
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Foundations of Logic and Mathematics: Applications to Computer Science and
Cryptography by Yves Nievergelt. Review by Saif Terai. This book is in two parts: Theory
and Applications. The Theory is Logic, the applications are cryptography.

2. Rippling: Meta-Level Guidance For Mathematical Reasoning by Alan Bundy, David
Basin, Dieter Hutter, and Andrew Ireland. Review by Maulik Dave. The book is about
Rippling, which is a proof planning technique. Automatic theorem proving is done by rewrite
rules. The conjecture, assumptions, and already proved theorems are supplied to an automatic
theorem prover in the form of rewrite rules.

3. Handbook of Nature-Inspired and Innovative Computing Edited by Albert Y. Zomaya.
Review by Aaron Sterling. This books goal is to be a Virtual Get Together of several re-
searchers that one could invite to attend a conference on futurism dealing with the theme of
Computing in the 21st Century.

4. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter
Sanders. Review by Hal C. Elrod. What are the basic tools of the accomplished programmer?
Read the book to find out.

5. The Algorithm Design Manual (Second Edition) By Steven S. Skiena. Reviewed by
Neelakantan Kartha. This is an algorithms book for the practical person who actually wants
to implement stuff.

6. Graph Theory: A Problem Oriented Approach by Daniel Marcus. Review by Haris
Aziz. This is a textbook where the reader is given some relevant information but must then
do problems, problems, and more problems.

7. Proofs from THE BOOK (4th edition) by Martin Aigner and Günter M. Ziegler. Review
by Miklós Bóna. Paul Erdős would say that there is a book somewhere, possibly in heaven, and
that book contained the nicest and most elucidating proof of every theorem in mathematics.
Hence the term Proofs from THE BOOK has come to mean particularly pleasing proofs.
This book is a collection of such.

8. Handbook of Chemoinformatics Algorithms Edited by Faulon, Bender. Review by
Aaron Sterling. What are the most common chemoinformatics algorithms? What is a
chemoinformatics algorithms? Read the review to find out.

1 c© William Gasarch, 2011.

1

9. Dynamic Fuzzy Logic and its Applications by Fanzhang. Review by Song Yan. In
Fuzzy logic, rather than an element being in or out of a set it is given a value between 0 and
1 to indicate how much it is in. What if we allow those values to change over time? You
obtain Fuzzy Logic.

2

BOOKS I NEED REVIEWED FOR SIGACT NEWS COLUMN

1. Introduction to Bio-ontologies by Robinson and Bauer.

2. The Dots and Boxes Game: Sophisticated Child’s play By Berlekamp.

3. New Mathematical Diversions by Martin Gardner.

4. The Magic Numbers of the Professor by O’Shea and Dudley.

3

Review of2 of
Foundations of Logic and Mathematics

Applications to Computer Science and Cryptography
by Yves Nievergelt

Birkhauser, Springer, 2002
430 pages

Review by Saif Terai terais@algonquincollege.com

1 Overview

This book could serve as a text and as a reference; it has a different presentation style. The author
states, for example, a theorem, a rule, a remark or a definition, followed by an example. Examples
are an important part of the presentation and should be read for continuity; they are an important
component of understanding. The opening paragraph on the back cover arouses the readers interest,
with questions such as, ”Why is the truth table for logical implication so unintuitive? Why are
there no recipes to design proofs? Where do these numerous mathematical rules come from? What
issues in logic, mathematics and computer science still remain unresolved? In what ways are we
going to use this material?” The book is divided in two parts; Part A is titled Theory and Part B
Applications. It has a five and a half page bibliography, and a 13 page extensive index. I checked
with the publisher for errata and solutions, none are available for the book. Some symbols used in
the book are not listed in the index page. Most symbols in the index page have a description, but
some do not.

2 Summary of Contents

Chapter 0 - Boolean Algebraic Logic An introduction to this chapter explains the use of math-
ematics and logical reasoning used for several millennia. The need for logic, mathematics and
computing is justified. Its use can be traced to ancient civilizations in Babylonia, China and India.
Its use includes calculation of taxes, dates of astronomical events such as eclipses and change of
seasons. Terms of logic are introduced, such as hypothesis, conclusion, implication, converse and
contrapositive The concept of an empty set is defined. A table lists the alphabets for logic and
set theory. For example the symbols for empty set, ”belongs to”, ”equals”, ”for each”, ”there
exists” are listed. The section on well formed formulae defines an atomic formula; infix, prefix and
postfix notation are differentiated. Other sections in the chapter include tautologies and contra-
dictions, proofs by tautologies, proofs by contradictions, synthesis of logical formulae and synthesis
by Karnaugh’s tables.

Chapter 1 - Logic and Deductive Reasoning A 42 page chapter begins with a good introduction
on how logic is used in reasoning. It explains how features in natural phenomenon that cannot be
seen or perceived through the senses do indeed exist; (other) observations and deductive reasoning
lead us to conclusions about those hidden features. The shape of orbits are discussed; statements
that we widely considered true for thousands of years have become false when new evidence was

2 c©2011, Saif Terai

4

uncovered. Rules of inference, axioms, substitutions and Modus Ponens, minor and major premise
are defined with examples. This section ends with Derived Rule and Reflexive Law of Implication.
Section 1.2 covers Classical and Implicational Calculus. Implicational calculus is a version of
Propositional Calculus. It uses only one connective called implicational; it is a binary operator.
Seven theorems on Derived rule are presented, followed by examples of Implicational Theorems.
These derived rules of inference start with a hypothesis and a conclusion, if the hypothesis holds then
the conclusion holds. Transitive Law of implication and law of commutation involve only implication
but no negation, these are presented in a separate sub-section. Logical connectives conjunction,
disjunction, and equivalence are outlined. Proofs of theorems with conjunctions, commutativity of
conjunction, idempotency of conjunction are explained in a subsection. Symmetry of equivalences,
transitivity and associativity of equivalences is followed by proofs and theorems with disjunctions.
Commutativity of disjunctions, associativity of disjunctions is proved. DeMorgan’s first and second
law are stated and proved.

Chapter 2 - Set Theory This is a 62 page chapter. It begins with defining a set. Short examples
are provided on binary arithmetic, geometrics, two body problem and three body problem. The
three body problem is proved by K F Sundman in 1907. It states that three objects rotating in space
will never collide simultaneously. An example each on Geoid and ellipsoid is provided. A survey
carried out in the eighteenth century to confirm the shape of the earth is discussed. Its purpose is
to demonstrate the difficulty in using ”real” objects to illustrate logical and mathematical concepts.
Sets do not contain ”real” objects instead they contain abstract objects defined by precise rules.
This section defines the building block of all mathematics, the elementary stages of set theory is
the foundation of all mathematics. Most of mathematics and computer science consists of logical
relations between abstract objects called sets. There is no definition of mathematical sets. Sets
are foundational objects. All mathematical objects are sets and all quantified variables are sets.
Remark 284 states ”In designing a proof we may at any stage start from the conclusion - but we may
not assume it as True - and then search for logically equivalent formulae that connect the conclusion
to other formulae that we know how to prove.” The section on mathematical functions is about a
domain and range that contain measurements. In the section on Composite and Inverse functions
topics such as composition of functions, injective, surjective, bijective and inverse functions are
defined. Reflexive, symmetric, transitive relations are discussed. Preorders and partial orders are
defined. Zermelo’s Theorem and Zorn’s Lemma are stated. A lemma is a proposition accepted for
immediate use as a proof of another proposition.

Chapter 3 - Induction, Recursion, Arithmetic Cardinality. This is a 63 page chapter. Concepts
of numbers, arithmetic counting and ”infinity” and their relationship with set theory are shown.
Mathematical induction is a method of mathematical proof used for properties of natural numbers.
Induction is used in computing and mathematical logic. An extension of mathematical induction
is applied in recursion, a programming method that is one of the central ideas in computer science.
Recursion relies on the fact that the solution to a problem depends on solution to smaller instances
of the same problem. Computation of a factorial is used as an example to demonstrate recursion. A
section on Orders and Cancellations explains how natural numbers are used to model geometric and
algebraic concepts. The theorem on well ordering principle is proved. Section 3.8 is titled Arithmetic
in Finance. The theory explained in this chapter is applied to problems in finance. Topics covered
are Percentages and Rates, Sales and Income Tax, Compound Interest, Loans Mortgages and
Savings Plans and Perpetuities.

