
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Algorithmic Geometry by Jean-Daniel Boissonat and Mariette Yvinec. Reviewed by E.
W. Čenek. This is a textbook on Computational Geometry. It is big on principles, but not
implementation.

2. Branching Programs and Binary Decision Diagrams: Theory and Applications
by Ingo Wegener. reviewed by Lance Fortnow. This book is a monograph on Branching
Programs that is quite comprehensive.

3. Networks in Distributed Computing (DIMACS proceedings) Edited by Marios Mavron-
icolas, Michael Merritt, and Nir Shavit. Reviewed by Ivelin Ivanov. This is a collection of
articles on Networks from a conference in 1997.

4. Graph Theory and Its Applications by Jonathan Gross and Jay Yellen. Reviewed by
David Marcus. This is a text on graph theory which seems to really present applications as
opposed to lip service.

5. Graph Theory by William Tutte. Reviewed by Christopher G. Jennings. This is an intro-
duction to Graph Theory which is highly mathematical.

6. Data Refinement: Model-Oriented Proof Methods and Their Comparison by
Willem-Paul de Roever and Kai Engelhardt. Reviewed by Reviewer: Dan Hestand. This
is about the process by which an abstract model of a program gets transformed into a real
program.

7. In the last column William Gasarch reviewed Proofs and Refutations by Lakatos. Included
in that review were some remarks about the relevancey of Philosophy of Math for theoretical
computer scientists. David Molnar disagrees with some of what was said and was invited to
write a response. This is included, as well as a response to the response.

I am looking for reviewers for the following books
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu If you want more information about any of these books, again, feel free to email
me. Reviewing a book is a great way to learn a field. I have personally reviewed books and then
went on to use what I learned in my research.

Reviews need to be in LaTeX, LaTeX2e, or Plaintext.
Books on Algorithms, Combinatorics, and Related Fields

1. Randomized Algorithms: Approximation, Generation, and Counting by Bubley.

2. Algorithm Design: Foundations, Analysis, and Internet Examples by Goodrich and Tamassia.

1 c© William Gasarch, 2002.

1

3. An Introduction to Data Structures and Algorithms by Storer.

4. Graph Colouring and the Probabilistic Method by Molloy and Reed.

5. Random Graphs by Bela Bollobas.

6. Geometric Computing and Perception Action Systems by Corrochano.

7. Structured Matrices and Polynomials: Unified Superfast Algorithms by Pan.

8. Computational Line Geometry by Pottmann and Wallner.

9. Bioinformatics: The Machine Learning approach by Baldi and Brunak.

10. Computational Commutative Algebra by Kreuzer and Robbiano.

11. Algorithms Sequential and Parallel by Miller and Boxer.

12. Computer Algorithms: Introduction to Design and Analysis by Baase and Van Gelder.

13. Linear Optimization and Extensions: Problems and Solutions by Alevras and Padberg.

14. Number Theory for Computing by Yan.

15. An Introduction to Quantum Computing Algorithms by Pittenger.

Books on Cryptography

1. Foundations of Cryptography: Basic Tools by Goldreich.

2. Modern Cryptography, Probabilistic Proofs and Psuedo-randomness by Goldreich.

3. Introduction to Crytopgraphy by Buchmann.

4. Secure Communicating Systems: Design, Analysis, and Implementation by Huth.

5. Elliptic Curves in Crytography by Blake, Seroussi, and Smart.

6. Coding Theory and Cryptograph: The Essentials by Hankerson, Hoffman, Lenoard, Linder,
Phelps, Rodger, and Wall. Introduction to Cryptography with Coding Theory by Washington
and Trappe.

Books on Complexity and Logic

1. Models of Computation: Exploring the Power of Computing by John Savage.

2. Logic and Language Models for Computer Science by Hamburger and Richards.

3. Complexity and Information by Traub and Werschulz.

4. Logic for Applications by Nerode and Shore.

5. The Classical Decision Problem by Borger, Gradel, and Gurevich.

6. Concurrency Verification: Introduction to Compositional and Noncompositional Methods by
Roever, De Boer, Hannemann, Hooman, Lakhnech, Poel, and Zwiers.

2

7. Set Theory for Computing by Cantone, Omodeo, and Policriti. Domains and Lambada-
Calculus by Amadio and Curien.

8. Derivation and Computation by Simmons.

DIMACS workshop books
The following are DIMACS workshop books which are collections of articles on the topic in the

title.

1. Randomization Methods in Algorithm Design.

2. Multichannel Optical Networks: Theory and Practice.

3. Advances in Switching Networks.

4. Mobile Networks and Computing.

5. Robust Communication Networks: Interconnection and Survivability.

Review of: Algorithmic Geometry 2

by Authors: Jean-Daniel Boissonat and Mariette Yvinec
Translated by: Hervé Bronnimann

Publisher: Cambridge University Press

Reviewed by E W Čenek, University of Waterloo

1 Overview

Consider a set of points in the plane; is it possible to divide the plane into regions so that each region
is dominated by one of the points? Or, given a set of line segments, is it possible to enumerate all
the intersections? Given a set of points in d dimensions, is it possible to calculate a polytope which
has minimal volume but includes all the points? Can we determine the influence of a set of objects
on a give space?

The ability to build and manipulate geometric objects efficiently is required in many different
disciplines, including robotics, computer graphics, and medical imaging. While the first cases of
constructive geometry can be traced back to Euclid, the field truly came into its own in the mid-
1970s, emerging eventually as a fully-fledged scientific discipline. The authors present this book as
an introduction to the field, and cover many of the fundamental methods.

