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In this paper new proofs of the Canonical Ramsey Theorem, which originally has been proved 
by ErdSs and Rado, are given. These yield improvements over the known bounds for the arising 
Erd6s-Rado numbers ER(k; l), where the numbers ER(k; l) are defined as the least positive integer 
n such that for every partition of the k-element subsets of a totally ordered n-element set X into 
an arbitrary number of classes there exists an /-element subset Y of X, such that the set of k- 
element subsets of Y is partitioned canonically (in the sense of Erd6s and Rado). In particular, 
it is shown that 

2 cl'12 < ER(2; l) < 2 c2"/2'l~ 

for every positive integer 1 >_ 3, where Cl,C 2 are positive constants. Moreover, new bounds, lower 
and upper, for the numbers ER(k;l) for arbitrary positive integers k, l are given. 

1. I n t r o d u c t i o n  

I n  1930 R a m s e y  proved his famous Theorem:  

T h e o r e m  1.1. [24] Let k , l , t  be positive integers. Then there exists a least positive 
integer n = R t ( k ; l )  such that for every coloring A: [{1,2 , . . .  ,n}] k ~ {1 ,2 , . . .  , t} of 
the k-element subsets of {1 ,2 , . . .  ,n} with t colors the re  exists a monochromatic 
l-element subse t  X _ { 1 , 2 , . . .  ,n},  i.e. A ( S )  = A ( T )  for a11 S, T e  [X] k. 

Dur ing  the  last  few decades  much in teres t  has been  d rawn towards  de t e rmin ing  
the  g rowth  ra te  of the  R a m s e y  numbers  Rt(k; 1). For k = 2, i t  is known t h a t  2 cl"l't < 
Rt(2;1) < 2 c2"bt'l~ for posi t ive  integers  l > 3 and  t > 2, where  Cl,C2 are  pos i t ive  
cons tan ts .  For  a r b i t r a r y  posi t ive  integers k the  numbers  Rt(k; l) grow like a tower  
funct ion.  

For  pos i t ive  integers  k, l let tow k (1) denote  the  tower funct ion  of l w i th  base  2 
and  he ight  k, i.e. 

.2 l 

towk (1) = 2 2 

with  ( k - 1 )  twos in the  tower.  

ErdSs,  H a j n a l  and  Rado  de t e rmined  the  following lower and  u p p e r  bounds  for 
the  R a m s e y  numbers :  
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Theorem 1.2. [14], [10], [9] Let k, t be positive integers with k > 3 and t >_ 2. 
* such that there exist positive constants ck,t, ck, t 

and 

Then 

Rt(k; l) _< to k(c , t �9 1) 

Rt (k;  l) > towk(ck, t  . l) >__ 4 

R3(k; l) > towk_l(ck, 3 �9 12. log l) 

R2(k; l) > to k-l(ck,2" ?), 
provided l >_ lo(k). 

Moreover, in [6] it has been shown that the lower bounds given in Theorem 1.2 
still hold for small values of l, i.e. t > 3  and k < l < l o ( k ) .  

While in Ramsey's Theorem 1.1 the number t of colors is fixed, Erd6s and Rado 
considered the case of arbitrary colorings of k-element subsets of a set X. They 
proved, that  in this case, once [X[ is large enough, one can always find a subset of 
prescribed size, which is colored according to one of a few canonical patterns. In 
order to make this precise, we use the following notation: 

Notation 1.1. Let k be a positive integer and let I C {1,2,. . .  ,k} be a subset. Let 
X---{Xl ,X2, . . .  ,xk} < be a totally ordered set, i.e. Xl < x2 < . . .  <xk.  

Then X : I denotes the I-subset of X, i.e. 

x : I =  {xi  l i e I } .  

Theorem 1.3. [13] Let k, 1 be positive integers with l > k. Then there exists a least 
positive integer n = ER(k; l )  such that for every coloring A: [{1,2,... ,n)] k ~ w 
there exists a (possibly empty) subset I C { 1,2,. . .  ,k } and there exists an t-element 
subset X C_ {1, 2 , . . . ,  n} such that for all k-element subsets S, T E [X] k the following 
is valid: 

A ( S )  = A (T )  i f  and only i f  S :  r = T :  I. 

Thus for arbitrary colorings of the k-element subsets of a groundset X we still 
obtain on a subset of X some form of regularity given by 2 k canonical patterns. 
None of these patterns can be omitted without violating the statement in Theo- 
rem 1.3, as one can color just according to a missing pattern. 

In this paper we will study the growth rate of the Erd6s-Rado numbers 
ER(k;  l). For the simplest case of coloring singletons the value of ER(1; t )  is folklore, 
cf. also [18]: 

Proposition 1.1. Let l be a positive integer. Then 

ER(1;1) = ( l -  1) 2 + 1. 

For colorings of k-element subsets, k > 2, the situation is less clear. The original 
proof of Erd6s and Rado, as its simplification given by Rado in [23] uses Ramsey's 
Theorem for colorings of 2k-element sets. Quite often, such a strategy turns out 
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to be fruitful in proving canonical Ramsey-type theorems. On the other hand, 
this approach yields large upper bounds for the Erdhs-Rado numbers ER(k;  l). In 
particular, the proof of Erdhs and Rado as well as Rado's simplified version imply 
for the numbers ER(k;  l) upper bounds, which are tower functions of height 2k. 

Here we will give new proofs of the Erdhs-Rado Theorem 1.3. Our approach 
yields the following lower and upper bounds for the numbers ER(k;l) :  

Theorem 1.4. Let k b e  a positive integer. Then there exist positive constants ck, c k 
such that for all positive integers 1 with l >_ lo(k ) the following holds 

2 c2"/2 _< ER(2; l) < 2 c~'/2"l~ 

12k-1 
tow (ek. 12) < ER(k; l) < towk+l(4"- -7, ) i l k  > 3. 

2. Coloring pairs 

In this section we consider arbitrary colorings of two-element sets, focussing 
our interest on the maximum size of canonically colored subsets. In particular, we 
investigate the growth of the Erdhs-Rado numbers ER(2; 1). 