5

Chapter 4 - Decidability and Completeness Logic and axioms are used for common and scien-
tific patterns of reasoning. The methods used to investigate use of appropriate methods and axioms
are discussed. Some logics have the capability to determine if certain formulae are theorems, other
logics do not have the capability. Examples in this chapter show all proofs within implicational
calculus are not sufficient to prove certain implicational tautologies. Limitations of Truth Tables
are shown. The Completeness Theorem provides an algorithm to design a proof for each tautol-
ogy within full propositional calculus. Well formed sets are discussed. The author differentiates
between classical logic and intuitionistic logic. Classical logic is discussed in the first chapter on
Logic and Deductive Reasoning. The chapter ends with a section on incompleteness of predicate
calculus and Godel’s Incompleteness Theorem.

Chapter 5 - Number Theory and Codes This chapter opens with an introduction on codes,
its use in messages to provide some level of secrecy and its usage in error detection and correction.
A section in Euclidean Algorithm presents the theorem on division with remainder and its proof
using induction. The theorem states; for each non-negative integer N and every positive integer
M, there exists unique non-negative integers Q and R such that N = (M * Q) + R, M ¿ R.
Greatest Common Divisor (GCD) is defined. Two numbers are relatively prime if their greatest
common divisor is 1. For example 6 and 25 are relatively prime. The section on GCD covers five
theorems. Proof of Euclidean Algorithm is given by use of recursion. The section Digital Expansion
and Arithmetic provides a short paragraph on different bases. ”Base 60 was used by Babylonian
civilization; base 10 was first used in Chinese and Greek civilizations several millennia ago, an
combination of base 18 and 20 was used by Mayans several centuries ago.” A few examples for
conversion from different bases are presented. Section 5.3 covers Prime Numbers. Prime numbers
are defined, prime number factorization is explained and an algorithm for primality testing is
provided. Only the most fundamental algorithm is presented with two examples. Section 5.4 covers
Modular Arithmetic; it includes modular integers, congruence modulo divisors, modulo addition,
modular multiplication and division and divisibility tests. Odd and even bases are considered in
divisibility tests. Modular code is covered in section 5.5. Examples include International Standard
Book Number (ISBN), Universal Product Code (UPC), Bank Identification Code and US 9 digit zip
code. Bank Identification Code appears on bank cheques and transaction slips, it consist of a 9 digit
decimal number, which includes one check digit. Codes that rely on theorems about remainders of
integer division by powers of integers Section 5.6 starts with Fermat’s Little Theorem, with proof.
An extension of Fermat’s Little Theorem, the Euler’s Totient function is defined. The section
on Euler-Fermat Theorem covers Euler’s Totient function and Euler-Fermat Theorem. The last
section in this chapter is titled Further Issues in Number Theory. It lists four open problems; twin-
prime conjecture, perfect number conjecture, Goldbach’s conjecture and Carmichael’s conjecture.
In Goldbach’s terminology 1 is a prime.

Chapter 6 - Ciphers, Combinatorics and Probabilities Cryptography is the science of trans-
forming plaintext into a form that can be read only by authorized users. Plaintext in present times
includes images, sound, video, executable programs, ASCII and binary data. Chapter 6 begins by
differentiating between codes and ciphers. Many textbooks on cryptography do not make differenti-
ate between the two terms and use them interchangeably. Cryptography relies on the mathematical
theory of permutations; it must hide identifiable features of a language such as frequency of letters,
diagrams and trigrams. Digrams and trigrams are two letter and three letter words and letter
combinations. By give simple examples the author differentiates between permutation and combi-
nation. Section 6.1 titled Algebra. A ”group” is a mathematical structure consisting of a set with

6

an operation on any two of its elements to form a third element. Operations include substitutions,
addition and multiplication of non-zero rational numbers. Semigroup and monoids are introduced,
existence and uniqueness of identities and inverses. Design of successful ciphers codes and other
applications depends on correct use of theorems on mathematical groups. Permutation is defined
in section 6.2, associativity, inverses and orbits of permutation are discussed.

The simplest of all substitution ciphers, the Caesar’s cipher is illustrated with a historical men-
tion of Suetonius. Only 22 letters were used in the Caesar’s cipher. Use of cyclic permutations, or
cyclic shift, in the ENIGMA is also mentioned. In the section on Factorization of Permutations by
Cycles, disjoint cycles and non-disjoint transpositions are discussed. The section on Signatures of
Permutations shows how different permutations can correspond to significantly different physical
situations, for example, in stereochemistry. Even and odd permutations are illustrated using an
example of a lactic acid molecule. The mathematical feature of a signature is explained. Definition
of reorders is given. Transposition and signatures as dextrorotatory and levorotatory are discussed
using examples of lactic acid. Alternate group of degree n is defined. Section 6.5 is on Arrange-
ments. Arrangements with and without repetition are explained. Examples of pangrams and its
use in printing and transmission devices are shown. Pangrams are arrangements with repetitions
where each element appears at least once. Panagrams are used to test if printing and transmission
devices process each element correctly. The term word is defined as an arrangement with repetition.
Section 6.6 is on Combinations. The increase and decrease of Binomial coefficients are presented
in a theorem. Examples of palindromes and anagrams are given. Section 6.7 is on Probability.
Probability spaces, Exclusion-Inclusion principle, Conditional Probabilities and applications of Bi-
nomial Theorem are discussed in this section. Section 6.8 discusses the working of an ENIGMA
machine. The alphabet set used, keyboard and display are provided. An example gives further
insight in the working. Order of the rotors, ring settings, the plug board, matching of the enci-
phering and deciphering machines is illustrated. The machine changes the permutation after each
letter, this technique prevents repeating patterns in ciphertext for the same pattern in plaintext.
A brief history on the ENIGMA and a brief note on the four versions of ENIGMA A, B, C and D
are provided.

A subsection in devoted to breaking the enigma ciphers. This section narrates techniques used
by code-breakers. Rejewski’s first and second theorems and the method to reconstruct the Enigma
wiring is presented.

Chapter 7 - Graph Theory This is the last chapter in the book. Applications of graph theory
are discussed - such as roads, powerlines, data channels, printed circuit boards and the traveling
salesman problem. Diagrams in this chapter are hard to read. They are reduced to a dispropor-
tionate size. Figure 7.2 on page 373 is not readable. Graph theory has specialized terms. Author
uses terms that have different meaning. A certain class of practical problems is solved by graph
theory but larger problems require linear programming. Section 7.1 is on Mathematical graphs,
it begins with a subsection on directed graphs. No axioms are presented; its foundation is drawn
from set theory and induction. Definitions of directed graphs, vertices nodes, directed graph edge,
loop completeness of a directed graph are discussed. Undirected graphs, Reflexivity, Symmetry,
transitivity and quotient map are covered. In the section on degree of vertices - inward degree and
outward degree are covered. Path Connected Graphs are covered in Section 7.2, topics discussed are
Walks in graphs, path connected component of graphs, longer walks and longest paths. A path is a
walk that traverses each edge once. In the section on Longest Paths three theorems are presented.
Eulerian paths and circuits are covered in a separate subsection. Situations that require origination

7

and termination at the same point are dealt in this section. A walk is closed if it originates and
terminates at the same point. In the section on Mathematical Trees examples are taken from the
state of Hawaii. Spanning trees and directed graphs are covered. A section is devoted to Graph
Theory in Science. Graphs and multigraphs are discussed with examples of a hydrogen, oxygen,
nitrogen and water molecules. Section 7.7.2 illustrates shapes of hydrocarbons.

