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ABSTRACT

We show that if a sequence s/ of natural numbers has no pair of elements whose difference is a positive
square, then the density of J / n{l , . . . ,«} is O(l/log«)c»), cn->-oo. This improves previous results which
showed that the density converges to zero, but at a slower rate. We use a technique based on the method
of Hardy and Littlewood together with a combinatorial result that is of independent interest. The approach
may be useful for other problems in additive number theory.

1. Introduction

In this paper we study the density of strictly monotone increasing sequences of
natural numbers whose difference set does not contain any positive square. If si is an
increasing sequence of natural numbers, write s/n for si n {1,...,«}, a = \s/n\ for the
cardinality, and d(sin) = a In for the density of sin. The asymptotic density of si is
the limit, if it exists, of d(sin).

Earlier density results are due to Furstenberg [2] and to Sarkozy [3, 4, 5]. They
showed that if si — si does not contain a positive square, it cannot have a positive
density. In fact if d{si) > 0, then sin — sin will have more than cy/n squares for
infinitely many values of n,c> 0. Sarkozy [4] later showed that if sin — sfn contains
no positive squares then for large n, d(sin) = 0((loglog«)V(log«)»). Our main result
is the following.

THEOREM 1. There exist positive constants c0 and cx such that for any sequence si,
ifn>c1 and sin — sin contains no positive squares, then

d(sJn) ^ c0/(log/i)(loglO8loglogn)/12. (1)

The argument uses the method of Hardy and Littlewood (see [6], for example)
together with a combinatorial construction in which, if sin has a square-free
difference set, we can find a more concentrated subset with the same property. This
already allows us to infer that the density is 0((loglog«)2O/log«). Then we employ an
iteration scheme in which, at each step, we find more values where the Fourier
transform of the sequence is large. Parseval's identity applies to limit the density to
the bound given in (1).
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2. Preliminaries

Write a | b if a divides b and ajfb otherwise; write [x] for the integer part of x. We
begin by articulating some properties possessed by the trigonometric series used in the
method. As usual e(<x) means e2nia and

Take n to be a large integer and write L = log« and / = loglog«. To simplify
notation, we write st for s/n. Thus from now on given n, we denote by si the
sequence 1 ^ ax < ... < aa ̂  n of length \sf\ = a < « and density y = a/« ^ 1.

A basic feature of the method is the Fourier transform of the characteristic
function of si,

F(OL) = e{ax a) + ... + e(aa a) = £ «(fl| a). (3)
a(es/

The Parseval identity applied to F shows that

and, if it is applied to the function

we see that

\* = n/° = r1' (4)

Write n1 = \n, and consider the following functions:

(5)

all sums are over positive integers unless stated otherwise. Now S is a weighted Fourier
transform for the squares less than n^, weighting g2 by 2g/\/nl makes the weighted
squares in [0, VWJ uniform. We shall develop some bounds on S and s for certain a.

First, we consider the case where a is rational: a = a/q, (a,q) = 1, q # 1.
Define

B(a/q,m)= £ etfa/q)

and Ba(q) = B{a/q,q). If m^q, B(a/q,m) « (q \ogq)* by [1, Lemma 3], where, as
usual, if/and g are functions and g has only non-negative real va lues , /« g means
|/ | = O(g). From Abel's inequality,

S(a/q,m) « m max{B(a/q,j)J ^ m) « m(q log#)i

Therefore, if q ^ V^u
S(a/q)«(q log q)i (6)
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Otherwise if q < m, write m = hq + l, h^ 1. Using Abel's inequality and the previous
estimate for B(a/q, m) we obtain

S(a/q,m)= £ e(g2a/q){2q[(g-\)/q] + 2g-2q[(g-\)/q]}
g^hq+l

= *E 2jqBa(q) + 2hqB(a/q, I) + O(hq(q log qfo
j-0

(q log*)*)

This means that

S(a/q) = Ba(q) y/njq + O((q log q% }

s{a/q) = Ba(q)/q + O(((q log q)/n% J

Now we consider the case where a is a fixed distance rj from a specific rational;
namely, take a = a/q + rj, (a, q) = 1. Clearly