2 Summary of Contents

The book is divided into five parts, each consisting of multiple chapters.
The first part is devoted to the algorithmic tools which will be used throughout the book.

These tools include notions of complexity and basic data structures, and a discussion of both the
deterministic and random methods used in geometry.

In two dimensions, a convex hull of a set S of points is a convex polygon which contains
all points in S inside the polygon. Similarly, in three dimensions, a convex hull is the convex
polyhedron which contains all points in S. This notion can easily be extended to convex hulls

2 c© E. W. Čenek, 2002.

3

in d dimensions, also known as polytopes. Every set of points has many possible convex hulls;
the interesting convex hulls is the one with minimum volume. Part II - Convex Hulls consists
of one chapter which carefully and concisely defines polytopes and convex hulls mathematically,
followed by several chapters which discuss methods for finding convex hulls in the general case of
d dimensions, and the more restricted 2 and 3 dimensional cases. The last chapter in this section
is devoted to linear programming which is offered both as an application of, and a solution for,
finding the polytope of a set of d-dimensional points.

Fundamental objects of geometry, including polygons and polyhedrons, are sometimes described
in terms of elementary objects with a bounded complexity. Triangulating an n-sided polygon, for
instance, results in a set of non-overlapping polygons, each of which has exactly 3 sides, so that
their union is exactly the original polygon. Part III - Triangulations devotes Chapter 11 to the basic
definitions and combinatorics of triangulations in the general case. Chapters 12 and 13 discuss the
specific cases of 2 and 3 dimensional triangulations, respectively.

The arrangement of a finite set of curves or arcs in the plane is the decomposition of the plane
into regions induced by these curves and arcs, so that no arc passes through the interior of a region.
Part IV - Arrangements discusses these arrangements, first by describing them for the general
d dimensional space (Chapter 14), and then considering the cases of line segments in the plane
(Chapter 15), and triangles in 3 dimensions.

Voronoi diagrams are used to model objects and the distance between them. The simplest case
is the case where the objects are points in the plane and the distance is the usual Euclidean metric.
Then the Voronoi diagram divides the plane into regions so that each region contains one of the
objects, and so that for any other point in that region, the object inside the region is closer than
any of the other objects. We can use this, for instance, to model growth processes and in particular
the places where growth from two different origins begin to compete with one another. Part V -
Voronoi Diagrams discusses these diagrams using both Euclidean (Chapter 17) and non-Euclidean
(Chapter 18) metrics of distance. Lastly Chapter 19 discusses the specifics of computing Voronoi
diagram in the plane, including a simple sweep algorithm for points, as well algorithms for line
segments in the plane and points in two planes.

3 Opinion

The emphasis in this book is on providing a broad overview by at all times choosing to present
the most general methods, and to describe those methods in general terms. The particular topics
chosen are fundamental to the field, and pointers to extensions are included with the bibliographical
notes at the end of each chapter.

The authors have chosen to concentrate on the principles underlying each method rather than
detailing the implementation. Thus the actual implementation of the algorithms is left as an
exercise to the reader. The amount of implementation detail offered in Part I, Chapter 2 (Tools -
Basic Data Structures) is somewhat greater than in the following parts, but the amount of detail
presupposes that the reader either already knows how to build these data structures, in which case
the chapter can be browsed for a quick review, or that the reader is a competent programmer who
can build the data structures fairly straightforwardly. For the reader who has no such background,
the chapter does not contain enough detail to actually implement the data structures. However,
the reader who can implement the data structures is well on her way to implementing the methods
described throughout the rest of the book.

Review of

4

Branching Programs and Binary Decision Diagrams: Theory and Applications3

Author of Book: Ingo Wegener
Series: SIAM Monographs on Discrete Mathematics and Applications

Published by SIAM in 2000
$92.50

Author of Review:Lance Fortnow, NEC Research Institute
Note: This review was originally prepared for publication in SIAM Review.

When Wegener wrote his 1986 monograph The Complexity of Boolean Functions (Wiley-Tuebner
Series in Computer Science, Wiley) he devoted his last chapter to Branching Programs, a compu-
tation model where a path is taken on an acyclic graph where each node queries an input bit and
that determines which edges one can take. Over the intervening decade and a half research in
circuit complexity, which formed the bulk of the 1986 book, showed limited progress but we have
seen considerable work in branching programs. So it comes as no surprise that Wegener focuses his
current text on branching programs. Binary decision diagrams are just another name for branching
programs that came out of the program verification community.

Branching programs give a very simple view of a computational process. Though general branch-
ing programs can model any computation, some restricted models have a nice combination of some
reasonable computational power combined with the ability to formally understand and manipulate
them. In particular Oblivious Binary Decision Diagrams (OBDDs), where each input bit is queried
once in some previously fixed order, share many nice attributes with finite automata, like quick
algorithms for minimality and equivalence. As the models increase in complexity, we have a corre-
sponding increase in their computational power and a decrease in what we can understand about
them.

Wegener’s new book gives quite an extensive coverage of branching programs, covering the
various theoretical models and essentially all of the major and minor results about them. For
example, the book has several chapters on OBDDs giving many details of the algorithmic techniques
used for them. Wegener devotes an entire chapter to the problem of finding a good order of the
input bits to minimize the complexity of the OBDD.