3 Opinion

The book provides detailed coverage of topics on Logic and Mathematics. The two part presentation
of theory and applications is well thought out. The theory is presented in a mathematical style.
It could serve as a reference book and a supplementary textbook for an under-graduate course in
Logic and Mathematics; the exercises provided are exhaustive. Each chapter ends with a short
section titled Project which provides the reader a larger assignment to work on. The book needs
a support manual for instructors, with hints, suggestions or complete answers to some problems
and exercises; currently the publisher does not have such support material. The diagrams in the
book need to be redone; some of them are not readable. The index needs to be more complete by
including all symbols and notations used in the book. The treatment of examples is terse, students
would benefit from a detailed presentation. It was a pleasure reviewing the book.

8

Review of3 of
Rippling: Meta-Level Guidance For Mathematical Reasoning

Cambridge Tracks In Theoretical Computer Science 56
by Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland

Cambridge University Press, 2005
202 pages, HARDCOVER

Review by
Dr. Maulik A. Dave, maulikadave@aim.com

4333 Dunwoody Park, Apt. 3107, Dunwoody, GA 30338.

1 Introduction

Theorem proving by machine is a very well developed area. The book is about Rippling, which is
a proof planning technique. Automatic theorem proving is done by rewrite rules. The assumptions
and already proved theorems are supplied to an automatic theorem prover in the form of rewrite
rules. The prover program attempts to prove the conjecture by applying the rewrite rules given.
It may enter into a combinatorial explosion search, which may be impractically time consuming.
Rippling provides meta level guidance to the prover based on proof planning. In proof planning,
plans are made to try out various methods to be tried. If one plan fails, the failure information
is analyzed to come up with a better plan. When the rippling method is used for proof planning,
the software implementing rippling is given to the guidance plan. The guidance is provided by
annotating the rewrite rules, and wave rules. The wave rules are rules which have been annotated.
The rippling program comes back quickly either successfully proving or failing. In other words,
rippling takes givens and goals. Givens are formulas, which are assumptions, or previously proved
theorems. The goals are the conjectured formulas to be proved from givens. Rippling finds out
the differences between the givens and goals, and moves out the differences so that goals contain
instances of givens. When goals contain instances of givens, the conjectures may be proved; however,
further work may be required. If rippling is not able to do this, then the results where rippling failed
are analyzed. This analysis is used to find a way to repair the failed proof. Most common example,
where rippling can be used, is inductive proofs. Rippling still terminates even when rewrite rules
are used both right-to-left and left-to-right.

The following example is from the book, which can be proved by rippling:
Given: a + b = 42
Goal: ((c + d) + a) + b = (c + d) + 42
Another example given in the book is about the linked list. Rippling proves the distributive

law of reverse over append by induction. The base case is trivial. The step case rippling solves:
Let rev is a list reversing function. Let <> be the infix list appending function. Let :: be the

binary infix function.
Given: rev(t <> l) = rev(l) <> rev(t)
Goal: rev(h :: t <> l) = rev(l) <> rev(h :: t)

3 c©2011 Maulik Dave

9

An example of addition of even numbers is also proved by rippling. Let even(i) be a function
that returns YES if i is an even natural number, and NO otherwise. Rippling proves that even(m)
and even(n) implies even(m + n).

2 Summary

The book has 7 chapters. Apart from a chapter on introduction, and a chapter on conclusions, it
has chapters on the varieties, theory, and scope of rippling. It also has a chapter on failure analysis,
and a chapter on general methodology.

The first chapter on introduction begins by introducing rippling, and proof planning in the
context of the problems of automating reasoning, and formal methods of system development. It
introduces rewrite rules. It informally explains rippling by examples expressed as actual rewrite
rules, and annotations on rewrite rules. Patterns formed by application of wave rules are referred
to as wave fronts. The chapter ends with a short section on the history of rippling.

The second chapter is on varieties of rippling. It begins with compound wave fronts, which
are wave fronts with more than one functional applications. For simplification, the wave rules are
kept in maximally split normal form. The chapter then discusses movements in the rippling with
respect to givens, and goals such as sideways rippling, inward ripplings, and weak fertilizations. It
also discusses conditional wave rules. The chapter ends by introducing concepts of higher order
rippling, rippling to prove equations, and relational rippling.

The third chapter is on how to use the information when rippling fails. It discusses revision
of inductions, lemma discovery, lemma alternatives, and conjecture generalization by analyzing
rippling failures. The chapter ends by showing tables generated by a practical proof planner, which
has implemented these techniques.

The rippling formalism is presented in the fourth chapter. The chapter begins by mathematical
preliminaries of term rewrite. The rippling is formalized as a binary relation over the set of the
annotated terms. Erasure, and skeleton functions are defined over annotated and unannotated
terms. The formalism puts 3 requirements: If a term ripples to another term, then erase of the
term rewrites to erase of another term; the skeletons of another term are subsets of skeletons of the
term; Rippling terminates. It then discusses various methods to achieve the requirements, and the
associated proofs. The chapter ends with a discussion on dynamic wave rule parser method.

The fifth chapter begins by presenting practical examples, where rippling is successful. The
examples include bi-conditional decision procedure, summing of the binomial series, and lim +
theorem. It is mentioned that rippling is successfully applied in reasoning about imperative pro-
grams, and framework logics. The chapter then presents some examples such as mutual recursion,
inverting a tower, and difference removal, where rippling has failed. It ends with remarks that
CLAM, and INKA, where rippling is implemented, are used in various applications.

The sixth chapter is on methodology. It begins by describing a general annotation language.
It presents some examples of encoding constraints on proof search. The examples explain various
strategies of encoding constraints. The strategies are rippling, paramodulation, window inference,
and reuse. Then, the chapter discusses abstraction approach, where representations of the problems
are simplified by abstraction. The strategies are also discussed with respect to this approach.

The seventh chapter summarizes the book. There are 2 appendixes. The first appendix shows
an annotation calculus and a unification algorithm for it. The second appendix presents functions
given in the book.

10

3 Opinion

The students of theoretical computer science will find the book useful. A background of theorem
proving and term rewrite systems is required to understand the book. To understand the examples,
knowledge of various data structures, algorithms, and mathematical theorems is required. A course
on theorem proving, or proof planning techniques will have this book listed as one of the textbooks,
or references. For users of the systems, where rippling is implemented, the book gives a good number
of illustrations. The book shows that the Edinburgh CLAM Family, a proof planning software
system implements the rippling. It also shows that Saarbruken INKA software system for theorem
proving, implements rippling. VSE, a tool for formal software development, integrates INKA.
Examples of applications developed using VSE include a scheduling system for a distributed radio
broadcasting, security models for various smartcard applications, etc. Many proof obligations of
such systems were completed using rippling as mentioned in the book. Loop invariant verifications
were also completed using rippling in some applications.

The book will be also useful for building a proof planning tool.

11

Review of4

Handbook of Nature-Inspired and Innovative Computing
Edited Albert Y. Zomaya

Springer, 2006
736 pages, hardcover

Review by
Aaron Sterling sterling@iastate.edu

Department of Computer Science, Iowa State University5

1 Introduction

The ambitious goal of the Handbook of Nature-Inspired and Innovative Computing is to “to be a
Virtual Get Together of several researchers that one could invite to attend a conference on ‘futurism’
dealing with the theme of Computing in the 21st Century.” The Handbook contains 22 chapters,
written in a “workshop style,” meaning that little to no background is required from the reader
except for basic knowledge of computer science, and the chapter authors provide an overview of a
particular research area. The material is divided into three sections: Models (i.e., theory), Enabling
Technologies (i.e., hardware), and Application Domains (i.e., recent, novel applications of computer
science). Most of the chapters present either theoretical models (fuzzy logic, quantum computing,
swarm intelligence) or report on trends in non-von-Neumann-model hardware (morphware, optical
VLSI, neural models in silicon). Overall, I found this volume to be a fascinating, and “gentle,”
introduction to a wide range of nonstandard research areas of computer science.

