TWO COMBINATORIAL THEOREMS ON ARITHMETIC PROGRESSIONS

BY WOLFGANG M. SCHMIDT

1. Introduction. According to a well-known theorem of van der Waerden [6] there exists an m(k, l) defined for integers $k \ge 2, l \ge 3$, such that if we split the integers between 1 and m into k classes, at least one class contains an arithmetic progression of l distinct elements. We shall prove

THEOREM 1. For some absolute constant c > 0,

(1)
$$m(k, l) \ge k^{l-c(l \log l)}$$

For large l this is an improvement of the estimate

(2a)
$$m(k, l) \ge [2(l-1)k^{l-1}]^{\frac{1}{2}}$$

given by Erdös and Rado [2] and of the estimate

(2b)
$$m(k, l) \ge lk^{C \log k}$$

of Moser [4].

Throughout, P, Q, \cdots will denote arithmetic progressions of l distinct integers between 1 and m. Consider real numbers α between 0 and 1 written in scale $k : \alpha = 0, \alpha_1 \alpha_2 \cdots$. Write $N(\alpha; k, l, m)$ for the number of progressions $P = \{p_1, \cdots, p_l\}$ such that

$$\alpha_{p_1} = \alpha_{p_2} = \cdots = \alpha_{p_l} \, .$$

THEOREM 2. Keep k, l, $\epsilon > 0$ fixed. Then for almost every α ,

(3)
$$N(\alpha; k, l, m) = m^2 \frac{k^{1-l}}{2(l-1)} + O(m \log^{\frac{3}{2}+\epsilon} m).$$

2. The idea of the proof of Theorem 1. There is a 1-1 correspondence between divisions of $1, \dots, m$ into classes C_1, \dots, C_k and functions f(x) defined on $1, \dots, m$ whose values are integers between 1 and k. We write

$$f(\sigma) = j$$

for a set σ of integers between 1 and m if f(x) = j for every $x \in \sigma$. Put

 $P \mid f$

if f(P) is defined, i.e., if $f(p_1) = \cdots = f(p_l)$ for the elements p_1, \cdots, p_l of P. In this terminology Theorem 1 means that for $m < k^{l-o(l \log l)}$ there exists some f such that $P \mid f$ for no P.

Received May 19, 1961.

Let u be a fixed integer in the range $1 \le u < l/2$. We set

f[P] = j

if there is a subset σ of P of at least l - u elements having $f(\sigma) = j$. For integers j in $1 \le j \le k$ define j + by

$$j + = \begin{cases} j+1, & \text{if } j < k \\ 1, & \text{if } j = k. \end{cases}$$

We say f is of type $F_i(j = 1, \dots, k)$ if there exists a Q and P_1, \dots, P_r , $l \ge r \ge u + 1$, having $P_i \ne P_i$ for $i \ne t$, with the following properties.

(4a)
$$f[P_i] = j \qquad (1 \le i \le r),$$

and the elements q_1, \dots, q_l of Q can be ordered in such a way that

(4b)
$$q_i \in P_i$$
 $(1 \le i \le r)$

(4c)
$$f(q_i) = j + (r + 1 \le i \le l).$$

It may happen that r = l, and in this case the last condition is to be omitted. f is said to be of type F if it is of at least one of the types F_1, \dots, F_k .

LEMMA 1. If there exists an f not of type F, then there exists a function g such that $P \mid g$ for no P.

Proof. Write U for the set of P - s where f[P] is defined. With each $P \in U$ associate some $x = x(P) \in P$ having f(x) = f[P]. Define the function g by

$$g(x) = \begin{cases} f(x) + \text{ if } x = x(P) & \text{for at least one } P \in U, \\ f(x) & \text{otherwise.} \end{cases}$$

We claim that $Q \mid g$ for no Q.

Otherwise, if $Q \mid g$, assume g(Q) = 1. f[Q] = 1 would imply f(x(Q)) = 1, g(x(Q)) = 1 + =2, a contradiction. But if f[Q] is not 1, then there are at least u + 1 integers $x \in Q$ with $f(x) \neq 1$. Write $x_1, \dots, x_r (r \geq u + 1)$ for the elements of Q having $f(x) \neq 1$, y_{r+1}, \dots, y_l for the elements of Q having f(y) = 1, if such integers exist. Now each x_i belongs to some P_i with $f[P_i] = f(x_i)$. $1 = g(x_i) = f(x_i) + \text{ implies } f[P_i] = f(x_i) = k$. Therefore f would be of type F_k , a contradiction.