5(a,m)= £ e ( a g * £

Similarly we again use partial summation to calculate

)/q = q-lBa(q) £ g(g+ \){e(g^)-e(rj(g+ I)2)}

If we subtract this equation from the preceding one and use the fact that

S(a/q, g) = g(g+\) Ba{q)/q + O(g(q log q%
we see that

( ( m

m(q log?)* 1 + £ \e(g*ri)-e((g+ 1)2//)|
I

which implies that

S(<X) = Ba(q) S(r,)/q + O((q log q)i(\ + M#i)) 1

5(a) = Ba(q)s{r,)/q + O(((q logq)/n)k\ + \rj\n)). J

When 7 = 0, this result agrees with (7) because 5(0) = y/nx.
We can say more if rj # 0 is small. Suppose that tj = /I/AZ, -^ < \h\ < T, h not

necessarily an integer, T a large number that will be specified later. From (5),

*i = ; E etfhln)2g

2 [|ft]-i r-i 2

= - E EE«feV02* + - E etfh/n)2g, (9)

where the third sum is over {g:n(k+j/T)/h < g2 ^ «(A: + O+ \)/T)/h). Breaking up
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the sum over g2 in this way, g2h/n is an integer plus j'/T plus a small remainder and
therefore the first term in (9), the triple sum, reduces to

- E TJe(j/T){ld2g} + O(n-1) E 2g/T.

The last sum in (9) can be empty. It may be written as 0(1/h), where / is 1 if h is not
an even integer, and 0 otherwise. Using the estimate

v/B

E
0-\/A J\/A

= \

we obtain
9 [Jfci-i r -

= - E E
« jfc-0 i-0

The inner sum is zero, in view of (2), so if we take T = n* it follows that

( 0(1 /w) if h is an even integer,
s(h/n)=\ (10)

[O(\/\h\) if/i is not an even integer.

REMARK. Davenport and Heilbronn [1] analysed the unweighted version of S in
(5) and obtained results similar to the foregoing; for example (8) holds in both cases.
However without weighting (10) would only give s(h/ri) = O(\h\~*), and this is not
sufficient for our purposes later on.

We complete this section with a result that is basic in the proof of Theorem 1.
Define

<q>n)= U l--ri,-+ri], cn(q)= A'/")-

An important ingredient is the property of Cn(q) revealed in the following
combinatorial result.

MAIN LEMMA. Take q and r\ such that q > 1 and rj 1 ^yn, and write D =
[1 /(q2rjL2)]. Ifsf has density y and stf — $0 has no positive squares, then we can construct
a set $t' a [1, D] with density d(jaf') ^ (1 + |C7(^f)|) (1 + O(L~X)) y and s4' - si' contains
no positive square.

Proof. Write B=[L]D. We start with the set ® = {bv = q2v. 1 ^ v ̂  B) of
multiples of q2 and the shorter set 2 = {bve@l: 1 ^ v ̂  D).

We count the number of solutions, J, of the congruence

a^tyes/, b^b^SS, (11)

using the function
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If \t/n — a/q\<rj, then bvt/n = aqv + O(Bq2rj), which implies that e{bvt/n) — \ =
1). Therefore if t/neT(q,rj),g(t/n) = \-\-O(L~l) and using (2) we obtain

t-o
(12)

We now approximate J in a different way. For fixed u, 0 < u < « - ( / ) - \)q2,
6 nC st{u) = {ates/:at = u+jq2,0 ^j < D-\)

and a{u) = \stf{u)\. Then cr(w) counts the number of a, that belong to the shorter
progression of length D, beginning at u, with difference q2. It will turn out that the
average over the u is more than yD. This means that s/ is more concentrated in some
arithmetic progression of length D < B. The lemma is proved by transforming this
progression back into [l,D].