I find the proofs understandable though I wish they leaned a little more toward the intuition
than the technicalities. The book is quite comprehensive in the proofs that it gives. I was a little
disappointed that the proof of my favorite recent work in branching programs, Ajtai’s lower bounds
for depth-restricted BPs, was only given as a citation to Ajtai’s hard to read paper but perhaps
the result was too recent to be fully included in this book.

The greatest strength of this book, its comprehensiveness, is also its greatest weakness. If one
is searching for a specific result, I found the index of little use, and one had to try and guess which
section the result occurred. Once found, one has to read several other sections of the book to
understand the notation to really understand the proofs. Also the book seems to give equal weight
to all results, it is hard to get from the book an idea of the most important results in branching
programs.

For a serious researcher who deals with branching programs, I do recommend this book as a
reference book. If you use this book extensively you can follow most proofs and find what you need
quickly. However, if you plan to just occasionally need a specific result in branching programs it
might be easier to just track down the original paper.

I would only recommend this book as a textbook to complement a lecturer who already had
familiarity of the subject and give some intuitive understanding to the definitions and proofs.

3 c©Lance Fortnow 2002

5

A practitioner who wants to, say, manipulate OBDDs for program verification, may find this
book useful to get a theoretical understanding of the power of OBDDs and some of the general
tools one can use to create algorithms for them. But this book is clearly written by a theoretician
and significant work is necessary to write code to implement the algorithmic descriptions given.

Overall, for a researcher interested in branching programs/binary decision tree, this books gives
a comprehensive view of the subject not really available in any other form. To search, learn or
implement from this book requires some effort but you will likely find the information you need
from it.

Review of
Networks in Distributed Computing

DIMACS Series in Discrete Mathematics and Theoretical Computer Science volume 45 4

Published by AMS, $39.00, 1998
Edited by Marios Mavronicolas, Michael Merritt, and Nir Shavit.

American Math Society

Reviewer: Ivelin Ivanov

1 Overview

The DIMACS Workshop on Networks in Distributed Computing was held October 27-29, 1997, at
Rutgers University, in Piscaway, New Jersey. The primary goal of the workshop has been to bring
together researchers from both industry and academia insterested in issues related to networks as
they appear in the context of distributed computing. Examples of particular problems which have
been addresses are ATM networking technology, routing and flow control in modern communication
networks, service pricing, security, optical networking, management of Internet, mobile computing
and formal verification of communication protocols.

2 Content Summary

This book includes 9 of the papers presented at the workshop. Short summary of each one follows.
”Scalable group membership services for novel applications” This paper presents a new network

flow control scheme called ”virtual credit”, which builds on and improves two successfully used
schemes in the ATM industry - the credit based and the rate based schemes. The main advantage of
the credit based scheme is its very low cell loss rate, while its main disatvantage is its implementation
complexity. One the other side, the main advantage of the rate based scheme is its simple switch
architecture, while its main disadvantage is the higher cell loss rate. The proposed virtual credit
scheme allocates resources more efficiently than the original credit based scheme and it is also
enables easier policing of session than the rate based scheme.

”Scalable Group Memebership Services for Novel Applications” Group communication is essen-
tial for the modular design of gropware and other multi-user applications in wide area networks.
This paper proposes a new architecture for a scalable group membership service for such environ-
ments. Its client-server architecture provides two levels of services and their semantics, each geared
to different applications with different needs. It allows lightweight clients to benefit from advanced
membership services, while allowing such thin clients to coexistance with full-fledged clients.

4 c© Ivelin Ivanov, 2002

6

”Implementing an Eventually-Serializable Data Service as a Distributed System Building Block”
ESDS deals with replicated objects that allow the users of a service to relax consistency requirements
in return for improved responsiveness, while providing guarantee for of eventual consistency of the
replicated data. This paper offers an optimized implementation of ESDS. The proposed algorithm
is given in terms of I/O automata.

”Frequency Assignment in Mobile and Radio Networks” This paper uses graph theoretic and
optimization techniques to offer several on-line algorithms for solving the NP-complete problem of
frequency assignment in mobile networks. It studies these algorithms efficiency and lower bounds.

”On Limited Wavelength Conversion in Optical Networks” Optical wavelength routing networks
are based on wavelength division multiplexing (WDM) transmission technology and on optical
switching. WDM allows for transmission of multiple streams on a single fiber by sending each
stream using a laser emitting light at a different frequency. This paper surveys recent results on
the benefits of limited length conversion in WDM ring networks. It focuses on one of the most
fundamental network-level problems: design and allocation of resources, or more specifically, the
allocation of wavelenghts to lightpaths.

”UNITE - An Architecture for Lightweight Signaling in ATM Networks” Modern communica-
tion networks need to support a wide range of applications with diverse requirements. Network
technologies that were traditionally designed and optimized for specific communication services
are evolving towards accomodating this diversity on a single integrated communication infrastruc-
ture. One difficulty with ATM signalig is the inextricable connection between basic connectivity
and Quality of Service management. This paper proposes a new lightweight architecture which
separates connectivity from QoS control.

”Timing Based Connection Management” Connection management protocols coordinate the
establishment and release of a connection between two hosts acress a wide-area network to allow
reliable message delivery. This papers surveys recent work that studies the precise impact of the
level of sunchrony provided by the processors’ clocks on the performance of connection management
protocols, under common assumptions on the pattern of failures of the network and the host nodes.