2 Summary

2.1 General overview

Rather than attempt to discuss all 22 chapters, I will make some general remarks about the material
in each of the three sections, and consider a few chapters in detail to provide a flavor for the book’s
contents. To begin, though, here are three quick points.

First, there are “mandatory” chapters on Bioinformatics (by Aluru) and Quantum Computing
(by Eisert and Wolf). These are well written, but there is extensive tutorial-level material on both of
these subjects available many places on the internet. So the strength of the Handbook, in my eyes,
lies more in the introduction it provides the reader to less-emphasized research directions. Second,
as a theorist, I found the chapters on hardware to be the most exciting, because they were accessible
to me, even with very limited background, and they discussed areas I had never encountered before.
So I would encourage SIGACT News readers to consider that a potential strength of the Handbook.
Third, the Handbook was published in 2006, so some of the material it contains is dated, but not in
an “obvious” way. For example, there is a chapter on fuzzy logic (by Taheri and Zomaya) which is
fine, but the 2008 paper by Zadeh titled, “Is there a Need for Fuzzy Logic?” [Information Sciences

4 c©2011, Aaron Sterling
5This review was written while the author was visiting the Department of Electrical Engineering and Computer

Science, Northwestern University. This work was supported in part by NSF grant CCF-1049899.

12

178 (13), pp. 2751–2779, 2008] is much more comprehensive, in my eyes. On the other hand,
the chapter “Trends in High-Performance Computing,” (by Dongarra) is still completely relevant,
except for the most recent numbers themselves on current speeds of supercomputers: the trends
described still hold. So, a theory chapter is “more dated” than a hardware chapter. My suggestion,
therefore, is for the reader to consider the chapters as a jumping-off point to learn about unfamiliar
areas, rather than considering them to be the “definitive word” on any subject.

2.2 Section on Models

The Models section of the Handbook contains several chapters whose computational paradigms
could be loosely categorized as “lots of small agents act locally to solve large, global problems.”
These paradigms include collaborative algorithmics (by Rosenberg), a hybrid association algorithm
(by Tari and Wu), multi-set rule based soft computing (by Krishnamurthy and Krishnamurthy),
evolutionary computing including genetic algorithms (by Seredynski), and swarm intelligence (by
Kennedy). For reasons of space, I will consider one of these: the chapter on swarm intelligence.

James Kennedy, author of the chapter “Swarm Intelligence,” focuses on particle swarm opti-
mization. Informally, a particle swarm is a population of agents who communicate according to
some topology of connections, and a change rule. The “classic” particle swarm topologies have been
everyone-connected-to-everyone, and a ring lattice (where each agent has two neighbors). There
are many different change rules in the literature, but most are based on a standard formula, and
the basic idea is that a particle chooses where to go based on its success (or failure) at the previous
time step, and the success (or failure) of its neighbors. Unlike searches performed by evolutionary
algorithms, which first find “good” regions, and then try to ramify the good regions into best possi-
ble points, a particle swarm continues exploring the entire space until the algorithm concludes. As
a result, in some ways, particle swarm algorithms are more flexible than evolutionary algorithms,
because they assume less about the structure of the search space. The author discusses technical
differences between particle swarm algorithms, and when to prefer one over the other. He also
draws an intriguing line between evolutionary algorithms (such as genetic algorithms) and social
algorithms (such as particle swarm or ant colony optimization): to optimize an n-dimensional prob-
lem with a “traditional” evolutionary algorithm requires a 2n-dimensional vector (each function
parameter, plus a standard of deviation variable for each parameter), whereas a social algorithm
requires only an n-dimensional vector, because the “mutation” in the social algorithm is determined
by the distance between the individual and the source of its social influence. The author concludes
with a section on non-computer applications of particle swarms, including a pharmaceutical com-
pany that used particle swarm optimization in petri dishes to find an optimal mixture of ingredients
for growing bacteria.

2.3 Section on Enabling Technologies

The Enabling Technologies section of the Handbook begins with a chapter that introduces “classi-
cal” computer architecture (written by Yi and Lilja), then a chapter on the history of optical VLSI
(by Eshagian-Wilner and Hai), and then moves into less traditional areas. There are chapters on
morphware (by Hartenstein) and the related topic of evolving hardware (by Gordon and Bent-
ley). There is a chapter on implementing neural models in silicon (by Smith), and molecular and
nanoscale computing (by Eshagian-Wilner et al.). The chapter by Dongarra on high-performance
computing that I mentioned above appears in this section, as do three chapters whose topics would

13

probably be grouped under “cloud computing” today: cluster computing (by Yeo et al.), web ser-
vice computing (by Benatallah et al.), and predicting grid resource performance (by Wolski et al.).
I will now summarize Hartenstein’s chapter “Morphware and Configware.”

Reiner Hartenstein’s chapter on morphware and configware is one of the most extensive in the
Handbook, and reads almost like a mini-encyclopedia, with 27 figures, including a glossary of over
50 hardware acronyms. The author begins by arguing that the traditional hardware model, the so
called von Neumann paradigm, where microprocessors driven by software instructions communicate
with accelerators driven by data, is facing a design crisis: as a System on a Chip becomes more
sophisticated, the silicon wafers required for its design are becoming prohibitively expensive. The
solution: morphware. “Morphware is structurally programmable hardware, where the interconnect
between logic blocks and/or functional blocks, as well as the active functions of those blocks, can
be altered individually by downloading configware, down to the configuration memory (configu-
ration RAM) of a morphware chip.” (The most ubiquitous example of morphware is probably
the field-programmable gate array (FPGA), which is a multi-billion-dollar industry.) The author
discusses different morphware paradigms and their recent impact on the computing sciences. He
concludes with a call to reform computer science curricula with a new taxonomy of architecture
and algorithms. His concern is that undergraduates who develop a procedure-only mindset will be
at a tremendous disadvantage on the job market—and I agree.

2.4 Section on Application Domains

The final section of the Handbook, on Application Domains, is the shortest. It contains the Bioin-
formatics chapter (by Aluru) I previously mentioned, and chapters on pervasive computing (by
Kumar and Das), information display (by Eades et al.), and noise in foreign exchange markets (by
Szpiro). I will summarize the chapter on pervasive computing.

Mohan Kumar and Sajal K. Das contributed the chapter “Pervasive Computing: Enabling
Technologies and Challenges.” In their view, “pervasive computing is about providing ‘what you
want, where you want it, when you want it, and how you want it’ services to users, applications,
and devices.” Technologies in this category include sensors, RFID tags, wearable computers and
smart phones. The authors spend five pages providing a snapshot (circa 2005) of the state of
these technologies—for example, how objects are tracked using MEMS (micro-electro-mechanical
systems), or RFID (radio frequency identification). They then spend five pages discussing the
following challenges of pervasive computing: (1) heterogeneity and interoperability, (2) proactiv-
ity and transparency, and (3) location awareness and mobility. Challenge (1) could be phrased,
“How can so many different kinds of devices seamlessly communicate without need for human in-
teraction?” The point of challenge (2) is for computing technologies to be increasingly aware of
situational needs of users, so they immediately provide the right category of data. The authors
give an example of a doctor in a cafeteria who receives a message on his PDA. The cafeteria server
needs the doctors profile, but also needs to receive the doctor’s schedule from the PDA, so the
server will know whether it is an appropriate time to notify the doctor about the message. The
authors break challenge (3) into several subchallenges, such as prediction of future location, scal-
able signaling traffic, and security issues. The chapter concludes with sketches of four pervasive
computing projects, including the MavHome Smart Home, whose objective is to decompose control
of an entire house into four computing layers.

14

3 Opinion

As I stated in the introduction, the chapters of the Handbook of Nature-Inspired and Innovative
Computing that I got the most from were the chapters on architecture, not theory. I already had
(limited) background in, e.g., genetic algorithms, neural networks, fuzzy logic. On the other hand,
the practical and theoretical challenges posed by the current market for evolutionary hardware and
pervasive computing were brand new to me – and quite exciting! So I believe theorists looking
for interdisciplinary applications for TCS might benefit from reading this book. (Similarly, applied
computer scientists might benefit from a broad introduction to newer areas of CS theory.)