First we count the number of solutions, J', of

at-aj = bv-bM = (v-»)q2 ^ {B-\)q\ aoa,ej*\bv,b^@. (13)

The integers from 1 to n may be decomposed into residue classes mod q2 and we group
the consecutive elements in the same class into non-overlapping blocks of length D.
For example, a typical block for the residue class r(mod q2) is the progression

If at and a, satisfy (13), they must be in the same class and cannot differ by more
than Bq2; more precisely at € s/(kDq2 + r) and a} e s/(mDq2 + r) for some r, 1 < r ^ q2,
and \k—m\ < [L]. Equivalently,

D{\k-m\-\) < Wi-a^g2 = \v-fi\ < D(\k-m\ + \),

so if at and at satisfy (13) then there are B—\a{ — a}\/q
2 choices for the pair (v,//);

as \k—m\ < [L] the number of pairs lies between B{\— (\k—m\ + \)/[L]} and

This observation allows us to write
Q2 n/(q2D) [L]

The first sum is over all the residue classes for a{ and a}. The second and third
enumerate all the a(, a} pairs in class /-(mod q2) that are in adjacent big blocks. The last
expression covers the v, /J, pairs. If we write TV = max (a(u), u ^n) then

/ \h\ \
J'^oNB £ [1-}-\+0(L-1)) = <JNB([L) + 0(1)). (14)

h—[L] \ IAI /

A quadruple that satisfies the congruence in (11) must either obey the equation in
(13) or the relation

Let J" denote the number of solutions to the above equation. Consider the plus case.
Then the b differ by one of the following values: 0, — q2, —2q2,..., —{B—\)q2. This
implies at most Bq2 choices for a(, then at most # choices for ap and finally at most
B choices for the pair of bt, a total of at most NB2q2 choices. Since the minus case is
the same, J" is no more than

2NB2q2 ^ 2NB/(rjL) ^ 2oNB/L.
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Combining this with (12) and (14),

o2B2n~\\ + |C,fo)|)(l + O(L"1)) ^ / ^ <TM*[I](1 +0OL-1)).

This implies the existence of a set stf{u) of size N = a{u),

N > oB/{n[L]){\ + |C,fo)|)(l + 0{L~')) = yD{\ + \C,(q)\)(\ + O(L^)). (15)

We map s/(u) linearly into [\,D] by a\ = 1 +(at — u)/q2 and obtain the set

\{$4' — $4' contains squares, say j—k = m2, then (u + (j—\)q2) — (u + (lc—\)q2) =
(mq)2, but this is forbidden. Finally, $0' satisfies the lemma because, from (15), it has
the asserted density.

The proof of Theorem 1 will be accomplished by induction on n. If n is the first
large integer for which (1) fails then the Main Lemma applies to give an upper bound
on \Cn{q)\.

COROLLARY A. Suppose that $4 is a set of integers less than or equal to n and that
stf — sf contains no positive squares. If (1) is false but for all m < n it is true, then
Cn{q) « P/L ifr/^ Q/n and q^Qfor any Q ^ e21.

Proof. The assumptions guarantee that D ^ n/QA = w1"4 ,̂ where we write
p = logQ/logn and note that p ^ 2P/L. Therefore, for 1 ̂  k ^ /,

log*D ^ (1 -4/?)* log*« ^ (logfc«)/(l + 5kfi) > (log*n)/(l + 10/3/L). (16)

Write log1 = log and logi+1 = log(logj. An easy calculation shows that
log4«-log4Z> = 0(40/1 log/) so that

(log «)(log< n-log«D)/12 < 1 + P/L. (17)

If \Cn(q)\ ̂  \3P/L then the induction hypothesis and the Main Lemma imply that

( l + O ( L - 1 ) ) d ( ^ ) < c0

the last line is a consequence of (17) and then (16) with k = log4Z)/12. This
contradiction proves the corollary.

In the next section we show that the Main Lemma is already strong enough to
imply a bound of (log log «)20/log n on the density of any sequence whose difference
set has no non-trivial squares. This finding may be iterated to give the bound stated
in Theorem 1. The details appear in the subsequent sections.