To prove Theorem 1 it will be sufficient to show the existence of a function f not of type F. We shall derive bounds for the number of functions of type F and shall show in §5 that if u is the integral part of $(l/\log l)^{\frac{1}{2}}$ and if (1) holds, then the number of such functions is smaller than k^m , the total number of functions f.

3. Auxiliary lemmas on arithmetic progressions. Besides progressions P, Q, \cdots of l elements we have to study arithmetic progressions R of an arbitrary

130

number $z = z(R) \ge 2$ of elements which are integers between 1 and m. Progressions R with z(R) = 2 are pairs of integers. Generally, $z(\sigma)$ will denote the number of elements of any set σ of integers. Write d(R) for the common difference $r_2 - r_1 = r_3 - r_2 = \cdots$ of the elements $r_1 < r_2 < \cdots < r_z$ of R. The letter T will be reserved for progressions T having

$$(5) l \leq z(T) < 2l.$$

 $R_1 \cap R_2$ is again an arithmetic progression unless $z(R_1 \cap R_2) \leq 1$.

LEMMA 2. Let R_1 , R_2 be progressions and put $z_i = z(R_i)$, $d_i = d(R_i)$, $d_i = e_i d(i = 1, 2)$ where d = g.c.d. (d_1, d_2) . Then

(6)
$$z(R_1 \cap R_2) \leq \min\left(\frac{z_1-1}{e_2}+1, \frac{z_2-1}{e_1}+1\right)$$

Proof. We may assume $z(R_1 \cap R_2) \ge 2$. Then $R_1 \cap R_2$ is a progression having $d(R_1 \cap R_2) = e_1e_2d = e_2 d(R_1)$. Hence

$$z(R_1 \cap R_2) \leq \frac{z_1 - 1}{e_2} + 1.$$

LEMMA 3. Let R_1 , R_2 , R_3 be arithmetic progressions having $z_i = z(R_i) \ge l(i = 1, 2, 3)$ and different d_1 , d_2 , d_3 where $d_i = d(R_i)(i = 1, 2, 3)$. Then

(7) $z(R_1 \cup R_2 \cup R_3) \geq 2l - 5.$

Proof. We may assume $z_1 = z_2 = z_3 = l$. Let *i*, *j*, *t* be a permutation of the integers 1, 2, 3. We define $d_{ij} = d_{ji}$, e_{ij} , e_{ji} , e_t by

$$d_{ii} = d_{ii} = \text{g.c.d.} \quad (d_i, d_i),$$

$$d_i = e_{ii} d_{ii}, \qquad d_i = e_{ii} d_{ii},$$

$$e_i = \max(e_{ii}, e_{ii}).$$

Lemma 2 implies $z(R_i \cap R_i) \leq (l-1)/e_i + 1$. This gives

$$z(R_1 \cup R_2 \cup R_3) \ge 3l - l\left(\frac{1}{e_1} + \frac{1}{e_2} + \frac{1}{e_3}\right) - 3l$$

Hence the lemma is true if

(8)
$$\frac{1}{e_1} + \frac{1}{e_2} + \frac{1}{e_3} \le 1.$$

We may assume that (8) does not hold and that at least one of e_1 , e_2 , e_3 , let's say e_3 , equals 2. Then either $e_1 \ge 3$, $e_2 \ge 3$ or we may assume $e_1 = 2$. But $e_3 = e_1 = 2$ implies $e_2 = 4$. Hence we have

(9)
$$e_3 = 2$$
 and $\begin{cases} \text{either } e_1 \ge 3, & e_2 \ge 3 \\ \\ \text{or } e_1 = 2, & e_2 = 4. \end{cases}$

We have either $e_{12} = 2$ or $e_{21} = 2$, therefore either $d_1 = 2d_2$ or $d_2 = 2d_1$. In the first case of (9) we may assume $d_2 = 2d_1$ because we may change the roles of R_1 , R_2 . In the second case we have $d_1 = 2d_2 = 4d_3$ or $d_3 = 2d_2 = 4d_1$ and again we may assume $d_2 = 2d_1$.

If R is a progression write $R^{1}(R^{2})$ for the set of $x \in R$ such that x < r(x > r) for every $r \in R_{1}$. Write R^{0} for the set of $x \in R$ such that $r \leq x \leq r'$ for suitable elements r, r' of R_{1} . Then R is the disjoint union of R^{0}, R^{1}, R^{2} and R^{i} is an arithmetic progression with $d(R^{i}) = d(R)$ unless $z(R^{i}) \leq 1(i = 0, 1, 2)$.