Recall that for colorings of two-element subsets there are exactly four canonical 
coloring patterns: the monochromatic (I = 0), the one-to-one (I = {1,2}), the 
minimum- (I  = {1}) and the maximum-coloring (I  = {2}). As usual, a one-to- 
one colored set IX] k or simply (by abuse of language) X will be called a totally 
multicolored set. 

By using probabilistic methods, Galvin, cf. [16, p.30], obtained the following 
lower bound 

ER(2;1) > l + o(1) 

On the other hand, the upper bounds following from the original proof of Erdhs 
and Rado [13] respective the proof of Rado [23] are three times exponential. 

In [21] both bounds, lower and upper, have been improved: 

Theorem 2.1. [21] There exist positive constants c, c' > 0 such that for every positive 
integer 1 > 3 the following holds 

2 c'12 < ER(2; l) < 22c'43. 

Here we further improve the upper bound for ER(2;l)  given in Theorem 2.1. 
In particular, we give a new proof of Theorem 1.3 for colorings of two-element sets 
without using a higher dimensionai version of Ramsey's Theorem. 

Theorem 2.2. There exist positive constants Cl, c2 such that for all positive integers 
l with 1 > 3 the following holds 

2 c1"12 < ER(2; l) < 2 c2"12"l~ 

Proof. The lower bound was proved already in [21]. For completeness we include 
the argument. 
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Claim 2.1. 

(1) ER(k; l) >_ Rt_k(k; 1). 

Proof .  Pu t  n = R z _ k ( k ; l ) - I  and let A: [{1,2,.. . ,n}] k ~ { 1 , 2 , . . . , l - k }  be a 
coloring admit t ing  no monochromat i c / - e l emen t  subset X __ {1 ,2 , . . .  ,n}. Then,  as 
there are only l - k  colors available, there is no / - e l emen t  subset X C_ {1,2 , . . .  ,n} 
and no subset IC_{1,2 , . . .  ,k}, I nonempty,  such tha t  for all S, T E  [X] k it is valid 
tha t  A(S)  -- A(T)  if and only if S : I = T : I as each of these canonical  colorings 
requires at least I -  k +  1 colors. By choice of the coloring A, n o / - e l e m e n t  subset 
X C {1,2 , . . .  ,n} is monochromatic ,  which proves the Claim. I 

As 

(2) 2 c3"l't <_ Rt(2; l) <_ 2 c4"l't'l~ 

for all positive integers l>__ 3, where c3,c4 are positive constants  (cf. [8], [17], [19]) 
we infer with (1) for k = 2  tha t  

ER(2;  l) > R/_2(2; l) _> 2 c1"~2 

for some positive constant  Cl. 
Next  we prove the upper  bound.  Let  l be a positive integer with l k 3. Let  n 

be a positive integer with 

n =  V(27"  16~ 2(/-2)~+1" 

I\ 16 l 

and let A: [{1,2,. . .  ,n}] 2 ,w be an arb i t rary  coloring. 

16 W e  define nonempty  subsets "L ' Y R  P u t  with forsight c = 2--~-t �9 v (i) v(i),M(i) C 
{ 1 ,2 , . . . ,  n} for i = 0 ,1 , . . . ,  s, where s is some nonnegat ive integer with s _< 2.(l-2) 2+1, 
as follows. 

Set V ( ~  VR(0)= 0 and put  M (0) = {1,2 , . . .  ,n}. Let  j be  a positive integer 

and assume tha t  for each i - - 0 , 1 , . . .  , j -  1 pairwise disjoint sets V (i), V(i),M(Q C__ 
] 0 ~ 1 ~  ;th T/(i--1) CI/(i) ~/(i-1) C~/(i) I]/(i),,~/(i)l= i andM(i) cM(i -1)  as 
~ , ~ , . . . , , ~ j  , , ,  U - - L  - -  L~ ' - - R  - -  R~ , I--n ~ " ~ R  

well as numbers d i E w, are already definedsuch that 
~- l/(i)\T/(i-1) 

(i) for v ~_, L \ '  L and for all w E M (i) it is valid tha t  v > w and A({w, v}) -- 
di, 

E v( i ) \v  (i-1) and for all w E M (i) it is valid tha t  v < w and A({v,  w}) = (ii) for v R R 
di and 

(iii) [M(i)] _> [c. [M(i-1)[~. 

Next  we construct  the sets ~/(j) ~/(J) M (j) Let w E M ( j - l )  and d E aJ. Firs t  
VL ' ' R  ~ 

define sets Zd(w) ,Xd(w)  (we omit the index j )  as follows 

Xd(w) = {v E M ( j - l )  I A({v,w})  = d and v < w} 

Xd(w) = {Z E M ( j - l )  I A({w, z}) = d and z > w}. 
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First assume that  for some wEM (j-l) and for some d e w  we have IXd(w)l > 
[c. IM(J-1)I] or ]Xd(w)I > [c. ]M(J-1)[]. Then put  dj = d and take any subset 

Z with either X C Xd(w) or X C_ Xd(w), satisfying IX I --- [c. IM(J-1)t],  and put  

M(J)= x .  If XCXd(w),  put V(LJ)-= V(LJ-1)U(w} and v(J)-= V (j- l)  and observe 

that  w > v for all v E V(L j-l). On the other hand, if X C Xd(w), put V(R j) = 
v(J-1)U{w} and V(LJ)=v (j-l) ,  andwe  have that  w<v for al lvEV (j-l) .  Then 
we continue with step (j § 1). 

If for all w E M ( j - l )  and all d E w we have that  IXd(w)] < [c. IM(J-1)I] and 

also that  ]Xd(w)l < [c. ]M(J -1) ]], then the process stops. 

Assume that  this process continues until some step s, s < 2. ( l - 2 ) 2 §  1, where 

either ]v(S)]-=(l-2)2 § l or IV(S)l=(l-2)2 § l. 