3. The starting step

We write ^ for j ^ n {1,...,[|«]}, s/2 for s/(\{\+[\n],...,n}, and, for i = 1,2,

£ e(<xa), //a) = F^)/a
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where, as always, we write a — | J / | . Using (2) it is easy to verify that

- ZFitMFZtMWM = E ^~, - I, F(t/n)F^t/h)S(t/n) = E ^ (18)
n t-o yl V«i n t-o y2 Vn\

where Sfx = {g ̂  V«i:£2 = a,-a,,a,e.s/,flie.s/1} and y2 = {g ̂  V>V£2 = ^-a<,
fljGjj/j^ej^}. Assuming that $# — $0 contains no positive squares, both sums in
(18) are zero and we have

LAt/n)fi(t/n)s(t/n) = O
t-0

and

/ = 1,2. We may take /4(0) ^ |. If not, d(j^) > |y and, roughly speaking, if this
situation were iterated, we would have a bound of \/nl~e in (1). A precise argument
would follow the proof of Corollary A. Because/(0) = s(0) = 1, we now have

nZ\Kt/n)fAt/n)s{t/n)\ » 1, i = 1,2. (19)

Using (4) we see that it is permissible to neglect all t in (19) for which \s(t/ri)\ ^ y/100;
they contribute no more than

\* YO.Oly{f \At/n)\*
U-o e-o

In an analogous way we can neglect those terms in (19) for which \J{t/n)\ or
\ft(t/n)\ < y^/L, since their contribution is no more than

here we use

\ "£ lLU ] ^ t r\m) = O(L),
n t -0 " 4-1 " m-1

where r(m) = YtaW-m 1. a n d t n e sum above runs over g\+g\ = gl+g\,g1 ^ nv

Write I(a, S) for (a — S, a + S), the open interval of width S centred at a. The above
calculations and the bounds on s in (8) imply that we need only consider those / in
(19) with t/nel(b/k, Q/(kn)),k^ Q, for which \J{t/n)\ and \ft(t/n)\ exceed Q~\ where
Q = el\ Therefore there must exist K ̂  Q and U ̂ Q such that

E E L\fit/n)\\Mt/n)\\s{t/n)\ » i (20)
fc<2K (6,fc)-l »

(the third sum is over {t:t/neI(b/k,Q/(kn)), U~x ^ msLx(\/{t/n)\t\ft(t/n)\) ^ 2t/"1}).
Again, using (8) and (10), for 1 < k < Q2 and (b, k) = 1,

E Ht/n)\ « ((log *)/*)* E i « ( i ) Z2, (21>

a statement that enables us to choose just one value of tin from any interval

8 JLM 37
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I(b/k,Q/(kn)). Combining (20) and (21), there must be at least P intervals
I(b/k, Q/(kn)) with 1 ^b^k,K^k^ 2K, each of which has at least one value of t/n
with the relevant properties, and P » IPKS/V. The following result shows that values
where 0 < \t\ « Q2 may be neglected because their contribution to the sum in (19) is
small.

LEMMA 2. f[t/n) « P/L if t « Q2.

Proof Let T=Q2. Then

a-'Fit/n) = a'1 £ e(at/n)
aest

t-X T-\ t-1 T-l

= ̂ LZEe(atln) = tr1 £ I £{e(j/T) + 0(7^)}
i-0 j-0 sty i-0 j-0 st(j

t-X T-l
-1 V V

La La
i-0 j-0

sty is the set {aesf:nrl(i+j/T) < a < «r1(* + O+1)/^)} and ai} = \sfii\-
As in the proof of Corollary A, ot} ^ (\3a/(tT))(P/L) and since £ atf = 0,

i-0 j-0

It now follows that

= 1 i; E
Using \fi(t/ri)\ ^ 1 and (10), we have the following simple consequence of

Lemma 2.

COROLLARY 3.

E \At/n)ft(t/n)sit/n)\«j
0<|t|«<32

For any ae[0,1] we can choose relatively prime integers a and q, 1 < q ̂  «/g,
with <xeI(a/q,Q/(nq)). Since f=/1+f2 we have either t/"1 ^ l/^r/w)! < 2CT1 for at
least |P values of t/n or C/"1 ̂  \j{t/n)\ ^ 2C/"1 for at least \P values. This establishes
the following.

LEMMA 4. There exists a set

& = {t/n G I{b/k, Q/(kn)), K<k^2K,no two t/n in the same interval},

such that for either i= I or i= 2, \ft(t/n)\ > (2U)'1 for at least \ of the elements in &
and\0>\/lP»K*/r.