We may assume

$$r = z(R_1 \cap R_2) \geq 2, \qquad s = z(R_1 \cap R_3) \geq 2,$$

because otherwise $R_1 \cup R_2$ or $R_1 \cup R_3$ would have at least 2l - 1 elements. We observe

(10)
$$r \leq l/2 + 1, \quad s \leq l/e_2 + 1.$$

 $d_2 = 2d_1$ implies $R_2^0 = R_1 \cap R_2$. This gives

(11)
$$z(R_2^1) + z(R_2^2) = l - r.$$

Now $d(R_1 \cap R_3) = e_{13} d(R_3) = e_{13} d(R_3^0)$. Hence

$$z(R_3^0) \ge e_{13}z(R_1 \cap R_3) - 1 = e_{13}s - 1 \ge 2s - 1$$

unless $e_{13} = 1, d_1 | d_3$. Thus

$$z(R_3^1) + z(R_3^2) \le l - 2s + 1$$

unless $d_1|d_3$.

(12)

We distinguish two cases.

a) $e_1 = e_{32}$. Then $R_2^i \cap R_3$ consists of at most $z(R_2^i)/e_{32} + 1$ elements, therefore $(R_2^1 \cup R_2^2) \cap R_3$ of at most $(l-r)/e_1+2$ elements. Now $z(R_1 \cup R_2) = 2l-r$ and the number of integers of R_3 belonging to neither R_1 nor R_2 is at least $l - s - (l - r)/e_1 - 2$. Thus

$$\begin{aligned} z(R_1 \cup R_2 \cup R_3) &\geq 3l - r - s - (l - r)/e_1 - 2 \\ &\geq 3l - l/e_1 - l/e_2 - (l/2 + 1)(1 - 1/e_1) - 3 \\ &\geq 3l - 4 - l(1/2 + 1/2e_1 + 1/e_2) \\ &\geq 2l - 4. \end{aligned}$$

b) $e_1 = e_{23}$. This means $d_2 > d_3$. We observe $d_1 \nmid d_3$ because otherwise $d_2 > d_3 \ge 2d_1$, which is impossible. $R_3^i \cap R_2$ has at most $z(R_3^i)/e_{23} + 1$; therefore $(R_3^1 \cup R_3^2) \cap R_2$ at most $(l - 2s)/e_1 + 3$ elements. We obtain the lower bound

$$\begin{aligned} 3l - r - s - (l - 2s)/e_1 - 3 &\geq 2l + l/2 - l/e_1 - l/e_2(1 - 2/e_1) - 5 \\ &= 2l - 5 + l/2(1 - 2/e_1)(1 - 2/e_2) \\ &\geq 2l - 5. \end{aligned}$$

132

A structure S will mean either a progression T having z(T) > l or the union of two progressions T_1 , T_2 which have at least two common elements and satisfy $d(T_1) \neq d(T_2)$. A superstructure is the union of three progressions T_1 , T_2 , T_3 such that $z(T_1 \cap T_2) \geq 2$, $z((T_1 \cup T_2) \cap T_3) \geq 2$ and either $d(T_1)$, $d(T_2)$, $d(T_3)$ are all different or T_1 , T_3 have no common element.

 c_1 , c_2 , \cdots will denote positive constants.

LEMMA 4.

i) The number of progressions P does not exceed m^2 . The number of T's is at most m^2l .

ii) The number of P containing a fixed integer x does not exceed ml.

iii) The number of progressions T or structures S containing fixed integers $x \neq y$ is at most l^{e_1} .

iv) The number of superstructures is bounded by $m^2 l^{c_1}$.

Proof.

i) $P = \{p_1 < \cdots < p_l\}$ is determined by p_1 , p_l which gives the bound m^2 . The number of T with given z = z(T) is again at most m^2 . Summing over z from l to 2l - 1 we obtain the desired bound.

ii) If $P = \{p_1 < \cdots < p_i\}$ and $x \in P$, then $x = p_i$ for some *i*. *P* is determined by *i* and p_{i+} . This gives at most *ml* possibilities.

iii) For given z = z(T), $T = \{t_1 < \cdots < t_s\}$ is determined by *i* and *j* where $x = t_i$, $y = t_j$. This gives less than z^2 choices. Summing over *z* from *l* to 2l - 1 we obtain the bound $4l^3$.

For structures S consisting of a single T we obtain the same estimate. Now let S be $T_1 \cup T_2$. For given $z_i = z(T_i)(i = 1, 2)$, if

$$T_1 = \{t_1 < \cdots < t_{z_1}\}, \quad T_2 = \{s_1 < \cdots < s_{z_2}\},\$$

write

$$t_{z_1+1} = s_1, \cdots, t_{z_1+z_2} = s_{z_2}$$

Now for $x \in S$, $y \in S$ there exist i_1 , i_2 , i_3 , i_4 , j_1 , j_2 such that

$$t_{i_1} = s_{j_1}$$
, $t_{i_2} = s_{j_2}$, $t_{i_2} = x$, $t_{i_4} = y$.