”Cryptographic Authentication for Real-Time Network Protocols” This paper describes a new
security model and authentication scheme for distributed, real-time network protocols used in time
synchronization and event scheduling applications. It outlines the design requirements of these pro-
tocols and why these requirements cannot be met using conventional cryptography and algorithms.
It proposes a new design called autokey, which uses a combination of public-key cryptography
and a pseudo-random sequence of one-way hash functions. Autokey has been implemented for the
Network Time Protocol.

”Path layout in ATM Networks - A Survey” This paper presents a model for the theoretical
study of virtual path layout in ATM networks. The model amoounts to covering the network with
simple paths, under various constraints.

3 Conclusion

This book is a compilation of the most interesting papers presented at the DIMACS workshop on
Networks in Distributed Computing held in 1997, at Rutgers University. The papers use a rigourous
style, while combining theoretical work and experimantal results targeted to practical applications.

It is targeted to the academic and industry professionals with advanced knowledge on distributed
computing who seek to update their expertise with the latest research work.

7

Review 5 of
Graph Theory and Its Applications

Authors: Jonathan Gross and Jay Yellen
Publisher: CRC Press, 1999

$75.00, 592 pages
Reviewed by: David J. Marcus, CEO, M5 Consulting, Inc. djmarcus@m5inc.com

1 Overview

With the advent of computers, graph theory is well on its way to taking center stage along side
computer science. It has evolved from a collection of disparate topics into a cohesive framework.

The authors set out to collect the associated techniques, analytical tools, and applications, and
transform them into a unified mathematical methodology. The book covers a wide range of topics
ranging from basic principles to applications such as: Printed Circuit Boards, Parallel Computing,
Register Allocation for Compilers, and many more. Emphasis is on the conceptual rather than the
rigorous. Algorithms are presented in pseudo-code which is programming language independent
and high-level. This approach makes it easy to follow the essence of the algorithm without getting
bogged down in programming details. It also provides the programming devotee an opportunity to
excel in translating the pseudo-code into real programs.

The book covers graph theory in two groupings. The first six chapters concentrate on general
topics such as basic graph properties, modeling, and representation. This material is common to
most graph theory contexts and thus serves as a foundation for the remaining sections of the book.
While most of the material assumes no prerequisites, some familiarity with discrete mathematics is
helpful. The latter chapters (7 - 15) branch out and focus on more specific topics of interests such
as graph coloring, networks, etc.

2 Summary of Contents

2.1 Ch. 1, 2: Models, Structure and Representation

These preliminary chapters introduce graphs and their properties. They are overwhelmingly
full of terminology definitions. The reader becomes familiar with edges (directed and undirected),
vertices (degree, adjacency, etc), families of graphs (complete, bipartite, regular, etc), compo-
nents/subgraphs, paths/cycles (Eulerian, Hamiltonian, etc), and so on. In addition, the reader is
introduced to graph operations such as insertion/deletion of edges and vertices, detecting graph
isomorphism, and others.

After the first two chapters the reader is well versed in the basics of graphs. The exercises at the
end of each section provide ample opportunity for the reader to gain the ”hands-on” experience in
order to build the essential intuition which is so necessary for the later chapters.

5 c© D. J. Marcus, 2002.

8

2.2 Ch. 3, 4: Trees

These chapters introduce the fundamental concept of a tree - a connected graph with no cycles.
The book defines and derives the key properties of a tree T with n vertices:

1. T is connected.

2. T contains no cycles.

3. Given any two vertices u and v of T , there is a unique u-v path.

4. Every edge in T is a cut-edge, and its deletion results in a subgraph having exactly two
components.

5. T contains exactly n− 1 edges.

6. T contains at least two vertices of degree 1 if n ≥ 2.

7. Adding an edge between two vertices of T yields a graph with exactly one cycle.

The reader becomes familiar with the commonly accepted tree terminology: depth/level of a vertex,
tree height, parent/child vertices, siblings, leaf vertices, etc. The topic of binary trees is correctly
given special consideration considering its general usefulness. Tree counting, binary tree traversal,
binary-search trees, and priority trees are introduced in chapter 3, while chapter 4 covers in great
detail the concept of spanning trees and their associated operations.

2.3 Ch. 5, 6: Connectivity and Traversal

These chapters cover the important topics of vertex and edge connectivity, constructing reliable
networks, max-min duality (and Menger’s theorems), block decompositions, Eulerian trails/tours,
DeBruijn sequences, Hamiltonian paths/cycles [Hamiltonian-type problems are classified as NP-
hard], and related topics such as Gray codes and the infamous traveling salesman problems. The
material is fast paced and is necessarily more difficult than the earlier chapters, however, that
burden is eased somewhat due to the many good illustrations accompanying the text.

2.4 Ch. 7 - 15: Applications of Graph Theory

While the earlier chapters covered the broad spectrum of graph theory basics, within these
chapters, the book shifts gears into more specialized applications of graph theory. The reader is
introduced (take a deep breath as you read the following list) to: graph operations/mappings (bi-
nary operations, linear mappings, network modeling, graph transformations, etc), graph topologies
(projections, imbeddings, surfaces, sphere maps, etc), planarity of graphs (Kuratowski’s theorem),
graph coloring (vertex, edge, map), network flows, graphical enumeration, and algebraic specifica-
tion of graphs.

As is evident, these chapters cover a lot of material. Their inclusion is significant of the enormous
value and applicability of graph theory. For the reader interested in greater depth on any of
these topics, a rich bibliography is presented for each chapter. The citation references range from
”ancient” references to fairly modern.