Now, a similar argument to the Main Lemma and Corollary A of Section 2 shows
that Corollary A remains true if we replace/by fx or/2 in the definition of Cn(q). (First
we show that if (1) fails for s/ but it is true for m < n then/((0) = (|y)(l + O(//L)),
i = 1,2; afterwards, the proof of Corollary A runs as it stands.) Thus, with
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Lemma 4 and the statement that KS'/? « \0>\/lP ^ KP/l, we see that K » L2/P°. As
in (4) we apply Parseval's identity to ft and obtain

j7^

which is clearly the same as y « (loglog«)17/logn. Although this bound is weaker
than the statement in (1), it already improves the earlier density results. The next
section shows how it may be successively improved to give the bound in (1) via an
iteration scheme.

4. The Iteration Lemma

We just showed that

W4
by exhibiting a relatively sparse set 0 of values of tin for which the sums of squares
of Fourier coefficients exceed L//17; Parseval's identity immediately gives y « /17/L.
Starting with 0 we shall perform an iteration step in which we produce a new set ^
with the property that

E l / ( ) l 2 (
re9t pe&

Together with (*) this lowers the bound on y by a factor of L~k The same procedure
may now be applied to @, etc., until after / steps, we shall have deduced the
bound

y « L-"3.
Finally, in the last section, we show that / may be as large as (log4 «)/4 and still it is
valid to apply the iteration step. In this way we shall have (1). The exact details are
given in the following.

ITERATION LEMMA. Given numbers Q andK, Q < Q' < \Q2 andK» L, andi = 1
or 2, suppose that we have a set 0 of elements of the form u/n ^ 1 with
\u/n-b/k\^Q'/n, (b,k)=\, 0 < b < k, K^k^lK, V1 ^ \ft(u/n)\ ^ 2 U~\
max(C/, K)^Z ^ L10*'/100, and they have the property that at most one point u/neg*
is in any interval I(b,k) = [b/k—Q'/n,b/k + Q'/n]. Then there are numbers V and H,
H > L and another set $ of numbers of the form v/n ^ 1 with \v/n — c/h\ ^ 1Q'/n,
(c,h)=\,0<c<h,H^h^2H,V~1^ \f{(v/n)\ ^ 2V~\ with max(K,//) ^ y+ZTL*
and there is at most one v/n in any interval I'(c,h) = (c/h — 7Q'/n,c/h + 7Q'/n); if
y ^ L-iogi/ioo t h m d s o

(22)

Proof. We need only argue the case for / = 1, the other case being identical. Take
a = u/n e 0. Since stf — s4 contains no positive squares,

= Zde(-<xaj)-^ = O (23)

(the second sum is over {g2 = ai — aj:aies/,aj€sf1,g^\/n1}). Therefore, as in
(19),

E \JWn)fi(*+t/n)*t/n)\ > \fM > V1- (24)
t-i

8-2
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For each ae^ we shall identify a large set G'a of values of t/n such that |/((a+ t/n)\
is large. We construct ^ from these sets. For each a we can choose a number a/q such
that <xeI(a/q,Q/(qri)),q ^n/Q. Using Parseval's identity as in Section 3 we can
neglect terms where

ma(t) =

and (24) will still remain true for the remaining terms, as long as we multiply the right-
hand side by 0.99. We treat three cases.

I. First assume that for at least one per cent of the points a e ^ we have

E \At/n)fi(*+t/nW/n)\*y^. (25)

Then, similarly to Corollary 3,

^ \J[t/n)s(t/n)\ «\f1(v/n)\-,

the maximum being attained at the point a+u/n = v/n. For these v/n we have
\v/n-b/k\ ^ 1Q'' fn so we can choose a subset 0t of cardinality \0t\ » l^l//2 such
that V1 ^ If^v/n)] < 1V~\ V« 15U/L; thus

m/v2»(\&\/p)(L2r10u-2) > \0>\u-2i3.