Since S is determined by $i_1, \dots, i_4, j_1, j_2$ and since each of $i_1, \dots, i_4, j_1, j_2$ is between 1 and 4l, we obtain the bound $(4l)^6$. Summing over z_1, z_2 and adding $4l^3$ we obtain the bound $l^{\circ *}$.

iv) The proof of iv) is similar and can be left to the reader.

 \mathbf{Put}

$$(13) P \land Q$$

if d(P) = d(Q) and if P, Q have at least one common element. Now if U is a set of progressions P, set \overline{U} for the set of progressions R such that R is the union of progressions P_1, \dots, P_t of U where $P_1 \wedge P_2, \dots, P_{t-1} \wedge P_t$. We say R is built of P_1, \dots, P_t . Write U^* for the set of maximal progressions in \overline{U} ,

that is, the set of $R \in \overline{U}$ where $R' \in \overline{U}$, $R' \supseteq R$, d(R') = d(R) implies R' = R. For example, let *l* be 4 and let *U* consist of $P_1 = \{1, 3, 5, 7\}$, $P_2 = \{7, 9, 11, 13\}$, $P_3 = \{11, 13, 15, 17\}$. Then \overline{U} consists of P_1 , P_2 , P_3 , $P_1 \cup P_2$, $P_2 \cup P_3$, $P_1 \cup P_2 \cup P_3$ while U^* consists of $P_1 \cup P_2 \cup P_3$ only.

LEMMA 5. Suppose $S = T_1 \cup T_2$ is a structure where T_1 and T_2 are built of P_1, \dots, P_{h_1} and P'_1, \dots, P'_{h_2} respectively. Then

(14)
$$z(S) \ge l + h_1 + h_2 - 2.$$

Proof. Clearly, $z_i = z(T_i) \ge l + h_i - 1(i = 1, 2)$. Lemma 2 yields

$$z(T_1 \cap T_2) \leq (z_2 - 1)/2 + 1 = (z_2 + 1)/2$$

Thus

$$\begin{aligned} z(T_1 \cup T_2) &\geq z_1 + (z_2 - 1)/2 \\ &\geq l + h_1 + (l + h_2)/2 - 2 \\ &\geq l + h_1 + h_2 - 2. \end{aligned}$$

We used $h_2 \leq l$, an inequality which follows from z(T) < 2l.

4. Bounds for the number of certain functions. Denote the set of P having f[P] = j by $U_i = U_i(f)(j = 1, \dots, k)$. f is of type G_i if there is an R in \overline{U}_i having $z(R) \ge 2l$. f is said to be of type H_i if there is a superstructure $T_1 \cup T_2 \cup T_3$ whose progressions T_1 , T_2 , T_3 belong to $\overline{U}_i(j = 1, \dots, k)$.

Write $e_k(\alpha)$ for k^{α} .

LEMMA 6. The number
$$|G_i|$$
 of f of type $G_i(j = 1, \dots, k)$ is less than
(15) $m^2 e_k(m - 2l + c_3 u \log l).$

Proof. Assume j = 1. Suppose R is in \overline{U}_1 , $z(R) \geq 2l$ and R is built of P_1, \dots, P_t , $P_i \in U_1$. We may assume P_1, \dots, P_t are ordered in such a way that their smallest elements $p^{(1)}, \dots, p^{(t)}$ satisfy $p^{(1)} < p^{(2)} < \dots < p^{(t)}$. There is a smallest $p^{(i)}$ such that $p^{(1)} + (l-1) d < p^{(i)}$, where d = d(R). Then $p^{(1)} + (l-1) d < p^{(i)} \leq p^{(1)} + (2l-1) d$ and $R' = P_1 \cup \dots \cup P_i$ is an $R' \in \overline{U}$ having $2l \leq z(R') \leq 3l-1$. Hence we may assume

$$(16) 2l \le z(R) \le 3l-1.$$

There are at most m^2 progressions P_1 . Because of (16), there are not more than l possibilities for P_i once P_1 is given. On P_1 , P_i there are (l - u)-tuples σ_1 , σ_i of integers such that $f(\sigma_1) = f(\sigma_i) = 1$. There are $C_{l-u}^i \leq l^u$ choices for σ_1 and for σ_i . There are m - 2l + 2u integers in $1 \leq x \leq m$ outside σ_1 , σ_i , and this implies that there exist exactly $e_k(m - 2l - 2u)$ functions f having $f(\sigma_1 \cup \sigma_i) = 1$. Altogether, we obtain

$$|G_1| \leq m^2 l l^{2u} e_k(m-2l+2u) \leq m^2 e_k(m-2l+c_3u \log l).$$

LEMMA 7. The number $|H_i|$ of f of type $H_i(j = 1, \dots, k)$ satisfies

(17)
$$|H_i| \leq m^2 e_k (m - 2l + c_4 u \log l).$$

Proof. We assume j = 1. Lemma 4 implies that the number of superstructures $T_1 \cup T_2 \cup T_3$ is at most $m^2 l^{c_3}$.

