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A CONSTRUCTION FOR PARTITIONS WHICH
AVOID LONG ARITHMETIC PROGRESSIONS

E.R. Berlekamp

(received January 2, 1968)

For k> 2, t> 2, let W(k, t) denote the least integer m such
thit in every partition of m consecutive integers into k sets, at
lcast one set contains an arithmetic progressionof t+1 terms.

This paper presents a construction which improves the best previously
known lower bounds on W(k, t) for small k and large t.

1. Introduction. For k> 2, t> 2, let W(k, t) denote the least
.nteger m such that in every partition of m consecutive into k sets,
at least one set contains an arithmetic progression of t+l terms.
According to a well-known theorem of van der Waerden (1925),

Wik, t) < . Itis obvious that

(1) Wik, t) < W(k, t+1)

ising random coding arguments, Erddés and Radd (1952) have shown
that
t.1/2
(2) Wk, t) > [2t k] /

By a more refined nonconstructive argument, Schmidt (1962) has

shown that
1/2
(1) Wk, ) > 1((t-H) - c[(t+1)log(t+1)] /

where ¢ is an absolute constant. The major result of this paper is

~
THEOREM 1. I k is a prime-power, and if W 1is an integer
such that

. t d
(4) W< t(k -1)/k"-1)

for all d which are proper divisors of t, and if

i t

{5} W otk -1)/D

t
for all D< t which are divisors of k -1, then

4
(¢) Wik, t) > W
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The proof consists of a construction, based on the Galois field

t 4
GF(k ), which partitions W consecutive integers intc k gets, none

of which contains any arithmetic progression longer than t. In some
cases this construction can be extended by special arguments, fo give

THEOREM 2. If t is prime, W(2,t) > 2t

The bound of Theorem 2 is stronger than equation (3). If t is
the square of a prime or the product of two large primes whose
difference is small, then Theorem 1 again represents a slight
improvement over equation (3). However, for most values of t, the
bound of Theorem 1 can be improved by decreasing t to the next
smaller prime and invoking equation (1). Although this technique
gives the best known bound for small k and large t, the construction
of L. Moser (1960) still gives the best known bound for small t and

large k, namely,

(7) Wik, t) > tk© log k

The bound of Theorem 2 is also disappointing for small values
of t. Theorem 2 shows only that W(2,3) > 24, yet J. Folkman (1967)
has shown that W(2,3) > 34 by the following construction: For
i=0,1,2,...,33, let ice SO if i = 0,11, or a quadratic nonresidue

mod 11. It is believed that Folkman's partition is the best possible,
and that W(2,3) = 35. Similar constructions using quadratic
residues modulo certain larger primes may be used to obtain other
lower bounds on W(2,t), but the general form of these bounds is

unknown for large values of t.

2. Proof of Theorem 1. Let o be a primitive element in

t

GF(k ). Then every nonzero element in GF(kt) is a power of o, and
. . ¢

al = o) if and only if i = jmod k - 1. Let (31, (32, e e ﬁt be a set of

t
elements in GF(k) which are linearly independent over GF (k). Since

t, . .
these elements form a basis of GF(k) over GF (k), there exist
elements Ai jE GF(k) such that

. t

o = = A, .B.
. 1)1
i=1

The field element O() is the root of some irreducible monic

. t . .
polynomial, f(J)(x) = fg)xn,where fi‘])e GF(k). The degree of

n=0

f(J)(x) is a divisor of t.
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For ecach £ ¢ UF(k), we define the set of integers S, by the

3
rule
. . . v
ie S& ‘f and only if 0< i< W and A1 . = £
, 1
Similarly, for each £ « GF(k), we define the set of nonzero field
eclements, Tg, by the rule al € Tg for each 1 ¢ SE,'

We now claim that no Sg contains any arithmetic progression of

length > t. Let us suppose that for some b # 0,

(8) {a, a+b,a+2b,...,attb} TS5, .

e

v
Since 0 < a< a+tb <« W, we have

(9) b < (k5 1)/(%-1)
and
{10) b < (kt—i)/D

Lasa}

‘rom equations (4) and (5). We now consider separately the cases
£ #0 and £ = 0.