9

Here is a taste of the contents. Consider the book’s treatment of one of the landmarks of graph
theory: Kuratowski’s (circa 1930) characterization of planarity in terms of two forbidden subgraphs,
K5 and K3,3 (Section 9.3, pages 314 - 320).

Definition: Any graph homeomorphic to either K5 or K3,3 is called a Kuratowski subgraph.

Theorem: A graph is planar if and only if it contains no subgraph homeomorphic to K5 and K3,3.

The proof outline is as follows:

- Establish that K5 and K3,3 are both nonplanar. Thus containing no Kuratowski subgraph
is a necessary condition for planarity. It then remains necessary to prove the ”sufficiency”
requirement.

- Demonstrate by contradiction. Assume a counter example and select the one with the min-
imum number of edges among all counter examples. The strategy becomes one of deriving
some properties that this counter example would have to have which ultimately exposes the
contradiction.

The authors present 3 elegant steps which lead to the contradictions:

1. Show that the minimum counter example would have to be simple and 3-connected.

2. Show that the minimum counter example would have to contain a cycle with three mutually
overlapping appendages.

3. Show that any configuration comprising a cycle and three mutually overlapping appendages
must contain a Kuratowski’s subgraph.

The details are well organized, replete with visualizations. Even if the reader is not able to
follow every detail of every step, the essence of the proof is easy to follow.

3 Opinion

The book is generally well-written. I believe the authors have done a good job of meeting their
stated goals. It is an excellent book if the reader is looking for a comprehensive fast-paced book
on graph theory that is not heavy into rigorous proofs. Some of the theorem proofs are actually
single line proofs while others are a hand-waving ”Outline of Proof”. The book can serve as both
a teaching tool as well as becoming a well-worn reference book for the practitioner. Nevertheless,
some of the well-earned kudos are:

- The text is easy to read. It allows the user to focus on content rather than deciphering
verbiage.

- The figures/diagrams are well thought out and equally well presented.

- The progression of material is logical and well thought out. The authors do an excellent job
of covering the prerequisites before reaching any topic. This allows the book to be used for
both an undergraduate course in graph theory as well as a graduate level course.

10

- The exercises at the end of each section of each chapter are well organized in terms of level
of difficulty as well as progression. Solving an earlier problem often suggest the approach to
a later problem.

- While the coverage of any single topic is not exhaustive, given the constraints of the book (in
overall size), they cover a remarkable amount of material.

Having extolled the virtues of the book, it is only proper to point out some of the deficiencies.

I would have liked to see the book contain solutions to the even (or odd) numbered problems at
the end of each section. From the title of the book, it is clear that the authors intend the reader
to have a hands-on experience. Being able to solve problems is key to mastering the material.
As noted in the kudos above, the progression of the problems is well done, however, if the reader
stumbles on any of them, the remaining problems may be out of reach. Had the authors provided
answers to alternating problems (or at least to selected problems), the user would use the answers
as feedback. It would greatly enhance the absorption of the material.

The book goes overboard in defining terms (seems like thousands of them), many of which seem
of little value. For example, on page 57 the authors offer as a ”definition” the words ”Adding a
vertex”. From the explanation it is clear that they are referring to the act of adding a vertex to
a graph. This hardly merits a formal ”definition”. In fact, the book is cluttered with terms and
definitions that are used rarely (typically only in the definition itself).

In some cases the connection between derivation steps are not at all obvious and could benefit
from some more explanatory text. For example, in section 3.4 ”Counting Binary Trees: Catalan
Recursion” (pages 104-106), there is a very clever derivation that The number bn of different binary
trees on n vertices is given by

bn = 1
n+1

(2n
n

)

Step (a) of the derivation defines a generating function, g(x) =
∑∞
k=0 bkx

k , for the number bn of
different binary trees. It states that

1 + x[g(x)]2 = g(x)

It turns out that this innocent little formula can be derived through a tortuous number of steps
involving:

- An unnumbered formula near the top of the page (105)

bn = b0bn−1 + b1bn−2 + ...+ bn−1b0

- Squaring the expression for g(x) and grouping terms

- Recognizing that the (n− 1)th term matches the unnumbered equation near the top of the
page (hence the label generating function)

- Multiplying each term by x and adding 1 to make the nth term match

- Comparing against the definition of g(x) to see that the generating equation holds.

While experienced readers may think that all these steps are obvious and readily apparent, I suspect
that many readers will stumble here. More likely, they will take the authors’ word for the equation
and miss out on the beauty and elegance of its derivation and technique used.

11

The book is full of unnumbered equations. In most cases the lack of numbering is not a detriment,
but in others it can interfere.

A glossary is provided at the end of each chapter throughout the book. The glossary provides a
very brief definition of the terms introduced in the chapter. While useful, the glossary items lack
a reference to the page where the term was first introduced. As it stands, the reader is forced to
locate the page via the index of the book (which is very complete) which tends to minimize the
value of the glossary. Furthermore, the glossary section itself within each chapter does not show up
in the table of contents. These unfortunate shortcomings greatly diminish the value of the glossary
sections.