Now any $T \in \overline{U}_i$ is built of P_1, \dots, P_t of U_i where we may assume the smallest elements $p^{(i)}$ of P_i satisfy $P^{(1)} < \dots < p^{(i)}$. Either t = 1 and $T = P_1$ or $t > 1, T = P_1 \cup P_t$, because $p^{(i)} \le p^{(1)} + (l-1)d$, since z(T) < 2l for every T. Hence there exists a 2*u*-tuple τ in T such that f(x) = 1 for x not in τ .

There exist such sets τ_1 , τ_2 , τ_3 in T_1 , T_2 , T_3 . For each τ_i we have at most $(2l)^{2u}$ choices in T_i . Now if σ is the set of integers in the superstructure which are not in τ_1 , τ_2 , τ_3 , then $f(\sigma) = 1$ and $z(\sigma) \ge 2l - 5 - 6u$ according to Lemma 3 and the definition of superstructures. There are altogether at most $m^2 l^{c_*}(2l)^{6u}$ ways to choose σ , and the number of f having $f(\sigma) = 1$ does not exceed $e_k(m-2l+6u+5)$. This proves the lemma.

Now let f be of type F_1 but not of type G_1 or H_1 . There will be progressions Q, P_1, \dots, P_r associated with f satisfying (4a), (4b) and (4c). There could be several sets of progressions Q, P_1, \dots with these properties; we pick just one such set. Write V for the set of progressions P_1, \dots, P_r . Since f is not of type G_1 , z(R) < 2l for every $R \in V^*$. Denote the elements of V^* by T_1, \dots, T_t . Write W for the set of structures S which either

a) are of type $S = T_i \cup T_i$, or

b) of type $S = T_i$, $z(T_i) > l$, and there exists no $T_i \neq T_i$ such that $T_i \cup T_i$ is a structure. Write X for the set of P in V which are not part of any structure of W. Denote the elements of W by S_1 , \cdots , S_s , the elements of X by Q_1 , \cdots , Q_g .

LEMMA 8.

i) If $T \in \overline{V}$ and if $S \in W$ and either $S = T_i$, $T \subseteq T_i$, or $S = T_i \cup T_j$, $T \subseteq T_i$, $T \subseteq T_i$, $T \subseteq T_i$, $T \subseteq T_i$.

ii) Each $P \in V$ is either part of exactly one S_i or $P = Q_i$ for one Q_i .

iii) $Q_i \neq Q_j$ implies $z(Q_i \cap Q_j) \leq 1$. $S_i \neq S_j$ implies $z(S_i \cap S_j) \leq 2$.

Proof.

i) Assume $z(S \cap T) \geq 2$. If $S = T_i$, then $d(T) = d(T_i)$ would imply that $T \cup T_i \in \overline{V}$ and T_i would not be maximal, while $d(T) \neq d(T_i)$ would imply that $T \cup T_i$ were a structure, and T_i would not be in W, because of the condition in b). If $S = T_i \cup T_i$, then our argument is similar. $T_i \cup T_i \cup T$ cannot be a superstructure because f is not of type H_1 . Hence $d(T_i), d(T_i), d(T)$ must not all be different, and if $d(T_i) = d(T)$, let's say, then $z(T_i \cap T) \geq 1$. But $d(T_i) = d(T)$ together with $T_i \cap T \neq 0$ implies that $T_i \cup T$ is in \overline{V} and that T_i is not maximal in \overline{V} , which gives a contradiction.

ii) Suppose P is a part of S_i as well as of S_j . There is a unique $T \in V^*$ having $P \subseteq T$, d(P) = d(T). The only conceivable way for $T \subseteq S_i$, $T \subseteq S_j$ would

be that $S_i = T \cup T_i$, $S_i = T \cup T_i$. Then T_i would have at least 2 integers in common with S_i , a contradiction to i).

iii) $z(Q_i \cap Q_i) \ge 2$ would imply that $Q_i \cup Q_i$ is a structure if $d(Q_i) \ne d(Q_i)$; it would imply $Q_i \cup Q_i \in \tilde{V}$ if $d(Q_i) = d(Q_i)$. And $z(S_i \cap S_i) \geq 3$ implies $z(T \cap S_i) \geq 2$ for some T of S_i , which contradicts i) again.