t
Case 1: £ 4 0. Since aaf(b)(ub) = 0, we have 0= X f(b)ma+bn =
n=0 n
t b t
z f51 ) Z Aj, a+b'nﬁj' Since [31 , 62, “e e Bt are linearly independent,
n=0 j=1
this implies that for every i
t
(11) s 1P A =
=0 n j,atbn
In particular, since A1' atbn = £ for n=0,1,..., t, we may set
Lo
;=1 in equation {(11) and obtain § Z fil) =0. If £ #0, thisimplies
n=0
t b b b
that 0 = Z f;) : f( )(1). Therefore, f( )(x) ig divisible by =x-1.
n=0

b b b
Since f( )(x) ia irreducible, f( )(x) = %-1, o« =1, and b =0 mod

£
k -1, contradicting both equations (9) and (10).
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Casc _2: £ = 0. A weakened form of equation (8) is

(12) {atb,at2b,.. wat+tb} C Sy

By definition of T equation (12) implies that TO contains the

0)
atb a+2b at+tb . .
elements , s e e, . We claim that these t elements
.. . atn a+mb . t
are distinct, for if o = o , then (n-m)b = 0 mod k -1,

contradicting equation (10). Since TO is a subspace of dimension
t-1 over GF(k), any t distinct elements in TO must be linearly

dependent. Therefore, there exist B ,B_, ..., Bt ¢ GF(k) such that

172
t 5 b
= Bnaa+ B2 0. This implies that « 1is a root of the polynomial
n=1
t 1
> B x° . Since the degree of this polynomial is less than ¢,
n=1 ° d
ab € GF(kd), where d is a proper divisor of t. Thus, (Qb)(k -1) =1,

d t
so b(k -1) = 0 mod k -1, contradicting equation (9). We conclude
that equation (12) is possible only if b is larger than the bounds of
equation (9) or equation (10).

Proof of Theorem 2. If p and t are odd primes, then

- t
Fermat's theorem shows that 2(p 1) =1 modp 80 2 %1 modp

unless p = 1 mod t. In other words, if D is any divisor of

t v
2°-4, then D>t +1, so Theorem 1 asserts that W(2,t) > W, where

v t
W = t(2 -1). We shall now show that the construction of Theorem 1 can
be extended to include t additional consecutive integers.

The ~onstruction of Theorem 1 is valid for any choice of p's,
so we may now choose these basis elements as follows:

v = - g, (e-1)/2,
(13) Bi = 1, {32 = 1+a,...,{3(t+1)/2 = 1+o ;

-2 -(t-1)/2
24 .

1+a = tta T, .op, =14

1
ﬁ(t+3)/2 ’B(t+5)/2

If these B's were linearly dependent, then o would be a root of a
polynomial of degree < t-1, contradicting the assumption that «

t
is a primitive element in GF(2).

With the basis Cho?en by equation (13), the proof of Theorem 1
partitions {0,1,2,..., W-1} into disjoint sets SO and S'i’ with the

property that
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10,1, 2, L, (e /2y LS,

(1)
aoed
‘J‘ V ¢
(15) {W-1, W-2, ¢ e W-(t-1)/2} < S,1 .

+ . .
We set SO = SO U S(') U b’o‘ where

s, = (F1-20. e -(t-1)/2}

~ Vo 4 \V
s (W, WA, L., WR(t=1)/2) -

)

Any arithmetic progression of length t+1 in b() would have to be

of one of the [olliowing Types:
1) Ircludirg an elemont in S‘O and another element in Sb’. This
{5 impossible because the difference between any two such numbers is

not divisible by .
2) Incluadine two or more elements in :S‘O [or b'O'] This is

L

d by cquaat.on (14) (or eguation (15)).

blocke

3) Including one element in S'O (or Sb’) and an arithmetic

progression of lerngth t is SO. According to the proouf of Theorem 1,
are those in

the only arithimeiic progressions of length t 1in Sb

t

which b > 2 - L. n of the extension of auch a progression

The tntal spa

t . .
would be > t{2 - 1), contradicting equation (15) (or equation (14)).

[herefore. b(,) and 5 partition the integers from ~(t-1)/2 to
‘ 4 2
v
neither of which contains any arithmetic

Wk (= 11/2 dnto two sels,
srogression lopger than t. This partition can be transicted to a
t ) . t
-t (or from 1 to t2 ) by
St oand S .
1

)
tey cach clement in =)
)

e rtition of

che tategers from 0 to 1
adding {(t-1)/2 (or {t+1)/2)

glightly for

e constoaction of Theorvern Linay alao be extended
: relatively

i fat fhe iteprovernent 18 always

Shper aitie 3ol toand K,
sovakl.
. ~ .
3 Fxamp e, et ko 2, t =3, W=21. Piake o as a root ot
3 3 -1 2 _ o
P T T EEE S U S B 14+ = L5, For 1= 1,2, 3;
13 g
Lo, 2, d A 3 civen by
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) 0 : {
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