Assume first that ]v(S) I-- ( l -2 )2§  where V (s) --= {vl, v2,..., v(/_2)2+1 }<. For 

i - -  1, 2 , . . . ,  (l-2)2§ let r(i) be the unique integer j such that  vi is an element of V(L j) 
but not an element of V(L j-l). The corresponding sequence (dr(i))l<_i<_(l_2)2+ 1 

contains by Proposition 1.1 a subsequence (dr(ij))l_<j_<l-1 such that  

(i) either dr(is ) =dr(i~+l ) for j - -1 ,2 ,  ... , 1 - 2  

(ii) or dr(ij ) %dr(i,~) for all integers j ,  m with 1 _<j < m < l - 1. 

Then for r-=r(il_l)-= maxl<_j<_l_lr(ij) the/ -e lement  set 

where v E M(r) is arbitrary, is in case (i) monochromatic and in case (ii) it is 
maximum-colored with respect to A. 

The arguments for the second case, IV(S)[- - ( l -2)2+1,  are similar to those used 

above. We obtain an/-element  subset X C_ V (s), which is either monochromatic or 
minimum-colored. 

Now assume that  the process stops at some step s, s < 2. (l - 2) 2 + 1. The 

set Y = M(s) satisfies [YI -- m > [1] 27.16.  For E Y and d e let deg (d) _ = ] - ~  y w - -  
I { w  E Y IA({w, y})--d} I. As the process stops, we have 

(3) deg (d) < 2 c . m  

and, clearly, 

(4) deg  m--  
dew 

for all y E Y and all d E w. 
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A three-element subset T 6 [y]3 is called a bad triple, if the set IT] 2 is not 
totally multicolored with respect to A. Let b denote the number of bad triples in 
[y]3. Then 

y e Y  dew 
(d) " 

The sum ~ d e w  ( degb ) subject to (3)and (4) is maximal if all summands are 
as large as possible, hence we infer that  

dew 

and therefore 

(5) ~ < ~ ~ .  = ~ .  . 
yey  

Let Z* be an [~./3J-element subset of Y, picked uniformly at random among 
all [-~.131-element subsets of Y. Let E denote the expected number of bad triples 

16 in Z*. Using (5) and that  c=  2--7~./we obtain that  

m-3 
b'(r~.z~l-3) < . z3 27 i9 13 

E -  (r~.%l) ~ < ~ . c .  = 

and hence there exists a subset Z* E [Y] [~./s] having at most �88 bad triples. 
Delete one vertex from each bad triple. Then the remaining subset Z C_ Z* contains 
no bad triple anymore and has size IZI _> 1 .l 3. Thus for every three-element subset 
T 6 [Z] 3, the set [T] s is totally multicolored. In terms of graphs, every color class 
in [Z] 2 is a matching . . . .  

We use the following result of Babai: 

Lemma 2.1. [4] Let  m be a posit ive integer. Le t  A: [{1,2,. . . ,m}] 2 ----+ w be a 
coloring, where every color class is a matching. 

Then  there exists a totally multicolored subset  X C_ {1,2,... ,m} with 

1 

(6) IX[ > ( 2 . m ) ~ .  

We include the proof of this lemma for completeness. 
Proof. Let M--{1,  2,...  , m }  and let A: [M] 2 ~ w be a coloring, where every color 
class is a matching. 

The proof uses a Greedy type argument. Let X be a maximal totally mul- 
ticolored subset of M,  and let D = { A ( { x , x * } ) l { x , x * } e  IX] 2} be the set of the 
occurring colors. By maximality of X, for every element y C M \ X  there exists an 
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element x E X such that  A({x,y}) E D. Moreover, as different two-element sub- 
sets of X, which are colored the same, cannot intersect nontrivially, we have the 
following inequality 

hence ,  as 1 13 - l  for positive integers l _> 2, it follows that  

1 

Ixl _> (2 . . ~ )~ .  I 

Now, the restriction of the coloring A to the set [Z] 2 satisfies the assumptions 
of Lemma 2.1, and by (6) there exists a totally multicolored subset X C_ Z, with 

IX] > (2. IzI) 1 >l .  This finishes the proof of Theorem 2.2. | 

The lower bound (6) was improved in [3] to 

1 1 
(7) [xl _> c. , ~ .  (logm)~, 

where c is a positive constant. We remark that  by using in the proof of Theorem 2.2 
the inequality (7) instead of (6) we obtain a slight improvement on the upper bound 

of ER(2; l), namely from (cl" 16) 2(l-2)2+1 to 

We have seen that  

c �9 l 6 "~2(1-2) 2+1 

2 c1"12 < ER(2; l) < 2 c2"12"l~ 

for positive constants el, c2 > 0. Moreover, the corresponding Ramsey numbers 
Rt_2(2;1), which we used in the lower bound satisfy by (2) that  

(8) 2 c3"12 <_ R1_2(2; l) <_ 2 c4"12"l~ 

for some positive constants c3, c4 > 0. 
By (2), at least ER(2; l) < Rc:l.logl(2; l) for some positive constant c > 0. Notice, 

that  a totally multicolored/-element subset requires at least (~) colors. Possibly, 
only c. l colors, which occur 'often', are crucial for the occurence of canonically 
(not totally multicolored) colored subsets and cause the growth of the Erd6s-Rado 
numbers. Moreover, possibly the inequality ER(2;1) < Rc.l(2;l ) holds. If true, 
decreasing the gap between lower and upper bound in (8) (also asked for in [17]) 
Could give more insight here. 

By (1) we have ER(2; l) > R1_2(2; 1). This lower bound can be a little improved: 

Fact 2.1. Let 1 be a positive integer with 1 >__ 4. Then 

(9) ER(2; l) > R~_2(2; l) + I. 
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Proof. Let n=Rl_2(2;l)-l. Let A:[{1,2,... ,n}] 2 , { 1 , 2 , . . . , l - 2 }  be a coloring 
admitting no monochromatic /-element subset, where A is such that  among all 
choices of such colorings color 1 is used as often as possible. We claim that  
{1,2, . . . ,n} contains an /-element ex-subset Y, by which we mean an /-element 
subset, such that  all, with the exception of one, two-element subsets of Y are 
colored the same. 