I could see this book used as the basis for a seminar on approaches to decentralized computation.
It contains no exercises, so it isn’t appropriate as a textbook. Most of the chapters could be read by
a clever advanced undergraduate, so I consider it a collection of tutorials, rather than of research
monographs. Overall, I think this book would be of use to anyone with some CS sophistication
who desires exposure to a wide range of newer or less-publicized research areas.

15

Review of6

Algorithms and Data Structures: The Basic Toolbox
by Kurt Mehlhorn and Peter Sanders

Springer, 2008
300 pages, Hardcover

Review by
Hal C. Elrod (helrod@acm.org)

1 Introduction

A toolbox: in the hands of an accomplished craftsman, it has a carefully selected set of the most
commonly-used implements appropriate to the most frequently-encountered tasks. In the hands of
a hack, it is a box of battered junk misapplied to whatever nail, screw, or pipe in sight.

What are the basic tools of the accomplished programmer? In the classic title by Nicolas Wirth,
Algorithms + Data Structures = Programs1. Along with a compiler and vi, the tools in this book
should cover most of the interesting problems we face.

But in the real world of commercial software development, few of us spend time writing optimal
stacks and queues, or tweaking the runtime of sorting algorithms. Widely used languages such as
C++ and Java support such structures via built-in or standard libraries—the Java library and C++
Standard Template Library (STL), respectively. If not included with the language, the prevalence
of open-source implementation libraries such as Boost2 and JDSL3 have made the foundational
building blocks widely accessible. What is needed, and what Algorithms and Data Structures
attempts to provide, is a understanding behind the libraries. An understanding not just into
implementation details but into the mathematical underpinnings that make these things work. If
successful, it will be just the right tool when that library qsort exhibits O(n2) behavior.

The authors are well-known in the study and practice of computer science. Kurt Mehlhorn is
an ACM Fellow and one of the developers of LEDA, the Library of Efficient Data types and Algo-
rithms4. Co-author Peter Sanders has contributed heavily to the field of randomized algorithms,
among other topics, and is one of the original authors of STXXL, the Standard Template Library
for Large Data Sets5. Both LEDA and STXXL are examples of libraries that efficiently implement
some of the algorithms and data structures referenced in the book, but none of the examples or
pseudo-code require any particular library. Rather, each chapter concludes with Implementation
Notes discussing common library implementations in C, C++, and Java, which helps balance the
book towards the practical rather than purely theoretical.

2 Summary

The book has 12 chapters, along with an Appendix listing mathematical symbols, concepts, and
useful formulae.

6 c©2011, Hal C. Elrod

16

Chapter 1: Integer Arithmetics Cleverly, Chapter 1 precedes the introduction, and sets the
table with basic math. It starts with schoolbook addition and works through the Karatsuba method
of integer multiplication, including a simple C++ implementation.

Chapter 2: Introduction The introduction proper starts with a discussion of asymptotic (“Big
O”) notation, the RAM model, and the elements of pseudo-code. Then these basics are applied
to an increasingly complex set of algorithms and data structures: linear search, binary search,
randomized algorithms, graphs and trees. Finally, P and NP are outlined briefly.

Chapter 3: Representing Sequences by Arrays and Linked Lists This data structure
chapter starts with the ever-popular doubly and singly-linked lists, then on to arrays, stacks, and
queues. “Ever-popular” in that every undergraduate must learn them, and every professional writes
one once. He or she then either reuses that version or, if a truly excellent professional, realizes that
there are better generic implementations in the STL or Java util package. More important is to
understand why, and to that end the book introduces the concept of Amortized Analysis. Every
data structure has trade offs; a doubly-linked list is fast to concatenate, but slow to address a
specific item, an array is fast to address, but slow to concatenate. Answering the why with a
degree of mathematical rigor is what makes this book a quality tool. An example of the practical
nature are the references for each algorithm to the C++ STL and Boost libraries and Java library
implementations.

Chapter 4: Hash Tables and Associative Arrays Covers hashing, collisions, hashing with
chaining, hashing with linear probing—the basics of hashing, followed by an explanation of universal
hash functions. In a clever, non-technical example of a hashing the authors describe the following:

If you want to get a book from the central library of the University of Karlsruhe, you
have to order the book in advance. The library personnel fetch the book from the stacks
and deliver it to a room with 100 shelves. You find your book on a shelf numbered with
the last two digits of your library card. Why the last digits and not the leading digits?
Probably because this distributes the books more evenly among the shelves. The library
cards are numbered consecutively as students sign up, and the University of Karlsruhe
was founded in 1825. Therefore, the students enrolled at the same time are likely to
have the same leading digits in their card number, and only a few shelves would be in
use if the leading digits were used.

Starting in this chapter, the exercises get a little more difficult. The book contains exercises for
each major section, ranging from the trivial to the mathematically challenging. Answers are not
provided in the text.

Chapter 5: Sorting and Selection Selection, mergesort, and quicksort are described algorith-
mically and analyzed as to expected and worst-case performance.

Chapter 6: Priority Queues Introduces heaps in their binary, Fibonacci and other variations.

Chapter 7: Sorted Sequences Covers binary search trees, (a,b)-trees and Red-Black trees.

17

Chapter 8: Graph Representation This chapter sets the stage for the algorithmic chapters
that follow by covering the most common graph representations: arrays (static graphs), adjacency
lists and matrices.

Chapter 9: Graph Traversal Breadth-First Search (BFS), Depth-First Search (DFS).

Chapter 10: Shortest Path Describes and analyzes Dijkstra’s simple yet sublime shortest path
algorithm, and other algorithms for graphs with arbitrary (negative) edge costs.

Chapter 11: Minimum Spanning Trees Defines and then explores MST with Jarńık-Prim
and Kruskal’s algorithms.

Chapter 12: Generic Approaches to Optimization This chapters covers the major cate-
gorizes of optimization problems, starting with the knapsack problem through linear and integer
programming, then on to greedy heuristic approaches, then quickly through simulated annealing,
Tabu Lists, and other attacks on challenging problems. In keeping with the practical and compact
nature of the book, these approaches are covered descriptively to introduce the types of approaches,
but not in every detail. To quote one example:

In fact, although LP solvers are used on a routine basis, very few people in the world
know exactly how to implement a highly efficient LP solver.

And in fact, the book directs the reader to view LP as a “black box”, which makes sense in the real
world, where highly optimized solvers are available for free download. Unless one is a specialist in
the field, it is pointless to write an LP solver from scratch, and I speak from having written one.

3 Opinion

A “Toolbox” should be portable, practical, and useful. This book is all these, covering a nice
swath of the classic CS algorithms but addressing them in a way that is accessible to the student
and practitioner. Furthermore, it manages to incorporate interesting examples as well as subtle
examples of wit compressed into its 300 pages. Although it is not tied to any one language or
library, it provides practical references to efficient open-source implementations of many of the
algorithms and data structures; these should be the first refuge of the commercial developer. I
can easily recommend this book as an intermediate undergraduate text, a refresher for those of
us who only dimly remember our intermediate undergraduate courses, and as a reference for the
professional development craftsman.

Notes

1N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall, 1976
2www.boost.org
3www.jdsl.org
4www.algorithmic-solutions.com/leda LEDA is available as object code in Free Edition, but source is licensed

separately.
5stxxl.sourceforge.net STXXL is free/open source.