Review of Graph Theory6

Author of Book: William T. Tutte
Publisher: Cambridge University Press
Year: 2001, Price: $31.95, Pages: 333

ISBN: 0-521-79489-7
Author or Review:Christopher G. Jennings McMaster University cjennings@acm.org

This title forms volume 21 in the Encyclopedia of Mathematics and Its Applications, edited by
Gian-Carlo Rota of MIT. It was originally published in hardback in 1984 by Addison-Wesley; this
is a softcover edition of the same content. Tutte was an excellent choice as author: as one of the
pioneers of graph theory, his unique perspective of what was then 45 years of experience results in
a coherent organization of what might otherwise be a disparate collection of theorems.

According to Rota, the encyclopedia series is aimed for the nonspecialist with the hope that
it will encourage a wider use of mathematics in problem solving. This statement reminds me of
something Donald Knuth once said of The Art of Computer Programming in an interview. Knuth
explained that he had tried to write the series so that it could be understood by nonspecialists,
which had resulted in a work that was understandable by specialists. If he had not done it that
way, he said, no one would have been able to understand it. Given that the scope of this series is
all of mathematics, one wonders how the term nonspecialist ought to be defined. In the case of the
present volume, at least, a fairly strong mathematical background is required, although no previous
knowledge of graph theory is needed. It should be accessible to an advanced undergraduate who is
willing to put in an effort.

The graph theory groundwork is laid down in the context of connection and edge deletion
and contraction in electrical circuits in the first two chapters (including Menger’s Theorem). The
next two chapters deal with 2-connection and 3-connection. The fifth chapter deals with the
reconstruction problem, that is, the properties that can be inferred about a graph if we delete
one of its vertices. The sixth chapter delves into digraphs (including the Matrix-Tree Theorem)
and Kirchhoff’s Laws. The next three chapters discuss cursality and alternating paths, cycles and
coboundaries in the context of algebraic duality, and recursive graph functions (map-colourings).
The remaining two chapters build a theory of graph planarity derived from combinatorial axioms.
The important technique of using bridges to simplify the construction of proofs, which was first
introduced by Tutte, is put to good use in these chapters.

The breadth and depth of coverage makes Graph Theory a self-contained book that builds a
solid foundation in the subject. Starting from first principles, it builds to a point where a dogged

6 c©Christopher Jennings,2002

12

reader is well prepared to tackle research papers. It includes a good sprinkling of exercises (though
no solutions) and extensive references. One could hardly ask more of such a book.

The only complaint I might lodge is that, for a volume in an encyclopedia that emphasizes
applications, this title keeps those applications in the background. While the organization of the
material tends to be around applications in an abstract sense, the text itself generally does not
make these applications explicit. More background on those applications might have made this
book more accessible to the nonspecialist audience it is aimed at.

Certainly it is not a book on directly applying graph theory to computer science. The focus is
on properties and theorems rather than algorithms. While worthy of study in its own right, this is
not the place to start if you’re looking for a graph algorithm to solve a problem with a programming
project. Instead you should seek the help of a book such as Graph Theory and Its Applications
(also reviewed in this issue), to which this book would make an ideal complement.

Indeed, this is a mathematics text in the classical style: densely packed with important details
that must be dug out by carefully working your way through the theorems and their proofs. Such
an approach is not for everyone; many people prefer a style with more hand-holding. However, this
gives it the advantage of serving well as both a learning tool and a reference. And in the long run,
the extra work it requires pays off with a deeper and more permanent understanding.

Graph Theory is a cohesive introduction to a field whose importance has blossomed in tandem
with the rise of computing. Presented with passion and vigor through the eyes of one of its most
respected practitioners, it brings together all of the most important results in a way that gives
them a meaning and relevance that no one else could have provided. Its reputation as the definitive
volume in the field is well-deserved, and it is worth the effort required to work through it.

Review of
Data Refinement: Model-Oriented Proof Methods and Their Comparison 7

Cambridge Tracts in Theoretical Computer Science #47
Willem-Paul de Roever and Kai Engelhardt
Cambridge University Press, 1998, $80.00

Reviewer: Dan Hestand

1 Overview

The creation of executable software products is a stepwise refinement of an abstract model into a
more concrete model with each step adding more detail. At each step we start with an abstract
operation and end with a concrete operation. Examples of this include generation of requirements
from a Use Case, source code generation from a model, and the generation of executable code from
source code. In all cases, the refinement step involves some transformation of the model. If we
are concerned with the correctness aspects of our product then we must ensure correctness at each
step during the refinement. In practice, this may be nearly impossible for all but the simplest cases
and in some steps we may have no adequate theory of formal correctness. Other factors such as
resource, schedule, and budget constraints may limit the amount of verification activities applied
during a project. Furthermore, simply proving correctness at each step is not sufficient since the
transformation may not generate a new concrete model that is an accurate representation of the
prior abstract model.

7 c© IONA Technologies, PLC, 2002, All Rights Reserved

13

There are, however, techniques for decreasing the amount of effort required to show correctness
of a model after some transformation. One such technique is to show correctness at the abstract level
(generally an easier task), show that the transformation step preserves correctness, then correctness
of the concrete level is ensured by construction. This is the the subject of Data Refinement: Model-
Oriented Proof Methods and Their Comparison. This monograph deals with the concepts of data
refinement and proof of data refinement through simulation in two parts. Part 1 is an exposition
of the theory of data refinement and simulation. Part 2 shows how the most common methods for
formal verification of software (such as VDM and Z) embody the concepts exhibited in Part 1.

The topics covered in Part 1 lay the groundwork for understanding data refinement and simula-
tion from a detailed theory viewpoint. The central result of this part is the expression of simulation
verification conditions as Hoare triples. This result applies whenever the abstract operation is a
specification statement. The topics discussed in this part are

• Introduction to Data Refinement - what data refinement is and what it seeks to achieve.
A very brief history of the development of the data refinement concepts is also presented
indicating some of the key players.