Namely, each two-element subset {x,y} of {1, 2, . . . ,  n}, not colored in color 1, 
can be extended to an/-element ex-set Y, where [g]2\ {x,y} is monochromatic in 
color 1, as otherwise the set {x,y} can be recolored by color 1, increasing the size 
of color class 1. 

Assume w.l.o.g, that  Y = {1,2,. . . , l} is an ex-set with, say, {1,l} colored 
differently from the other two-element subsets. Let {n+l,n+2,... ,n+l} be a copy 
of Y. We extend the coloring A as follows. For i r j color all two-element sets 
{j,n+i} respective {n+i,n+j} by the color A({i,j}) and color all sets {i,n+i} by 
a new color. Clearly, the resulting coloring yields no canonically colored/-element 
subset. | 

A similar argument was (in slightly more developed form) applied in [21]. 
As for the exact values of the Ramsey numbers Rt(k;l), not much is known 

about the precise values of the Erdbs-Rado numbers ER(2;1) for small positive 
integers I>_3. We only know the exact value of ER(2; 3), namely: 

Fact 2.2. ER(2; 3) = 4. 

Proof. The coloring A:[{1,2,3}] 2 ~ {1,2} with A({1,2})=A({2,3})7~A({1,3}) 
gives the lower bound ER(2; 3) > 4. To see the upper bound, let A: [{1, 2, 3, 4}] 2 
co be a coloring. Suppose that  for some positive integers a,b,c with a < b < c < 
4 we have that A({a,b})5s Then, in any case, the set {a,b,c} is either 
minimum- or maximum- or totally multicolored. Therefore, we can assume that  

(10) A({a,b}) = A({b,c}) for all 1 _< a < b < c < 4, 

in particular, A({1,2}) = A({2,3}) = A({3,4}). Moreover, by (10) we have 
A({1,2}) = A({2, 4}), hence the set {2, 3, 4} is monochromatic. II 

With (9) we obtain the lower bound ER(2; 4) _> 22. A large upper bound (i.e. 
272. 327 ) follows by Theorem 2.2. 

3. MatChings and Stars 

In the proof of Theorem 2.2 we used Lemma 2.1, a so called anti-Ramsey theo- 
rem. While in quantitative Ramsey-type theorems usually the size of a monochro- 
matic subset is estimated, anti-Ramsey theorems are dealing with the size of a 
largest totally multicolored subset, compare also [2], [12], [15], [22], [25]. 

As already mentioned above, the lower bound in Lemma 2.1 was improved 
in [3]. Moreover, Babal also obtained an upper bound by using certain random 
colorings: 
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Theorem 3.1. [4], [3] Let n be a positive integer. Let A:[{1,2, . . . ,n}]  2 ~ ~ be 
a coloring, where every color class is a matching. Then there exists a totally 
multicolored subset X C_ {1,2, . . . ,  n} with 

IX[ > c.  ( n . l o g n ) ~ ,  

where c is a positive constant. 
Moreover, for ~, >_ no, there exists a coloring Z~:[{1,2,...,n}] 2 ~ ~, where 

each color class is a matching, such that every totally multicolored subset X C_ 
{1,2,. . .  ,n} satisfies 

1 
rXl < s .  log )5. 

We remark, that  Theorem 3.1 is related to a problem about the size of Sidon 
sets in Abelian groups, ef. [4]. 

While Babai considered colorings of two-elements sets, where every color class 
is a matching, we consider here a dual problem, namely colorings of the two-element 
subsets of a set N, where every color class is a star. 

Definition 3.1. Let N be a set. A subset S c [N] 2 is a star if and only if f A s t S  s] > 1. 

Let A: [{1,2,. . . ,  n}]2 ___., w be a coloring, where every color class is a star, and 
let l be a positive integer with l > 3. Clearly, no/-element subset of {1,2, . . . ,  n} can 
be monochromatic. On the other hand, it follows from the Erd6s-Rado Theorem 1.3 
that  for n>ER(2; l )  the following is valid: 
(*) for every coloring A: [{1,2,... ,n}] 2 ~w there exists an/ -e lement  subset X __C_ 
{1, 2 , . . . ,  n}, which is either minimum-colored or maximum-colored or totally mul- 
ticolored. 

Let S(2;I) denote the least positive integer n such that  (*) is true. By the 
observation above we have S(2;I) ~ ER(2;l).  W i t h  Theorem 2.2 this gives an 

upper bound of the order 2 c'12"l~ for some positive constant c. Indeed, one can 
get a much smaller upper bound for S(2;I) of the order 2 c*'l'l~ for some positive 
constant c*, as the following result shows. 

Theorem 3.2. There exist positive constants Cl, c2 such that for all positive integers 
l with l > 3 the following holds 

2 cl"l'l~ ~ S(2; l) ~_ 2 c2"l'l~ 

In our arguments for proving the lower bound of S(2; l) we use the Erd6s Lov~sz 
Local Lemma. Let ~dl,M2, . . . .  ~dn be events in a probability space ft. A graph G on 
{1,2,. . .  ,n} is a dependency graph for M1,M2,... ,~dn if for every i = 1,2, . . .  ,n the 
event Mi is mutually independent of {Mj l{ i , j  } ~E(G)} ,  cf. [26]. 

Lemma 3.1. [11] Let ~l,a~2,...,a~n be events in a probability space f~ with 
Prob (~i) -< P < 1 for i = 1 ,2 , . . . , n  and with a dependency graph of maximum 
degree d. 

I f  

e . p . ( d +  l)_~ l, 
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then 

Proof. F ~  a positive integer l ~_ 3. Let n be a positive integer wi th 

1 

_ - .  - 2 ) T .  

e 

Put N =  {1, 2,... ,n}.  For each element v E N choose an ( l -  2)-element subset 
Ov C w of colors, where Cv r~ Cv. = 0 for each two distinct elements v, v* E N. 