18

Review of
The Algorithm Design Manual, Second Edition7

Author: Steven S. Skiena
Publisher: Springer-Verlag, 2008

ISBN NUMBER: 978-1-84800-069-8
730 pages, Hardcover, $61.00

Reviewer: Neelakantan Kartha (gnkartha@yahoo.com)

1 Overview

The Algorithm Design Manual by Steven Skiena is aimed at two groups of people: students and
professionals. It consists of two parts: (I) Practical Algorithm Design and (II) The Hitch Hiker’s
Guide to Algorithms. The first part gives an overview of standard algorithm analysis and design
techniques, including worst case analysis, data structures, graph algorithms and dynamic program-
ming. This part will also be of interest to the practitioner who wants to quickly brush up his
knowledge in a particular area. The second part is a annotated catalog of algorithms that allows
one to quickly zoom in an algorithm of interest. The description of each algorithm includes a
discussion section that addresses common questions and points to implementations and related
problems.

2 Summary of Contents

Part I of the book focuses on algorithm design and consists of ten chapters. It starts off with
an introductory chapter introducing algorithms and motivating why the analysis of algorithms is
important. The introductory examples on robot tour optimization and jobs scheduling serve to
nicely illustrate why algorithm correctness is a property that must be demonstrated.

The second chapter on algorithm analysis is more or less standard: it defines and illustrates
best, worst and average case complexity and gives several examples of working with the Big Oh
notation.

The third chapter on data structures introduces several standard data structures, including
lists, stacks, queues and dictionaries. This chapter should mostly be a review for someone who has
taken a previous course in data structures.

The fourth chapter focuses on sorting and searching, and introduces heap sort, merge sort, quick
sort and binary search. Analysis of these algorithms is presented in an informal manner.

The fifth chapter on graph traversal discusses data structures on graphs and breadth and depth
first search. It also discusses some applications of breadth and depth first search, such as finding
cycles and strongly connected components.

The sixth chapter on weighted graph algorithms presents Prim’s and Kruskal’s algorithms for
minimum spanning trees and Dijkstra and Floyd’s algorithms on shortest paths. It also includes a
brief introduction to network flow algorithms.

7 c© Neelakantan Kartha, 2011

19

The seventh chapter on combinatorial search and heuristic methods introduces backtracking
and applies it to several problems. It also contains a discussion of local search and simulated
annealing.

The eighth chapter introduces the important dynamic programming technique of caching in-
termediate values of computation for speedup in run time and illustrates this idea on a number of
examples, such as the computation of the edit distance between two strings.

The ninth chapter on intractable problems introduces the theory of NP-completeness and gives
techniques on proving hardness using reductions.

The tenth chapter gives a list of questions that helps guide the design of an algorithm for a
problem of interest.

Part II of the book is an annotated catalog for algorithms for solving different types of problems.
It contains a number of algorithms for solving numerical, combinatorial, graph, computational
geometry and set and string problems.

3 Opinion

The Algorithm Design Manual is different from the typical algorithm texts such as Introduction to
Algorithms by Cormen, Leiserson, Rivest and Stein. First of all, it focuses more on the practical
aspects of algorithm design, without laying much stress on the underlying mathematical analysis. It
is written in an informal style that I found pleasant and engaging. Considerable effort has gone into
making the algorithm guide in Part II useful, by giving a pictorial description of the problem being
solved, by presenting variants of the basic algorithm when appropriate and by giving references to
implementations. The book’s unique structure makes it more likely to be immediately useful to the
practitioner who has problem to solve and wants to quickly make progress, without getting bogged
down in unwanted detail or mathematical theory. In that respect, the book succeeds admirably.

However, I do have some reservations in using the book as a primary text for algorithm classes.
Here are a few nits: It would have been better to present the insertion sort in chapter 1 in pseu-
docode (similar to what is done in Section 1.1) so that the beginning student is not distracted by
the syntax of the C language right at the beginning. The war stories are interesting and illumi-
nating, but some of them (such as the ones in Section 1.6 and Section 3.6) require more detail to
be completely clear. A more detailed presentation of asymptotic analysis would be helpful to the
student who has never seen this material before. Certain code fragments are not self-contained (for
example, bubble down function on pg. 114 uses pq young child function, which is not defined).
And to make the book suitable for self study, presenting answers to a subset of the exercises, and
pointing out particularly instructive ones would help. I also noticed a few typos (e.g., displayed
formula at the bottom of pg. 17 (the lower index should be 1), pg. 85 (line 15), pg. 109 (line 15:
the reference should be to page 42)).

Overall, I recommend this book warmly.

20

Review of 8

Graph Theory: A Problem Oriented Approach
Daniel Marcus
MAA, 2008

205 pages, Hardcover

Review by
Haris Aziz (aziz@in.tum.de)

Technische Universität München, 85748 Garching, Germany

1 Introduction

Graph Theory: A Problem Oriented Approach is a textbook cum workbook with the goal to assist
a proactive and problem-oriented approach to learning graph theory. This goal is clear from the
offset as many key concepts, examples and even proof arguments are clarified or highlighted by the
help of carefully chosen problem questions. A reader unfamiliar with graph theory is not kept in
the dark as problems are preceded by some introductory text which nudges the reader along. The
book consists of over three hundred strategically placed problems interspersed by necessary text.

There are also further problems to think about at the end of each chapter. The book is written
in a similar style as a book on combinatorics by the same author [2] .

2 Opinion

The first thought that springs to mind is that the book is fairly complete in terms of coverage of
topics. The main topics covered include spanning tree algorithms; Euler paths; Hamilton paths
and cycles; planar graphs; independence and covering; connections and obstructions; vertex and
edge colorings; matching theory; cycle-free digraphs; and network flow theory.

Another aspect of the book is that students are familiarized with algorithmic issues. Key ideas
of standard graph algorithms are highlighted. Algorithms covered include Prim and Dijkstra’s
algorithms to compute the minimum spanning tree; the Hungarian algorithm for the optimal as-
signment problem; and the maximum flow algorithm. The algorithmic treatment is not as advanced
as for example in [1]. The book is supplemented by a useful index which lists the name of key terms,
theorems and algorithms.

The focus of the book is on self-discovery. The author compromises formality of notation and
definitions and focuses on highlighting key graph theoretic concepts in a natural and thought-
provoking way. Apart from problem questions, the text comprises of informal definitions and
exposition of concepts.

3 Conclusion

One expects the book to be a textbook cum workbook but it veers towards being a very carefully
planned workbook with minimal text. The book can be used to plan and induce interaction in a

8 c©2011, Haris Aziz

21

first year undergraduate graph theory class. Even high school students can pick up some valuable
concepts by independent self-study. Although, an excellent teaching and learning resource, the
book is not detailed enough to constitute an independent textbook. Therefore, it is more suited to
complement a standard graph theory textbook for an undergraduate class.

References

[1] A. Gibbons. Algorithmic graph theory. Cambridge University Press, Cambridge ; New York,
1985.

[2] D. A. Marcus. Combinatorics: a Problem Oriented Approach. Cambridge University Press,
Cambridge ; New York, 1998.

22

Review of9

Proofs from THE BOOK (4th edition)
by Martin Aigner and Günter M. Ziegler

Published by Springer 2009
274 pages, Hardcover

Amazon: $40.00 new, $50.00 used10

Review by Miklós Bóna

1 Introduction

Paul Erdős, the most prolific mathematician of the twentieth century, had his own way of judging
the beauty of various proofs. He said that there was a book somewhere, possibly in heaven, and
that book contained the nicest and most elucidating proof of every theorem in mathematics. When
somebody showed him a new proof, he either said, “this is the Book proof” or “this is not the Book
proof”.

Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection
of theorems and their proofs that would undoubtedly be in the Book of Erdős. The theorems are
so fundamental, their proofs so elegant, and the remaining open questions so intriguing that every
mathematician, regardless of specialty, can benefit from reading this book. The book has five parts
of roughly equal length.

2 Number Theory

The first section, on Number Theory, starts with six proofs for the existence of infinitely many
primes. At least two of them will be new for most readers. The last one proves the considerably
stronger fact that

∑
p∈primes

1
p is divergent. Next, the authors explain Bertrand’s postulate that

states that if n > 1, then there is a prime number between n and 2n. They also mention the much
stronger statement (still unproven) that there is a prime between n2 and (n + 1)2 as well.