• Simulation as a Proof Method for Data Refinement - definition of simulation as an effective
proof method for data refinement. Abstraction relations are introduced as the means of
moving from abstract operation to concrete operation and back. Four types of simulation
are also defined: L, L−1, U , and U−1. Soundness and incompleteness of L are shown. The
chapter ends with an introduction to VDM and Reynolds’ Method in the context of simulation
as just defined.

• Relations and Recursion - definition of some technical machinery for the use of binary relations
required for later chapters. Recursion is discussed in the context of the µ-calculus of Scott,
deBakker, and Park.

• Properties of Simulation - study of the differences between the four types of simulation. Of
particular importance are the differences that affect the concatenation of simulation diagrams.
Data invariants are shown to be crucial for converting the partial abstraction relations to total
relations. This result is required to show soundness of simulation.

• Notation and Semantics - notation for expressing data refinement is introduced. Interpre-
tation functions are defined for predicates, abstraction relations, Hoare-style assertions, pro-
grams, relational terms, and correctness formulae are defined and discussed. Additionally, a
toy programming language is defined along with its semantics for use in the later discussions
on Hoare logic.

• A Hoare Logic - introduction and discussion of a Hoare logic with a minimal number of axioms
for simplified soundness and completeness proofs. This is preparatory material for showing
that data refinement proof obligations for a pair of operations (one abstract, one concrete)
can be reduced to a Hoare triple.

• Simulation and Hoare Logic - core chapter of the first part of the book. For the four types of
simulation, the authors show how two operations and an abstraction relation can be reduced
to a single Hoare triple. The statement and proof of a normal form theorem for specifications
is given for L-simulations.

14

• An Extension to Total Correctness - extension of the Hoare logic to total correctness. Re-
formulation of the theory is required since the prior partial correctness interpretation ignores
non-terminating states (including blocked states). Complete partial orders are introduced to
assist in dealing with the non-terminating states and the semantic interpretations given in
chapter 5 are recast with the new framework.

• Simulation and Total Correctness - complications in using simulation arising from the intro-
duction of the total correctness semantic model are dealt with by extending the soundness
and completeness results to total correctness.

• Refinement Calculus - the essence of simulation, mapping state sets to other state sets is
recast from the binary relations used in the prior chapters to predicate transformers. The
connection between binary relations and predicate transformers is made and the soundness
and correctness of predicate transformers is shown in both partial and total correctness set-
tings.

Part 2 shows how the theory in Part 1 is embodied by commonly used methods of verifying software
and includes

• Reynolds’ Method - connection between Reynolds’ four-point recipe for constructing con-
crete programs from abstract ones and simulation is shown using an extended directed graph
example. Refinement in Reynolds’ method is program refinement. The main result is that
Reynolds’ recipe is essentially L-simulation but with changes required to adapt his verification
conditions for expressions and operations. The authors admit that they are not rigorous in
proving their claim because there is some subjectivity required to interpret Reynolds’ Method
in the context of simulation, but this does not seem to affect the overall result.

• VDM - Vienna Data Method (VDM) is introduced through specification of a dictionary.
The authors show that the data refinement steps in VDM imply L-simulation with total
correctness. Refinement in the VDM is refinement between data types.

• Z, Hehner’s Method, and Back’s Refinement Calculus - three methods are presented in survey
form to show the correspondence between them and data refinement. Z is shown to be
equivalent to VDM when considered in the context of data refinement. Hehner’s Method
introduces the notion of data transformers which corresponds to a total L-simulation relation.
Back’s Refinement Calculus is based on predicate transformer semantics and when confined
to conjunctive operations is shown to be equivalent to L-simulation under total correctness.

• Refinement Methods Due to Abadi and Lamport and to Lynch - refinement mappings are
defined as total abstraction functions combined with the use of auxiliary variables such as
history variables and prophecy variables. These refinement mappings are used by Abadi and
Lamport to prove refinement between concurrent programs. The authors restrict themselves
to non-deterministic sequential programs for showing the correspondence between the Abadi
and Lamport methods and data refinement. Lynch’s possibility mappings combine simulation
with prophecy variables and these are shown to be equivalent to L-simulation after proving
isomorphism between functions mapping concrete state spaces to abstract state spaces and
relations mapping the same.

15

2 Opinion

The authors indicate that they use this book as a classroom text for advanced undergraduates and
beginning graduate students and that a minimal knowledge of Hoare logic is required. My feeling
is that the advanced undergraduate should have a high level of mathematical maturity to properly
appreciate the material in the book. The exercises are numerous and of sufficient difficulty to
provide a challenge to most students.

The pages separating Part 1 and Part 2 of the book contained photographs of some of the
luminaries in the field of data refinement and simulation. The inclusion of these photographs with
some historical text was a nice touch. When I am lost in the depths of details, it is easy to lose
sight of the fact that the tools, techniques, and concepts used to simplify our understanding are
not just sterile data, but the result of the hard-work and insight of gifted and tenacious people.
Having an image to associate with a name in the bibliography makes the material come alive for
me.