Define a random coloring ZX:[N] 2 , o, as follows. For each pair  {~*,~} 
with v*,v E N and v* < v pick at random a color from Cv with probabil i ty p = 

1 and color the set {v*,v} by this color. Then for this coloring every color 
class is a star. Observe that  due to the structure of the coloring classes every l- 
element subset X of N is neither monochromatic nor minimum-colored nor total ly 
multicolored. For an / -e lement  subset L C iN] t let "~L denote the event that  iLl 2 

is maximum-colored. Thus if we prove that  Prob (AL~[N]Z ML) > 0, we can infer 
g 

\ ] 

that  there exists a coloring A: iN] 2 .... ~ w such that  every/ -e lement  subset L C_ N 
is neither monochromatic, nor minimum-colored nor maximum-colored nor totally 
multicolored. 

Now 

l-2 

Prob (~L) : I I /  
i=1 

Moreover, for each set LE iN] l the event ,~L is independent of all events ~L*, L* E 
iN] l, if ILnL*I < 1. Define a dependency graph G for the events ML, L E iN]/, with 
vertex set iN] t and edges {L,L*} if ]LML*] > 2. The maximum degree d of this 
dependency graph G satisfies 

n - 2  

For n as in (11), we obtain that  

( 1 ~ (/21) 17,--2 
Pr~ ( M L ) ' ( d + l ) ' e <  \ i _ 2  / " ( 1 2 ) ' ( l _ 2 ) ' e  

<,l-2J 
_<1, 

and hence, the assumptions of the Local Lemma 3.1 are satisfied. 
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The proof of the upper bound is similar to the proof of Theorem 2.2. We only 
sketch the arguments. Let l be a positive integer with l _> 3 and let n be a positive 
integer with 

Let A: [{1,2,... ,n}] 2 ,w be a coloring, where every color class is a star. Put  
~7 (i) ~7(i),M(i) C C---- 27./24 . As in the proof of Theorem 2.2 define nonempty subsets v L ' ' R 

{ 1, 2 , . . . ,  n} for i---- 0 ,1 , . . . ,  s, where s is some nonnegative integer s with s < 21 - 3 
as tong as possible. Having done this, we distinguish similarily as above between 
the following situations. 

First assume that  this process continues until step s, s < 21-  3, where either 

[ V ( S ) ] = l - 1  or IV(r ) l - -1 -1 .  If [V(S ) [= l -1  holds, then we obtain an /-element 

set, which is maximum-colored with respect to A. If [vR(S) [ -  - - l -  1, then we get an 
/-element set X, which is minimum-colored with respect to A. 

Finally, if the process stops at some step s, s < 21 - 3, then the set Y = M(s) 
satisfies [Y[ =m_> [1] _> ~ .l 2. As in the proof of Theorem 2.2, by estimating the 
number of bad triples in a random subset Z* C_ Y with IZ*I= F3I], and then deleting 
one point from each bad triple, we obtain a totally multicolored subset Z C_ Z* with 
IZI El ,  as by assumption every color class is a star. | 

4. Coloring k-sets 

For colorings of three-element subsets the following bounds for the numbers 
ER(3; l) are known. 

Theorem 4.1. [20] There exist positive constants cl ,c 2 such that t:or all positive 
integers 1 with l > lo the following holds 

22c1.~2 ~ ER(3; l) _< 222ca'Is . 

In this section we will generalize and improve this result, by considering color- 
ings of k-element sets for arbitrary fixed values of k: 

Theorem 4.2. Let k >_ 3 be a positive integer. Then there exist positive constants 
ck,c~ such that for aft positive integers 1 with l> lo(k) it is valid that 

( .  / 2k - lh  togt / 
t o w k ( c k  . Z 2) <__ E R ( k ;  l) <_ t o . k + 1  ck " . 

In analogy with the case for coloring pairs and supported by a result of 
Baumgartner [51 in the infinite case the lower bound for k > 3 should give the 
correct order. The approach in [5], however, does not seem to be applicable in the 
finite case. 
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Proof. By Claim 2.1 we have that  ER(k;l)>>_ Rl-k(k;l) .  Using the lower bound 
Rt(2;/) _> 2 c'l't from (2), where c is a positive constant and 1,t > 2 are positive 
integers, and applying the same techniques as used to prove Theorem 1.2 it follows 
that  Rt(k; l) >_ towk(c~. I. t) for t > 4, hence, ER(k; l) >_ Rl-k(k;  l) >_ towk(c k �9 12) for 
l>>_ lo(k) for some positive constant e k. 

In the following we will prove the upper bound. Let k,1 be positive integers 
with 1 >_ lo(k). Set 

n=R(k+ l )k+ l  k + l ; C / ~ . ~ ] ,  

where C k is a positive constant, which is large enough such that  the following 
computations are valid. We will show that  ER(k;l)  < n. By Theorem 1.2 this 
implies that  ER(k; l) <<_ towk+l (c~. 12k- 1 / log l) for some positive constant c~. 

Let A: [{1,2,... ,n}] k ----+ w be an arbitrary coloring. This coloring induces 
another coloring 5:  [{1, 2 , . . . ,n}]  k+l - -~  ~ as follows: for (k + 1)-element subsets 
Z-=-{Z l ,Z2 , . . .  ,Zk+l} < of {1,2:... ,n}, let 

I if A(S) = A(T) if and only if S :  I = T :  I for all S , T  e [Z] k 

/~(Z) = P if the above is not valid, and P is the set of all pairs 
{(i,J) I 1 5 i < j _< k + 1} such that  A(Z \ {zi}) = A(Z  \ {zj}). 

Essentially, A colors the (k + 1)-element sets according to the equivalence 
relation on its k-element subsets induced by the coloring A. Let us point out 
that  all cases when A ( Z ) =  I can be described by some equivalence relation P on 
pairs. It is however convenient for our purpose to consider "/-cases" separately. 