Leaving prime numbers, we next prove that binomial coefficients are almost never powers, a
statement that is very important in coding theory. The precise theorem is that the equation(

n

k

)
= ml

has no integer solutions for 4 ≤ k ≤ n− 4 and l ≥ 2.
After this, we spend the next section deciding which positive integers can be written as the sum

of two perfect squares. The answer is that exactly those whose prime factors of the form 4k + 3
all appear with even exponents in the prime factorization of n. For instance, 153 = 32 · 17 satisfies
this requirement, and indeed, it is the sum of 153 = 122 + 32.

At first sight, the next topic seems to be an outlier since the statement itself belongs to abstract
algebra, rather than number theory. A division ring is a ring with a unit element in which every
nonzero element has a multiplicative inverse. So division rings would be fields if multiplication

9 c©2011, Miklós Bóna
10This is not a typo- it is listed as costing more used then new. That is a paradox with no book resolution.

23

were commutative in them. The classic theorem presented here is that finite division rings actually
are fields. The proof, while not easy, uses only elementary number theory, so the placement of the
theorem in this part of the book is appropriate after all.

The number theory part of the book ends by a section on irrationality results. The two most
classic results of that kind are that both e and π are irrational. Besides these, we are shown proofs
of the stronger results that π2 is irrational, and er is irrational for all nonzero rational numbers r.
An elegant proof of the well-known identity∑

n≥1

1
n2

=
π

6

is presented, together with a proof of the less well-known fact that

1
π

arccos
(

1√
n

)
is irrational for all odd integers n > 1. Now comes the only critical remark in this review. This
reviewer would have liked to see some of the extremely difficult open questions related to e and π
here, such as whether their sum or product is transcendent or algebraic. Some of these questions
have been open for decades.

3 Geometry

The second part of the book is about Geometry. In two dimensions, the Bolyai-Gerwien theorem
shows that if two polygons have the same area, then they are both equidecomposable (can be
dissected into congruent triangles) and equicomplementable (can be made congruent by adding
congruent triangles. Hilbert’s famous third problem was asking for tetrahedral counterexamples
showing that the same is not true in three dimensions. The authors present the Dehn-Hadvigger
theorem, which provides sufficient condition for two polyhedra to be not equicomplementable, hence
not equidecomposable.

Next are some theorems from combinatorial geometry. First, it is shown that for any set S of
n ≥ 2 points, no three of which are collinear, there exists a straight line that contains exactly two
points of S. (Hint: consider the pair (P, e) so that P ∈ S, and e is a straight line connecting two
points of S, and the distance of P and e is minimal. Then e contains exactly two points of S.)
Just as interesting is the slope problem, claiming that n points on the plane, no three of which are
collinear, always determine at least n−1 different slopes. Equality is only possible for odd numbers
n larger than four.

Then we get to Euler’s famous theorem on connected planar graphs. If such a graph has n
vertices, e edges, and f faces, then

n + f = e + 2.

This theorem has a plethora of consequences. If G is a simple planar graph, then it has a vertex of
degree at most five. The inequality e ≤ 3v − 6 holds for G. If the edges of G are two-colored, then
there is a vertex of G with at most two color changes in the cyclic order of the edges around the
vertex. The latter leads to the following interesting fact. Given any collection of white and black
points on the plane, there is always a straight line that contains at least two points of one color,
and none of the other.

24

Another consequence of the edge-coloring result of the last paragraph is Cauchy’s Rigidity
theorem. This theorem states that if the convex polyhedra P and P ′ are combinatorially equivalent,
(meaning that there is a bijection between their face sets that preserves edge containment) and the
corresponding faces are congruent, then P and P ′ themselves are congruent. This theorem does
not hold if the convexity condition is dropped.

Then comes an excursion to higher dimensional geometry. Let f(d) be the highest number so
that f(d) simplices of dimension d can be placed in Rd so that their pairwise intersections are
(d − 1)-dimensional. It is conjectured that f(d) = 2d. The authors show that 2d ≤ f(d) ≤ 2d+1.
Staying in higher dimensions, they then show that in any 2d + 1-element set of points in Rd, there
are three points that span an angle larger than π/2 (an obtuse angle).

The part on Geometry ends by Borsuk’s conjecture and its disproof. This conjecture stated
that every set S ⊂ Rd of bounded diameter could be partitioned into at most d + 1 sets of smaller
diameter. We are shown a counterexample in dimension d = 861 Interestingly, it involves prime
numbers. It is known that for the claim of the conjecture to hold, we must partition S into more
than (1.2)

√
d sets of smaller diameter in the general case, but 1.25d smaller sets suffice.

4 Analysis

The third part of the book discusses problems in Analysis. The first of its sections is on set theory.
It introduces the notions of countable and uncountable sets, and proves that the set of all real
numbers is uncountable, meaning that there is no bijection from the set of integers to the set of
reals. It also explains the continuum hypothesis. Set theorists were wondering if there existed a set
B that is strictly larger than the set of natural numbers, but strictly smaller than the set of real
numbers. The authors explain, that the answer to this question depends on what system of axioms
we use for our proofs involving real numbers: for certain system of axioms, such a set B will exist,
for certain others, no such B will exist.

Next, we are shown a collection of inequalities that even a good high-school student can appreci-
ate. The first on the list is the Cauchy-Schwarz inequality, then the inequalities between harmonic,
geometric, and arithmetic means. Finally, we are shown a higher-level application, originally proved
by Laguerre. It shows that if all roots of a polynomial xn + an−1x

n−1 + · · ·+ a0 are real, then the
roots are contained in the interval whose endpoints are

−an−1

n
± n− 1

n

√
a2

n−1 −
2n

n− 1
an−2.

This is followed by a very simple proof for the Fundamental Theorem of Algebra, that is, the
fact that any non-constant polynomial with complex coefficients has at least one complex root. We
are also shown Monsky’s theorem that claims that it is impossible to cut up a square into an odd
number of triangles of equal area. It is remarkable that this theorem, which seems to be a theorem
from Combinatorial Geometry, has an analytic proof.

Then come sections about less widely known results. The first is the following theorem of Pólya.
Let f(z) be a polynomial with complex coefficients, degree at least 1, and leading coefficient 1. Let
T = {z ∈ C : |f(z)| ≤ 2}. Take any line L in the complex plane, and project T orthogonally to
L. Then the total length of this projection is never more than 4. The second one is a result of
Littlewood and Oxford, which is solved using Sperner’s theorem, a result in Combinatorics which

25

has its own turn in the book, in a later part. The result that is proved here is that if a1, a2, · · · , an

are complex numbers, |ai| ≥ 1 for all i, then the number of linear combinations

n∑
i=1

aiεi

with εi = ±1 that lie in the interior of any circle of radius 1 is at most c2n log n√
n

. A key observation

in the proof is that
(n
n/2

)
≤ log n√

n
.

The chapter closes with two classic results, one is the stunning formula

π cot πx = lim
N→∞

N∑
−N

1
x + n

whose proof is called the Herglotz trick. The other one is the problem that led to the theory of
Monte Carlo approximation methods. If we drop a needle of length l on a paper that is ruled with
equally spaced lines of distance d ≥ l, then the probability that the needle will rest in a position
when it crosses one of the lines is 2l

πd . This formula has been used to approximate π for centuries.
We are shown a proof with, and one without, integrals.

5 Combinatorics and Graph Theory

The last two parts, Combinatorics and Graph Theory, contain the most spectacular proofs in the
book. That sentence should not come as a surprise, given that both authors are combinatorialists
(and so is this reviewer).

The Combinatorics part starts with the fundamental ideas of the Pigeon-hole Principle, and
Double counting, that is, the idea that if we count certain objects in two different ways, the result
should be the same. We are shown simple proofs for the facts that if we choose n+1 integers of the
set {1, 2, · · · , 2n}, then there will be two chosen integers that are relatively prime to each other, but
there will also be two so that one divides the other. A higher-level application is Sperner’s lemma,
which is a statement about coloring the vertices of a few triangles. Astonishingly, it leads to a
proof of the celebrated Brouwer fixed point theorem, which states that every continuous function
f : Bn → Bn of an n-dimensional ball to itself has a fixed point.