I truly enjoyed reading this book. One gets the sense of enthusiasm the authors have for the
subject matter despite the density of theorems and proofs. For me, the proofs were very enlightening
as they provided guidelines for how to go about conducting proofs in this subject. The heavy use of
examples and the whole of Part 2 of the book provide the often neglected connection of theory with
the real world. As a commercial software consultant, I can use the lessons provided in this book
in my practice, either personally or directly for the benefit of my customers. I heartily recommend
this book for anyone interested in any aspect of formal verification of software.

Response to Review of “Proofs and Refuations by Lakatos”
Original review by William Gasarch

Response by David Molnar
I agree with the ”Opinion” section of the December 2001 review of Proofs and Refutations that

philosophy of mathematics is important for theoretical computer science, but I do not believe that
the reasons given are the strongest possible. The author 8 states that every computer scientist
should have a ”nodding acquaintaince” with the philosophy of mathematics, because ”it is helpful
to realize we have assumptions and what they are.” Then the author cites as examples questions
concerning alternative definitions for NP-completeness and zero-knowledge proofs. The implication
seems to be that these are research questions that might be raised by exposure to philosophy of
mathematics, therefore philosophy of mathematics is valuable to theoretical computer scientists
as a potential source of research questions, especially concerning definitions. While philosophy of
mathematics may be sufficient to raise such questions, it is not clear to me that it is necessary. We
should look for contributions philosophy might make which would not come from computer science
alone.

Both of the questions mentioned in the review have been investigated in some depth. I will
address the second question.

The second question concerns parallel composition and zero-knowledge proofs, specifically the
question of whether the definition of ”zero-knowledge” should be amended to account for the fact
that the parallel graph isomorphism protocol is neither known to ”leak knowledge” nor is proved to
be ”zero-knowledge.” This seems like a natural question, with an immediate practical motivation
– executing all rounds in parallel increases the efficiency of the overall protocol, yet how do we
know that this more efficient protocol will still be ”secure?” Even without exposure to philosophy

8here and following, ”the author” refers to the author of the review, William Gasarch, not to the author of the
book, Imre Lakatos.

16

of mathematics, this is not a happy situation. Therefore I believe this question would have arisen
even without the desired ”nodding acquaintance.”

Cryptographers responded in at least two ways to this problem (I apologize for omissions here).
Feige and Shamir introduced a new definition of ”witness-indistinguishable” protocols and showed
that the parallel graph isomorphism protocol met this definition[1]. In fact they went further and
showed that the class of witness-indistinguishable protocols was closed under parallel composition.
Goldreich and Krawczyk, on the other hand, showed that the 3-round parallel graph isomorphism
protocol could not be black-box zero knowledge, unless graph isomorphism is in BPP (which it
is believed not to be)[2]. Both approaches test the limits of the definition of ”zero-knowledge.”
Indeed, much recent work in cryptography concerns new definitions and testing the limits of old
definitions. Were these results motivated by philosophy of mathematics or instead by concerns
more ”internal” to cryptography? Would they exist even if Proofs and Refutations had never
been published?

Philosophy of mathematics might have more force in helping us interpret the results of existing
research. Proofs and Refutations discusses ”monster” counterexamples to theorems and the
status of a theorem after such counterexamples are found. For another example from cryptography,
Canetti, Goldreich, and Halevi showed that the ”random oracle model” for proving protocols secure
in cryptography has a disturbing feature[3]. There are cryptographic protocols which can be proved
”secure” in the random oracle model yet provably have no secure implementation in the ”real”
world. At the same time, these protocols can be considered ”monsters,” very far removed from
anything we would ever expect in practice. Then the question is ”given this result, what does a
proof in the model mean?”

In addition, philosophy of mathematics might help explain the phenomenon of equivalent def-
initions. The class of regular languages can be characterized by regular expressions, DFAs, logic,
Boolean circuits, or by monoids (for a start). All these definitions seem to capture the same object.
Why should this be so? We might also look to philosophy of mathematics to help us ajudicate
between two incomparable definitions for the same intuitive concept. Each of these questions seems
both of interest to theoretical computer science and closely connected to philosophy.

One final note: what is the place for ”foundationalist” philosophy of mathematics in the ”nod-
ding acquaintance” every computer scientist should have? The review restricts itself only to the
philosophy connected with the book under review, as is proper. I would be interested to know,
however, the author’s views on how widely this acquaintance should range.

[1] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
STOC, pages 416–426, 1990.

[2] O. Goldreich and H. Krawczyk On the Composition of Zero-Knowledge Proof Systems. SIAM
Journal on Computing vol 25 number 1

[3] O. Goldreich and R. Canetti and S. Halevi. The Random Oracle Model, Revisited. In STOC
’98 ACM Press 1998

Response to the Response
by William Gasarch

In David Molnar’s response to my review he writes:
“While philosophy of mathematics may be sufficient to raise such questions, it is not clear to

me that it is necessary.”
I agree (so much for getting a controversial discussion going). However, I still maintain that

Philosophy of Math is helpful and that Lakatos’s book is a good place to learn some. The reason

17

why Lakatos’s book in particular is a good place is that it focuses on one theorem in math (Euler’s
formula for polyhedra) which is hard enough to be interesting, easy enough to be understood, and
has enough historical value to be enlightening.

David Molnar also writes:
“I would be interested to know, however, the author’s views on how widely this acquaintance

(with foundationlist issues in math) should range.”
I think computer scientists (and mathematicians) should know enough about foundationalist

issues to realize that the way math concepts are defined is not sacrosanct. For this purpose, a
discussion of how a function should be defined (culminating in Dirchlet’s notion which is now
standard) would be enlightenting.

18