Let us also note that  for I C {1,2,... ,k} the corresponding P-pattern can be 
described as follows: 

Proposition 4.1. Let Z = {z l , z2 , . . . , zk+l}< and let A:[Z] k ~ w be a coloring. 
Then the following statements are equivalent: 
(a) There exists I={ i l , i 2 , . . .  ,ip}< with IC{1 ,2 , . . .  ,k) such that A ( S ) = A ( T )  if  

and only if S : I = T : I  for all S, T e  [Z] k. 
_ t A p t - 1  (b) P -  l=11-'l, where PI = [{il-l + l , i l - l  +2, . . . ,  i/}]2, and i0 = 0  and ip+ 1 =- 

k+l .  (In other wo~ds, a ( z \ { z i } ) = a ( z \ { z j } ) ,  whenever (i,Y)ePt fox ~ome 
le{1,2,., , ; +1 } )  

Proofi This follows from the fact that for S, T E [Z] k, we have S : I  = T : I ,  whenever 
S = Z \  {zi} , T = Z \  {zj} and ( i , j )ePl .  | 

By choice of n there exists a subset X C_ {1,2,... ,n}, X = {Xl,X2,...,Xm}<, 
with 

12k-1 
]xI  = m >_ Ck" l og l  ' 

which is monochromatic with respect to the coloring A in some color C. According 
to the value of C we distinguish two cases. 
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Case 1: C = I  Assume first that I=O. Then for every (k+l)-element subset Y 
of X the set [y]k is monochromatic with respect to the coloring A. We claim that 
the whole set X is monochromatic with respect to A. Namely, suppose not, and 
let K--{xl ,x2 , . . . ,xk} .  By assumption there exist subsets S, S' with S _C K, S'_C 
X \ K  and ISUS'I=k such that 

~(g) # a(S u S'). 

Assume that among all such choices of subsets SUS t the set S has largest possible 
cardinaiity. But then by maximaiity of ISI, for any element s E K \  S, the (k+  1)- 
element set S U {s} U S' is not monochromatic, as A(K) -- A(S U {s} U S' \ {st}) # 
A(S U S t) for every s' C S t. This contradicts our assumption, hence [X] k is 
monochromatic. 

We assume in the following that I # 0. Let X * =  {xi.kI1 < i < m*}, where m*-- 
[ m = ~ J } .  Define a coloring A*: [X*]III---+w by 

~*(s)=~(sus') forsomeS'CX\X*,lS'l=k-IZland(SUS'):I=S. 
Claim 4.1. The coloring A* is well defined. 

Proof. Suppose for contradiction that A* is not well defined. Then for some subset 
S E [X*]III there exist two sets $1, $2 c X \ X* which satisfy 

Is u S l l  = Isu s21 = k 
(s  u s~ ) :  z = (s  u s 2 ) :  z =  s 

zx(s u s~) r ~(s  u s2). 

Let 

S U S1 -= {Yl,Y2,. . . ,Yk}< 

s u s2 = {zl ,  z 2 , . . . ,  zk}< 

and let g be the first position where S U S1 and S U $2 differ, i.e. Yi = zi for i = 
1, 2,... , g -  1 and yg ~ Zg. Among all such possible choices of pairs of different sets 
$1 and $2, let S1 and $2 be chosen such that g is maximal. Suppose w.l.o.g that 
yg < zg. As g ~I,  we infer by considering the set T = S U  $2 U {yg} that 

(T\ {yg}): z= (T\ {~g}): • 

hence, by definition of the coloring ~,  we obtain that 

~ (T  \ {Vg}) = Z~(T \ {zg}). 

This implies 

A(S U S1) # ZX(S U {y~} U (S2 \ {z~})), 
but the sets SUS1 and SU{yg}U(S2\{zg})) do not differ on the first g positions, 
which contradicts the maximality of g. I 

Moreover, the coloring A* has the following property: 
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Claim 4.2. Let Y � 9  [X*]]I]+I be a set with Y={Yl ,Y2, . . .  ,YIII+I}<' Then for every 

positive integer j <III it is valid that 

a*(y \ {yj}) # \ 

Proof. Let j be a positive integer with j __ III . Let S' E [X] k-III be a subset, which 
satisfies S 'MY=0,  ( Y \ { y j } U S ' ) : I = Y \ { y j } ,  ( Y \ { Y j + I } U S ' ) : I = Y \ { Y j + I }  and 
S 'M{yj ,y j+I , . . . , y j+I}=O.  As A ( Y U S ' ) = I ,  it follows from ( Y \ { y j } U S ' ) : I #  
(Y\{Yj+I}USj)  :I that  A(Y~ . {y j }US ' )~A(Y \ {y j+I}US ' ) .  By definition of A*, 
this implies A ( Y \ { y j } ) # A  (Y\{Yj+I}) .  I 

Lemma 4.1. Let g be a positive integer and let X* be a totally ordered set with 
IX*I=m, m >_ mo(g). Let A: [X*] g ~ w be a coloring with the following property: 
for every (g+l)-element subset Y={Yl ,Y2, . . .  ,Yg+l}< E IX*] g+l and each positive 
integer j ,  j ~g, it is valid that 

(12) A(Y \ {yj}) # A(Y \ {Yj+I}). 

Then there exists a totally multicolored subset Z C_ X*, with 

1 

IzI > c(g). log. )2 -i 

for some positive constant c(g). 

For the proof of Lemma 4.1 we will use the concept of uncrowded hypergraphs, 
cf. [1], [3]. Let 2~ = (V,8) be a hypergraph with vertex set V and edge set 8. For 
a v e r t e x v � 9  let d ~ ( v ) - - ] { E � 9 1 4 9  denote the degree ofv .  Let D ~ =  
max{d~(v)]v �9 V} be the maximum degree of ~ .  The hypergraph ~ is called k- 
uniform if [El--k for each edge E � 9  A 2-cycle in ~ is given by two distinct edges 
from 8, which intersect in at least two vertices. The independence number ~ (~)  is 
the maximum cardinality of a subset of V, which contains no edges from 8. 

In the proof of Lemma 4.1 we will use the following theorem, which is a 
generalization of a deep result of Ajtai, Komlds, Pintz, Spencer and Szemer~di 
[1]: 
Theorem 4.3. [7] Let ~ = (V,~) be a k-uniform hypergraph with IV] = n and 
maximum degree D~ <t k-1. If  

(i) 2C contains no 2-cycles, and 
(ii) t 7>/% 
then 

n ] 
(13) a ( ~ )  _> ck �9 ~- ; (logt)k-~, 

where c k is a positive constant. 