II. Next suppose that for at least one per cent of the points <xe^

I |/(l-a + ^)/10/«)5(l-a+//«)|^!4^^(100^-1. (26)

Then, using \m\ = Lfll-01 and (21),
< max(|y(a-//«)|,0 < / ̂  6Q') £ \s(u/n)\ ^ \Av/n)\^,

where the maximum is attained at a—u/n = v/n. Now if Iftiv/n)] ^ \\ftv/ri)\ for at
least half of the points v/n we get the new system with V « UP/ K*, \0t\ »

\St\l V2 »

III. The final case treats the set ̂ 0 of ae^* for which both (25) and (26) fail to
hold; clearly |^0| ̂  0.98|^|. For any £e[0,1] we choose a/q with q ̂  n/(5Q'),
(a,q) = 1, and such that \p-a/q\ ^ 5Q'/(qri). If \p-a/q\ = n, with 1 ̂  q ̂  Q2 and
Q'/n < n < 5Q'/n, then from (10) we know that s(fi) « {Q')~l.

Take ae^J, with |a—b/k\ ^ Q'/n according to our condition. Then in (24)
the remaining values t/n in the two intervals 7(0, SQ'/n) = {fi:0 < ft ̂  SQ'/n or
1 > p ̂  1 -5Q'/n} and I(b/k, SQ'/n) may be neglected.

Taking <xeI(b/k,Q'/ri) consider the set

Ga = {t/ns[0, \).t/n$I(0,5Q'/n), t/n$I{b/k,5Q'/n), ma(t) > yi/(Z«L)}.
Then

E |/(//Ai)/1(a + //«)5(r/«)|»f/-1.
1/neG,

Write A^= y~4Z5L4. If we have t/neI(a/m,5Q'/(nm)) for some t/neGa, then since
(22 ^ 0 ' ̂  2 > X, (8) implies that m < X, using the bound on wa(0-
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Now for every a we can choose M, T, V as suitable positive powers of 2 in such
a way that there exists a set G'a c Ga of values that satisfy t/nel(a/m, 5Q'/(nm)),
M^m^2M, 2 ^ V1 ^ \f[t/n)\ ^ 2V1, V~x ^ |/x(a+///i)| ^ 2V~\ and such that
max(M, T, V) ^ X, and

Also, using (21) we get a reduced set G* with at most one value of t/n from any
interval I(a/m, 5Q'/(nm)) and

this says |G*| ^ M*TV/(UP).
If a 4- f/« could be equal to fi+u/n for many different values of a and /? in ^ and

t/neGg, u/neGp, then it would be difficult to give a lower bound for the sum of
squares of Fourier coefficients. We now show that no value of cc+t/n can occur too
frequently (Lemma A). Let Do = max (z(n), n ^ (2MK)2), where t is the divisor
function. Fixing k, we let

Clearly we can choose a pair of divisors of k, dk and fk, with fk\dk\k (we put
ek = djfk), such that there is @'{k) a @(k), \&'(k)\ ̂  \8(k)\/D\ and for each
OLEl{b/k,Q''/ri),bG&'(k), there is a reduced set G'^ <= Ĝ ' with

I d » M*TV/(Dl UP) (27)

that satisfies the following property. If t/neG™, t/neI(a/m,5Q'/(mri)) then
(k,m) = <4, a nd if w e write b/k + a/m as c//?5 (c,p) = 1, then c = (bm + ak)/(dkfk),
where /? = km/(dkfk). Introducing the notation rri = m/dk, k' = k/dk, we have
b/k' + a/m = c/{k'm'e), with (c, k'm'e) = 1. Also (b, k') = (a, rri) = 1 which implies
that (k'm',bm' + ak') = 1. This means also that (Jk,k') = (fk,m

f) = 1.
Consider now &x = {aL€0>o:<x<=I{b/k,Qf/(kn)),K^ k ^ 2K,be@'(k)}. Then

clearly | ^ | » Î V-Djj. Suppose that 8'(k) possesses p(k) different values of b modulo
(fk)' We can choose a set X~ of numbers k and the corresponding subset ^2 c ^
of a values such that there exist integers D, E, F, B with D ^ dk^2D, E ^ ek^ 2E,
F^fk^2F,B^ p(k) ^ 2B, and |0»2| » I^J/6. Denote the corresponding set of 6/A: by
0>X and for ae^2, <x€l(b/k,Q'/ri), consider the attached set G*(b/k) of rational
numbers a/m, where t/nsG™, t/neI(a/m,5Q'/(mn)). It is easy to establish the
following.