We call f of type $F_1^{(i)}$ (i = 1, 2, 3) if f is of type F_1 and not of type G_1 or H_1 and if

 $F_1^{(1)}$: q, the number of elements of X, is at least u.

 $F_1^{(2)}$: q < u and s = 1, where s is the number of elements of W. $F_1^{(3)}: s \ge 2.$

Similarly we define $F_i^{(i)}$ for $j = 2, \dots, k$. Naturally, f can be of several types for several systems Q, P_1, \cdots, P_r

LEMMA 9. We have

(18i)
$$|F_1^{(1)}| \le m^{u+2} e_k (m - lu + c_5 u^2 \log l)$$

$$\begin{array}{cccc} (18ii) & & |F_1^{(2)}| \\ (18iii) & & |F_1^{(3)}| \\ \end{array} \le m^2 e_k (m-2l+c_6 u \log l) \end{array}$$

for the numbers $|F_1^{(i)}|$ of functions of type $F_1^{(i)}$.

Proof.

i) Take u of the progressions of X, let's say Q_1 , \cdots , Q_u . According to (4b), there exist different elements q_1 , \cdots , q_u of Q belonging to Q_1 , \cdots , Q_u , respectively. There are less than m^2 ways to choose Q, at most l^u ways to choose q_1, \dots, q_u and for given q_i there are not more than ml ways to find a Q_i having $q_i \in Q_i$. Altogether, there are at most $m^{u+2}l^{2u}$ ways to pick Q, Q_1, \cdots, Q_u .

On each $Q_i(i = 1, \dots, u)$ there is an (l - u)-tuple σ_i where $f(\sigma_i) = 1$. There are fewer than l^u ways of picking σ_i , fewer than l^{u^*} ways to pick $\sigma_1, \dots, \sigma_u$. By Lemma 8iii) there are not more than $\binom{u}{2} \leq u^2$ integers belonging to at least two of the sets $\sigma_1, \dots, \sigma_u$. Hence there exist at most $e_k(m - lu + u^2)$ functions f having $f(\sigma_1) = \cdots = f(\sigma_u) = 1$. We obtain

$$|F_1^{(1)}| \le m^{u+2}l^{u^*+2u}e_k(m-lu+u^2) \le m^{u+2}e_k(m-lu+c_5u^2\log l).$$

ii) Let S be the only structure of W. According to Lemma 5 we have $z(S) \ge l + h - 2$ if S is built of progressions P_1 , \cdots , P_h of V. According to (4b) there are elements x_1, \dots, x_h belonging to $P_1 \cap Q, \dots, P_h \cap Q$, respectively.

The argument at the beginning of the proof of Lemma 7 shows that any $T \in \overline{V}$ is the union of at most 2 progressions $P \in V$, therefore S is union of at most 4 progressions P ε V, and there is a subset σ of S of max (z(S) - 4u, 0)elements such that $f(\sigma) = 1$.

Now if X consists of Q_1 , \cdots , Q_a , there are integers y_1 , \cdots , y_a , let's say, belonging to $Q_1 \cap Q, \dots, Q_q \cap Q$. Let ρ be the set of elements of Q which are neither x_1, \dots, x_h nor y_1, \dots, y_q . Every $z \in \rho$ has f(z) = 1 + 2 according to (4c). This implies $z(\sigma \cap \rho) = 0$, therefore $z(S \cap \rho) \leq 4u$. Let τ be the set of elements of ρ which do not belong to S. Then $f(\tau) = 2$ and $z(\tau) \geq l - h - 5u$. The advantage of τ over ρ is that τ is determined by Q, S and y_1, \dots, y_q , and we do not need to know x_1, \dots, x_h .