Next we will give the proof of Lemma 4.1. 
Proof. Let X *  -~- { X l , X 2 , . . . , X m } <  be given with Xl < x2 < ... < Xm. Let 
A: [X*]g ---, w be a coloring, which: satisfies (12) for every subset Y �9 [x*]g+l 
and for every positive integer j ~ g. Let T = {i �9 w I A- l ( / )  r 0} be the set of all 
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occuring colors. Fix a color t E T .  Let SE [X*] g-1 with S={81,82, . . . ,8g_1} < be 
arbitrary. Let j be a positive integer with j < g. By (12) there do not exist two 
distinct elements x, xl E X* with sj-1 < x, x~ < sj such that 

~ ( S  U { x } )  = Z~(S U { x ' } )  = t. 

Hence, for every color t E T and for every (g - 1)-element subset S E [Z*] g-1 
there exist at most g elements x~ EX* \S ,  i=1,2 , . . .  , f ,  with 

(14) A(SU {x~}) = t for i = 1 , 2 , . . . , f  with f _< g 

and every subset G e  [X*]g with A ( G ) = t  arises from some set SE [x*]g-1 in this 
. way. 

Let j be a nonnegative integer and let {G,G*} be a two-element subset of 
IX*] g. The (unordered) pair {G, G*} is called a j-pair if ]GnG*] =j ,  and it is called 
a bad pair if A(G)=A(G*).  

For nonnegative integers j =0,1, . . .  , g - 1  fix a j-element subset J E  IX*] j. For 
nonnegative integers t E T put r t (J )= I{G E [x*]gIA(G)= t and J C G}I. Clearly, 

C1 (15) E r r ( J ) - -  g j . 
tCT 

Counting the number of pairs (R,S) with RE [X*] g, J C R ,  A ( R ) = t  and SE 
[R]g -1, J C S in two different ways, (14) implies 

r t ( J ) . ( g - j ) < _ g ,  g - l - J  ' 

hence, 

(16) rt(J) 

For fixed J E  [X*]J let b ( J )  
[X*] g, with J=GAG*.  By (15) 

(17) 

- j  

denote the number of bad j-pairs {G,G*}, G,G*E 
and (16) it follows that 

tET 
m- j  

< (g-J) 
- -  m- j  

" (g--l--j) g--j 
g < 

- 2 .  ( ( g -  j ) ! )2  
�9 m2g-2j -1. 

Now, for j =0,1, . . .  , g -  1 we form (2g-  j)-uniform hypergraphs 2{j = (X*,~j)  
with vertex set X* and edge set ~j C [X*] 2g-j as follows: the set ~j consists of all 
bad j-pairs, i.e. E E ~j if and only if there exist G, G* ~ [x*]g with GUG* = E  and 
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A(G) = A(G*). We will show in the following that there exists a subset Z of X* 
1 

of size c(g). (m. logm)2--&:-Y-~, which is independent for Ygo,~l , . . . ,g{g-L.  Then Z is 
totally multicolored. 

By (17) we have 

g m2g-2j-l  < * m2g-j-1 
Je[x*l~ 2 .  ((g - j ) ! ) 2  ' _ c j .  

for j----0,1,... , g - 1  and positive constants c~. 
Next we will count the number of 2-cycles in ~0 .  Let 82,i(a'~0) denote the 

number of (2,i)-cycles in ~0 ,  that is the number of unordered pairs {E,E*} with 
E,E* s and IEAE* I =i. Fix an edge E E l 0  and fix sets G,G* �9 IX*] g with 
A(G) = A(G*) and GU G * =  E. Moreover, fix nonnegative integers io,il. We will 
count the number Aio il (E) of unordered pairs {H, H* }, where H, H* �9 [X*] g, with 
HNH*=O a n d A ( H ) = A ( g * )  and H N G  I=i0 a n d l H * N G * l = i l .  There are at 

m--g most (g)'(g-io) possibilities to choose the set H. Having fixed H with say A ( H ) =  
t, there are at most ~-~46[G*]q rt(I) possibilities to choose H*. 

By (16) we infer for O<io<g and 0_<il < g - 1  that 

g m - g  g g - i l  

For i--2,3,  . . , 2 g - 1  set 

Ai (E)=  ~ Aio,il(E). 
io+Q =i 

Then for O<io<g and 0 < i l < g - 1  we have that 

Ai (E)< ~ io g - i o  " il g - i l  g - l - i l /  <-ci" 
io+Q=i 

where ci is a positive constant. With (18) this yields the following upper bound on 
the number of (2,i)-cycles in ~0:  

, .m2g- l - i  I@ol < Q . m 4 g  -2- i  (19) s2,i(g{0) _< ci �9 _ 

for i=2 ,3 , . . .  , 2 g - 1 ,  where Ci is a positive constant. 
Now choose at random vertices from X* with probability 

2 ~ / - - 2  , 
p ~ 77~ 2g--lit, 

1 and the vertices are chosen where e is a positive constant with ~ < (2g-1)(4g-3)' 

independently of each other. 
Let Y be the corresponding random subset of X*. Then the expected values 

E(')  satisfy: 

(20) E(IYI) = pm 
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and by (18), for j = 1, 2, . . . ,  9 - 1 ,  we obtain that 

(21) = c;pm. rn-  2J-1 +e(29-j-1) = o(prn) 

1 for e < (2g-2)(2g-1)" 
Next, we estimate the expected number E(s2,i) of (2,i)-cycles in the subhy- 

pergraph of 2~0 induced on Y. By (19), for i =2,  3 , . . . ,  2 g - 1 ,  we have 

E(s2,i ) = p4g-i . s2,i(a,~0 ) ~ Cipm ' (p4g- i -1 .  m4g-3 - i )  

- -  . 2 g - 1  = o(pm) (22) -- Cipm m t-e(4g-i-1) 