LEMMA A. Given ao/moeG*(bo/ko) and bo/koe^* suppose that we have
a/meG*(b/k) and b/ke^*. Then the number of quadruples (a,m,b,k) that satisfy
the equation a/m + b/k = ao/mo + bo/kQ is «DBDl.

Proof There are at most D2
0 choices for the triple (k', m',e) since k'm'e = k'om'oeo.

Suppose that k', m' and e are fixed. Then there are at most 2F choices for fk and
this finally determines m and k. Now

bm' + ak' = cfk = cofk,

so bm' = cofk mod (A;'). In view of (k',mr) = 1, b is uniquely determined modulo/:'
and so we have at most 4BE choices for b.
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The next result clarifies a connection between the many parameters that have been
used. It provides the final step in establishing the asserted bound on |$| .

LEMMA B. Given keJf,

BTVMl*/(D2
0UP)«\ (J G*(b/k)\«MT2P/(LD).

Proof. The upper bound is a trivial consequence of the Main Lemma. For a fixed
m there are « TH*/L different values of t/n in intervals of type I(a/m, 5Q'/(mri)) for
which \J{t/n)\ ̂  T~l. Since (m,k) = dk^ D there are «M/D choices for m.

To prove the lower bound, in view of (27) we need only show that if bx is not
congruent to b2 modulo (fk), bte@'(k), then G*{bjk) and G*{bjk) are disjoint, since
we have at least B different values of b modulo(fk). But if a/meG*(bJk) 0 G*{bjk)
then b1m' + ak' = b2m' + ak' = 0 mod(/fc). This implies that b1m' = b2m' mod(/fc)
and therefore bl = b2 mod (fk), because {m\fk) = 1.

To complete the proof of the Iteration Lemma we have from Lemma A and (27)
that there are

^ l UP))/(DBD$

different values of a/m + b/k, a/meG*(b/k), be$}'{k), ketf2, and therefore
at least as many different values of t/n + ct = v/n e I(a/m + b/k, 6Q'/n) with
v~l < l/iOV«)l < 2K"1; all intervals are disjoint.

Since Lemma B implies that

we see from the lower bound on |^| that

This will prove the Iteration Lemma. We use max (M,K) « Llosino and thus, Do « L^.
From the construction of ejh = a/m + b/k,(ek,h) = 1, it is clear that

MK/(DF) « h « MK/(DF) « y-*Z*L*.

The relation H>L follows by HPL'1 » \M\V~2 > L^\U~2 > Isf, the same
argument that was made for isf in Section 3.

5. Proof of the theorem

In each iteration the parameter Z changes from Z to Z' ^ Z10. After / iterations
the initial Z is bounded by Z10'. As this quantity must also be at most Llog'/10° if the
iteration lemma is to be applied, the rapid growth of Z10 forces a fairly strict bound
on /, the number of allowable iterations, as follows. The starting set satisfies
1^1/ IP > L/P-\ If we can make 37—2 iteration steps we shall have

L' « "Z |/?(0i)| < an/a2 = y~l; (28)

that is, y « L~'. Suppose now that y ̂  L~''.
We may also suppose that KQ < L31, since otherwise ^ (cf. Section 3) leads
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to l^ol^o2 » ^i/I7 > L'- Again, from the starting step we may take Uo < L21

since smaller values of /or /< are neglected (cf. Section 3). Thus we may choose
Zo = L3/ as well, and so

max(F,7/) = m a x ^ , JQ s$ y"4Zj|L6 < ZJ°.

°8 *After 37—2 iteration steps we shall have Z3/_2 ^ ZJ°8 * ^ L10' \ Now Z3/_2 will
remain less than Llog'/10° if we take

/ = [loglog//(5 log 10)] > loglog//12.

Using this in (28) we arrive at the bound given (1).

REMARK. We have not violated the bounds on Q needed for the Iteration Lemma.
After 37-2 steps we still have 03/_2 = 063/"2 < Q log/ < Qel* = Q2.
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