As can be shown by the methods used to prove Lemma 4, there are at most $m^2 l^{c_\tau}$ ways to pick a Q and an S having $z(Q \cap S) \geq 2$. h can be between 1 and l. There are at most $(4l)^{4u}$ ways to choose the set σ in S and then at most l^u ways to choose τ , since τ is determined by Q, S and y_1 , \cdots , y_q . The number of functions f having $f(\sigma) = 1$ and $f(\tau) = 2$ equals

$$e_k(m - z(\sigma) - z(\tau)) \le e_k(m - l - h + 2 + 4u - l + h + 5u)$$

= $e_k(m - 2l + 9u + 2).$

Hence

$$|F_1^{(2)}| \leq m^2 l^{c_{\tau+1}+4u+u} e_k(m-2l+9u+2) \leq m^2 e_k(m-2l+c_6u \log l).$$

iii) Let S_1 , S_2 be structures of W. There are at most $m^2 l^{c_*}$ ways to pick Q and structures S_1 , S_2 such that $z(Q \cap S_i) \ge 2(i = 1, 2)$. On $S_i(i = 1, 2)$ there is a set σ_i of at least $z(S_i) - 4u$ elements where f(x) = 1. σ_i can be chosen in at most $(4l)^{4u}$ ways. Lemma Siii) implies $z(\sigma_1 \cap \sigma_2) \le 2$, therefore $z(\sigma_1 \cup \sigma_2) \ge z(S_1) + z(S_2) - 8u - 2 \ge 2l - 8u - 2$. The number of f having $f(\sigma_1 \cup \sigma_2) = 1$ is not larger than $e_k(m - 2l + 8u + 2)$. Combining our estimates we obtain the desired result.

5. Proof of Theorem 1. Using Lemma 9 we find

$$2A = 2 \sum_{i=1}^{k} \left(|G_i| + |H_i| + |F_i^{(2)}| + |F_i^{(3)}| \right) \le m^2 e_k (m - 2l + c_9 u \log l),$$

$$2B = 2 \sum_{i=1}^{k} |F_i^{(1)}| \le m^{u+2} e_k (m - lu + c_{10} u^2 \log l)$$

$$\le k^m \left\{ m e_k \left(-l \frac{u}{u+2} + c_{10} u \log l \right) \right\}^{u+2}$$

$$\le k^m \{ m e_k (-l + 2l/u + c_{10} u \log l) \}^{u+2}.$$

Choosing u to be the integral part of $(l/\log l)^{\frac{1}{2}}$ and assuming $m < e_k[l - c(l \log l)^{\frac{1}{2}}]$ for a large enough constant c, we easily find $A < k^m$, $B < k^m$. Since the number of functions f of type F is at most (A + B)/2, the Theorem follows.

6. Proof of the metrical theorem. The integers k and l will be considered fixed in this section. Many of the expressions defined will depend on k and l although this will not always be clear from the notation. For instance, we write M(m) for the number of progressions of l different terms all of which are integers in $1 \le x \le m$.

LEMMA 10.

 $M(m) = \frac{m^2}{2(l-1)} + O(m).$

Proof. For any integer d in $1 \le d \le (m-1)/(l-1)$ the number of progressions P between 1 and m with d(P) = d equals m - (l - 1) d. We obtain

$$M(m) = \sum_{d=1}^{r} (m - (l - 1) d)$$

where r is the integral part of (m-1)/(l-1). (The sum is empty if r = 0.) This gives

$$M = \frac{1}{2}r(2m - (r+1)(l-1)) = \frac{m^2}{2(l-1)} + O(m).$$

Instead of $N(\alpha; k, l, m)$ we shall write simply $N(\alpha; m)$. Put M(0) = 0, $N(\alpha; 0) = 0, L(\alpha; m) = N(\alpha, m) - k^{1-l}M(m)$ and

$$M(m_1, m_2) = M(m_2) - M(m_1)$$
(20)

$$N(\alpha; m_1, m_2) = N(\alpha; m_2) - N(\alpha; m_1) \quad (0 \le m_1 < m_2)$$

$$L(\alpha; m_1, m_2) = L(\alpha; m_2) - L(\alpha; m_1)$$

Lemma 11.

(21)
$$\int_0^1 L^2(\alpha; m_1, m_2) d\alpha = O(M(m_1, m_2)).$$

Proof. The measure of the set of α 's where $\alpha_{p_1} = \cdots = \alpha_{p_l}$ for a fixed progression p_1, \cdots, p_l is k^{1-l} . This gives

$$\int_0^1 N(\alpha; m_1, m_2) \ d\alpha = k^{1-l} M(m_1, m_2).$$

Next,

$$\int_0^1 N^2(\alpha; m_1, m_2) \, d\alpha = \sum_{\substack{P, m_1 < p_1 \le m_2 \\ Q, m_1 < q_1 \le m_2}} \mu(P, Q)$$

where the sum is over progressions P, Q whose largest element is in $m_1 < x \leq m_2$ and where $\mu(P, Q)$ is the measure of the set of α 's having $\alpha_{p_1} = \cdots = \alpha_{p_l}$ and $\alpha_{q_1} = \cdots = \alpha_{q_l}$. Note that $\mu(P, Q) = k^{2(1-l)}$ unless $z(P \cap Q) \ge 2$. On the other hand, the number of pairs P, Q of the desired type having $z(P \cap Q) \geq 2$ is $O(M(m_1, m_2))$ and we trivially have $\mu(P, Q) \leq 1$ for such pairs. Hence

$$\int_0^1 N^2(\alpha; m_1, m_2) \, d\alpha = k^{2(1-1)} M^2(m_1, m_2) + O(M(m_1, m_2)),$$

and (21) follows.

