuA,M u‘:m_?vuif

Assume that for some [, where 0 </<r, it is valid that 4( Lo plAd Xt
Sr_, .1 PAX,;)=4(0). Then, using 4(x,)= 4(0) and the lemma we have

I—1
BAM,. P A
i=0

X+ M N&,fx_,v = 4(0).

i=1

Thus we get 4(X)_, pA:x,) = 4(pz) = 4(0), which proves the theorem. 1
Proof of the Lemma. Let (L,),.. be the family of all lines in &/(m)

We shall proceed by induction on u. Let N =n,_(t, m) be very large and m

suppose 4: N'— N satisfies the assertion of the lemma for every line N.l_.
with g <v <& Our object will be to find a homothetic copy A(n‘) of n' in

Ep——

N', where n=n, , (1, m) is sufficiently large, so that 4 restricted on the §

set h(n') satisfies the assertion of the lemma for every L, where p<v.

GALLAI-WITT’S THEOREM 147

Repeating this & times we finally obtain a homothetic copy of m', m=
ny(t, m), satisfying the lemma. Choose p=| N/n | and let 4*: p'*' - B,
(where B, is the n‘th “Bellnumber”) be the mapping which associates to
every (t+1)-tuple (a,d)ep'*' the pattern of equivalence on the
homothetic copy {a-+dhihen’'} of n'. More formally, let 4*(a, d)=
A*@', d) iff (d(a+dh)=d(a+d\) iff 4(a’+d'h)=4(a’+d'}) for every
A, A en’). Put r=n? According to the Gallai-Witt theorem there exists
(for N is large enough with respect ton) a homothety {(a,b)+dr{he
r*' of r'*in p** ! on which 4* is constant. Thus, the homothetic copies
of nin N' given by {(a + i) + (b+dj)k{hen'}, where ier', jer, have the
same pattern with respect to 4.

Assume that there exist x,, x, € m* satisfying x, —x € L, such that

A((a+di)+ (b+dj) xo)=d((a+ di)+ (b + dj) x,).

Fix ipe ' and let y, = (a + diy) + bx, (setting j=0). Denote by M(y,) the
set of all points in x-position with respect to y,, i.c.,

M(y,)={yen'|3ier', jer such that
y=(a+di)+(b+d)x,
and yo=(a+di)+(h+dj) X}

Clearly,

AT M(y,) = const. 4)
We show that
M(yo) = {a+dio+ bx, +dj(x, —X,)|jer satislying i, — /Xy € r'l. (5)

fy=(a+di)+ (b+dj)x, e M(y,), then

Yo={(a+di)+ (b+dj)x,=(a+diy)+ bx,.

Therefore i =1, — jX, . Hence, every ye M(y,) can be written as
y=a+ dip + bx, + dj(x; — Xg),

where jer and

i=iy— jxper'. (6)
On the other hand, if y’ satisfies (6) then

¥ =a+ d(iy— jxo) + (b + dj) X,

582a:42:1-10
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and as

. )

v%.o”»wlfﬁu

(i — jXo) + (b + dj) X,
we infer that y' e M(y,).

Let ge N be such that for any z, ¢ e m’ satisfying z— ¢ = p(x, — x,) for
some pe Q™ we have that g-peN. For n sufficiently large it follows
already that g- p e n. Then, in particular, gen.

We claim that the homothetic copy h(n') = {(a + bx | + ds) + dgh|hen')
of n” in N, where s = (r —mm,..., r —mn) e r', has the property that any two
points on a line which is parallel to L, have the same image with respect
tod. Let zy=c+p,(X;—X), Z;=c+p,y(x; —X,) be two points on a
parallel line to L, in n'. Without loss of generality we can assume that
P1.p2€Q". Then

h(z,)=(a+bx, +ds)+dg(c+pix, —X,))
=a+d{s+ ge)+bx, +d(gp.)(x, —Xg)

for i=1,2,
where s+ geer’ and (s+ ge)—(gp;) xoer’. Let zo=a+d(s + ge) + bx,.
Then z,, z,e M(z,) and we infer from (4) that A(h(z,)) = A(h(z,)). |}

3. COoNCLUDING REMARKS

More generally, #: R’ — R’ is a homothety iff 4 is of the form A(b)=
a+db, where ae R’ and deR\{0}. Then the following version of the
Gallai-Witt theorem is also true (cf. [5, p.38]). For every finite V<R’
there exists a finite W< R’ such that for every mapping 4: W — {0,1}
there exists a homothety h: R'— R’ such that 4(h(b))= A(h(c)) for all
b,ceV.

Using this result, the same proof as before (with technical modifications
concerning the different structure of S < R‘) can be used to obtain also the
following theorem of Spencer. For S < R’, S finite, let &/(S) be defined as
above with respect to subspaces of R".

THEOREM [6]. Let SS R’ be a finite set. Then there exists a finite set
T< R’ such that for every mapping A: T — R there exists a homothety h:
R’ — R and a linear subspace U € o/ (S) with the property A(h(b))= A(h(c))
iff b—ce U for every b,ce S.

Details are left to the reader.

o——y vy
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