1 provided e<  (2g-1)(49-3)" 
By (20), (21) and (22), using Chernoff's and Markov's inequality, we infer that 

there exists a subset Y C X* with [YI = (1-o(1)).pm, such that the subhypergraphs 
of a~j, j = 1,2,.. .  , 9 - 1 ,  induced on Y have o(pm) edges and that I[Y] 2g NE01 _< 
2.p 2g. Igo]. Moreover, the subhypergraph of ~ 0  induced on Y has o(pm) (2,i)- 
cycles for i - -2 ,3 , . . .  , 2 9 - 1 ,  hence o(pm) 2-cycles. Deleting one vertex from each 
edge in 8j  N[y]2g-j  for j = 1, 2 , . . . ,  9 - 1 ,  and also from each 2-cycle of o~o contained 
in Y, we obtain a subset Y'C_ Y with IY*l= (1-o(1) )pm,  which contains no edges 
from $j  for j =1 ,2 , . . .  , 9 - 1 ,  with ][Y*]2gN#01 < 2 . p  2g. IN01 and the subhypergraph 
2(* of J~(o induced on Y* contains no 2-cyele~. By deleting all vertices of o~f* of 
degree bigger than S g p 2 g ] ~ ~  - -  - -  pm we obtain a subset Y C_ Y* with IYI _> (1 - o ( 1 ) ) ~  

such that the subhypergraph o~ ~ of ~ *  induced on Y satiesfies the assumptions of 
Theorem 4.3 with maximum degree DN, _< t 2g - l=8c~gp2g- lm  2g-2 by (18). 

By (13) we infer that 

1 
pro(l~2 - o(1)) ( / 1_ 2 9 - 2 \ \  2g-1 

(8c~9) 2~--i pm 29-1 
1 

_> e(g). (m. logm)  -l. 

This implies the existence of a totally multicolored subset Z C_ X* with IZI >_ 
1 

c(g). (m.logm)~g-1,  where c(g)is a positive constant. | 

We apply CIaim 4.2 and Lemma 4.1 to X* and the coloring A*, where III =g.  
Using 

m*= l m - k + l  

12k-1 
_> C~. log/ ' 
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where C~ is by assumption sufficiently large, say C~. c(g) _~ 1 and C~ ~_ 1 for g- -  
1,2, . . . ,k ,  and with 

1 ( c(g) log \ ] ]  _> z 

for l k lo(k), we obtain an /-element subset Z C X*, which is totally multicolored 
with respect to A*. By Claim 4.1 it follows 

a ( S )  = ~ (T)  iff S :  • = T :  • 

for all S, T E  [Z] k. 

Case 2: C-=P Let X be monochromatic with respect to the coloring/~. We will 
show that IX[ _< k § 1 .  For contradiction, assume in the following that IX] >_ k § 2. 
First we derive some properties of the set P.  Recall that ( i , j)  E P with i < j  implies 
that for every (k+ 1)-element subset Z = {zl, z2,. . . ,  zk+l } < E [X]k+l it is valid that  
A ( Z \  {z i})= A ( Z \  {zf ~). As we are dealing with an equivalence relation, we have: 

Claim 4.3. Let h, i , j  be positive integers with 1 < h < i < j <_ k § 1. Then 

(h, i), (i, j)  E P implies (h, j) E P 
(h, i), (h, j)  E e implies (i, j)  E P 
(h, j) ,  (i, j )  E P implies (h, i) E P. 

Claim 4.4. Let i , j  be positive integers with 1 < i < j <<_ k + 1. Then 

(i, j)  E P implies (i, i + 1), (j - 1, j )  E P. 

Proof. We show that ( i , i+ 1)E P,  the proof for ( j -  1 , j )E  P is similar. Let Z = 
{Zl, z2,. . . ,  zk+2}< E [X] k+2 be a (k+2)-element subset of X.  As (i , j)  E P,  it follows 
for the sets Z \ { z i + l }  and Z \ { z i }  that 

A(Z \ {Zi, Zi+l} ) ---- A(Z \ {Zi+l,Zj+l} ) 
z (z \ {zi, zi+l}) = \ {zi, z5+1}), 

hence 

A(Z \ {zi+l, Zj+l} ) = A(Z  \ {zi, Zj+l} ) 
implies (i, i + 1) E P.  

Claim 4.5. Let i , j  be positive integers with l < i < j < k + l .  Then 

( i , j )  E P implies ( i*, j  ~) E P for all i < i* < j* ~ j .  

Proof. By Claim 4.4, (i, j ) E P implies (i, i+  1), ( j -  1, j )  E P.  By Claim 4.3 this gives 
(i + 1, j ) ,  (i, j - 1) E P.  By induction, it follows that (h, h + 1) E P for every positive 
integer h with i _< h < j*, and also (i, i*), ( j * , j )E  P,  hence again by Claim 4.3 we 
have (i*,j*) EP.  I 



ON ERD6S-RADO NUMBERS 103 

Claim 4.6. Let g, h, i, j be positive integers with g < h < i < j .  Then 

(g, i), (h, j )  e P implies (g, j )  e P. 

Proof. By Claim 4.5, (g,i) E P implies (h,i) E P. With Claim 4.3 we infer from 
(g , i ) , (h , i ) , (h , j )  e P  that  ( g , j ) e P .  | 

Define a partial ordering ~p on P as follows: for pairs ( i , j ) ,  (i*,j*) E P with 
i < j and i* < j* let 

( i , j )  <p (i*,j*) if and only if i* <_ i and j* > j. 

Let Pmax be the set of maximal elements of P (with respect to ~p). 
If (g, h), ( i , j )  are two different elements in Pmax, then by Claim 4.6 either h < 

i or j < g. Let J - -  {i e {1,2, . . . ,  k) I there exists (j,j*) ~ P m ~  with j ~ i < j*}. Set 
I = { 1 , 2 , . . . , k } \ J .  

By Proposition 4.1 and the definition of the coloring /~ it follows that  every 
set X with IX I >_ k + 2, which is monochromatic with respect to /~ cannot be 
monochromatic in color P,  i.e. it is monochromatic in some color I C {1,2 , . . . ,  k}. 
But then we are again in Case 1. This finishes the proof of Theorem 4.2. | 
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