Theorem 2 is now a result of Lemma 10 and the following result in probability theory, which in the terminology of Halmos [3] can be stated as follows.

LEMMA 12. Let $L(\alpha; m), m = 0, 1, 2, \cdots$ be a sequence of real-valued measur-

138

able functions on a probability space (X, S, μ) . Let $M(m), m = 0, 1, \cdots$ be a sequence of constants satisfying $M(m + 1) \ge M(m)$,

$$(22) M(2m) = O(M(m))$$

and

(23)
$$M(m) > m^{\circ}$$
 for large m , where $c_0 > 0$ is a constant.

Define $M(m_1, m_2)$ and $L(\alpha; m_1, m_2)$ by (20) and assume that

(24)
$$\int L^{2}(\alpha; m_{1}, m_{2}) d\mu(\alpha) = O(M(m_{1}, m_{2}))$$

Let $\epsilon > 0$. Then

(25)
$$L(\alpha; m) = O(M^{\frac{1}{2}}(m) \log^{\frac{3}{2}+\epsilon} M(m))$$

almost everywhere.

Remarks. This lemma was the underlying idea of proofs in [1] and [5], although further complications there may have obscured this. Using ideas of [5], particularly Lemma 1, one could remove the conditions (22) and (23). In our application (22) and (23) are satisfied.

Proof. Write L_s for the set of intervals (u, v] of the type $0 \le u = t2^r < v =$ $(t+1)2^r < 2^s$ for non-negative integers r, t. Using (24) we obtain

$$\sum_{(u,v)\in \mathcal{L}_s}\int L^2(\alpha; u, v) \ d\mu(\alpha) = O(sM(2^s))$$

since the intervals of L, with given r cover $0 \le x < 2^s$ at most once and therefore give a contribution not exceeding $O(M(2^s))$. Define S_s , $s = 1, 2, \cdots$ to be the subset of X where

(26)
$$\sum_{(u,v)\in L_s} L^2(\alpha; u, v) < s^{2+\epsilon} M(2^s).$$

The measure of S_s is $1 - O(s^{-1-\epsilon})$. Let S_0 be the set of elements α which are in S_s whenever $s > s_0(\alpha)$. S_0 has measure 1 because $\sum s^{-1-\epsilon}$ is convergent. Let α be an element of S_0 . Assume $m \ge 2^{s_0(\alpha)}$. Choose s so that $2^{s-1} \le m < 2^s$.

The interval (0, m] is the union of at most s intervals of L_s , therefore

(27)
$$L(\alpha; m) = \sum L(\alpha; u, v)$$

where the sum is over at most s intervals (u, v] of L_s . Using (26), (27) and Cauchy's inequality we obtain

$$L^{2}(\alpha; m) \leq s^{3+\epsilon} M(2^{s}).$$

This, together with (22) and (23) gives

$$L(\alpha; m) = O(s^{\frac{1}{2}+\epsilon}M^{\frac{1}{2}}(2^{s}))$$

= $O(M^{\frac{1}{2}}(2^{s}) \log^{\frac{1}{2}+\epsilon}M(2^{s}))$
= $O(M^{\frac{1}{2}}(m) \log^{\frac{1}{2}+\epsilon}M(m)).$

References

- 1. J. W. S. CASSELS, Some metrical theorems in Diophantine approximation. III, Proceedings of the Cambridge Philosophical Society, vol. 46(1950), pp. 219-225.
- 2. P. ERDÖS AND R. RADÓ, Combinatorial theorems on classifications of subsets of a given set, Proceedings of the London Mathematical Society (3), vol. 2(1952), pp. 417-439.
- 3. P. R. HALMOS, Measure Theory, New York, 1950.
- 4. L. MOSER, On a theorem of van der Waerden, Canadian Mathematical Bulletin, vol. 3(1960), pp. 23-25.
- 5. W. M. SCHMIDT, A metrical theorem in Diophantine approximation, Canadian Journal of Mathematics, vol. 12(1960), pp. 619-631.
- 6. B. L. VAN DER WAERDEN, Beweis einer Baudel'schen Vermutung, Nieuw Archief voor Wiskunde, vol. 15(1925-28), pp. 212-216.

University of Colorado