An interesting section on tiling discusses Nicholas De Bruijn’s result stating that if a rectangle
R can be tiled by smaller rectangles each of which has a side of integer length, then R also has a
side of integer length. A similar result is that a rectangle of side lengths a and b can be tiled with
squares if and only if a/b is rational.

This is followed by three important results on finite sets. The first is by Sperner again, and it
states that if F is a family of subsets of [n] = {1, 2, · · · , n} so that no element of F contains another
element of F , then F consists of no more than

(n
n/2

)
sets. It is clear that that limit is attainable;

just let F be the family of all (n/2)-element subsets of [n]. What is interesting is that this simple
construction is the best. The situation is similar for the next problem as well. How many k-element
subsets of [n] can we choose if we want every pair of selected subsets to intersect? Clearly,

(n−1
k−1

)
is achievable (just choose all k-subsets containing 1). The Erdős-Ko-Rado theorem, presented here
with the beautiful proof of Gyula Katona, shows that this is the best possible construction. Finally,
we are shown the famous result of Philip Hall, which can be stated as follows. A school has a few

26

student clubs. Each club wants to send a representative to a meeting. No person can be the
representative of more than one club. When is it possible to select a (distinct) representative from
each club? The answer is that this is possible if and only if, for all k, the total membership of any
k clubs is at least k.

Then we can read two sections on sophisticated enumeration methods, such as determinants to
count lattice paths, and probabilistic counting techniques to figure out how many times we need to
shuffle a deck of cards until the order of cards is truly random.

The next section contains four proofs for Cayley’s formula for the number of trees on vertex set
[n]. Their number is nn−2, and mathematicians for over a century were fascinated by this fact. It
has at least 44−2 = 16 proofs. The proof by André Joyal (by a superb bijection) and the proof by
Jim Pitman (by double counting) are this reviewer’s favorite proofs in this book.

The chapter closes by some examples of integer partition identities, and a discussion of which
Latin rectangles can be completed to Latin squares.

6 Graph Theory

The part opens by Fred Galvin’s solution to a question of Jeff Dinitz on coloring a particular graph.
Let G be a graph whose vertices are the squares of an n× n grid. Two vertices are adjacent if and
only if they are in the same row or column. Now let us associate a set of n colors to each vertex
(the sets of colors associated to distinct vertices may or may not be distinct). The question is if
we can color the vertices so that each vertex gets a color from the set that is associated to it, and
adjacent vertices have different colors. The answer is positive, but it took fifteen years to prove
that, even if the final proof is simple.

The graph theory part starts where the combinatorics part left off. We are shown a stronger
version of the theorem that every map is five colorable, along the line of the Dinitz problem just
discussed. Then comes a question from geometric graph theory, namely how many guards are
needed to watch an art gallery that has n walls? The guards have to stay at given points, but can
turn their heads. If the gallery is convex, then of course, one guard is enough. Without assuming
convexity, dn/3e guards are always sufficient (and sometimes, necessary).

The next section is about Extremal Graph Theory. Let us assume that a simple graph G on n
vertices does not contain a complete subgraph Kk. At most how many edges can G have? We are
shown four different proofs for Turán’s celebrated theorem stating that G can have at most k−2

k−1 ·
n2

2
edges.

Then the authors use coding theory to motivate the following question. Let α(G) be the number
of vertices in the largest empty subgraph of G. Let Θ(G) = supn≥1

n
√

α(Gn), where G2 is the direct
product of G by itself. What is Θ(C5), where C5 is a cycle on five vertices? The classic result of
Lovász is that Θ(C5) =

√
5. Two proofs are shown for this fact; both involve some linear algebra.

The next, recently added section reviews the history of Kneser’s conjecture. Consider the graph
K(n, k) whose vertices are the k-element subsets of the n-element set, and in which the vertices
corresponding to two subsets are adjacent if those two subsets are disjoint. The Kneser conjecture,
from 1955 stated that the chromatic number of K(2k + d, d) was d + 2. The authors explain the
history of various proofs, and present the proof of Joshua Greene, which dates 2002.

The next-to-last section is on the Friendship theorem, a result that sounds innocent, but is not
straightforward to prove. It states that if, in a company of at least three people, each pair of people
has exactly one common friend, then there is a person there who is everybody’s friend.

27

No book written to commemorate Erdős would be complete without his invention, the Prob-
abilistic Method. This method proves that certain structures exist, without actually constructing
them. Instead, it proves that a randomly selected object has less than 1 probability to not be the
desired structure; hence it has a non-zero probability to be desired structure. Therefore, the desired
structure exists. This idea is applied to prove a lower bound on diagonal Ramsey numbers. Then
it is used to show that for each k > 2, there exists a graph whose smallest cycles are longer than k,
and whose chromatic number is also larger than k.

7 Opinion

My experience is that most mathematicians have already looked at this book, and read the one or
two sections that are closest to their field. Hopefully, this review will convince some of them to
read the rest as well.

28

Review11 of
Handbook of Chemoinformatics Algorithms

Edited by Faulon, Bender, eds.
CRC Press, 2010

440 pages, hardcover

Review by
Aaron Sterling (sterling@iastate.edu)

Department of Computer Science, Iowa State University
(visiting EECS Department, Northwestern University)

1 Introduction

This book is written by chemists, for chemists, with the objective of producing “an overview
of some of the most common chemoinformatics algorithms in a single place.” A first attempt
at a definition of chemoinformatics might be, “Algorithms, databases and code to help chemists.”
Unlike the field of Bioinformatics, which enjoys a rich academic literature going back many years, the
Handbook of Chemoinformatics Algorithms (HCA) is the first book of its kind. The editors (Faulon
and Bender) commissioned authors to produce chapters on topics like computer-aided molecular
design, open-source chemoinformatics software, and how to store chemical structures and properties
in databases. Most of the algorithms presented, from the point of view of a theoretical computer
scientist, are “folklore” or “trivial”; however, the application of these algorithms is complex, the
problems computational chemists face are hard and not always well defined mathematically, and
hundreds of millions of dollars ride on the speed and usefulness of practical implementations of
these algorithms. Therefore, this book has the potential to be important to the TCS community:
fundamental improvements to techniques in this volume could be a big deal.

That said, HCA is not for everyone. There are no theorems or proofs, most of the chapters
are written in a laundry-list style (“This works in this case, and this works in this case”), and
the language barrier is formidable. To provide a single data point, I took a year of chemistry
in college, and did well, but even so, I found myself spending a lot of time reading Wikipedia
articles just to understand what was being discussed. Further, the various authors do not appear
to have experience framing things for a TCS reader. As one example, the phrase “non-polynomial
(NP)-hard problem” appears in Chapter 9.

To aid in digestion of the material, I recommend one read the chapters out of order. HCA
presents general technical details in earlier chapters, and motivating applications in later chapters.
Specifically, I recommend the reader start with Chapter 13 (on sequence alignment algorithms)
which is accessible with little chemistry background, then read Chapters 5-15 as desired. Refer
to Chapters 1-4 to fill in gaps, or once the motivating applications are clear. (Readers with a
background in Bioinformatics or computational biology may wish to start by reading Chapters
13-15, which apply techniques from those areas to chemoinformatics.)

Chemoinformatics itself is defined by the editors as “the field of handling chemical information
electronically”; the term was coined by F. K. Brown in 1998. (Chemoinformatics is sometimes

11 c©2011, Aaron Sterling. This work was supported in part by NSF grant CCF-1049899. The author would like to
thank Bill Gasarch, who made helpful comments on an earlier draft of this review.

29

spelled “cheminformatics,” without the first “o”; the terms are interchangeable.) According to
Rajarshi Guha, who discusses open-source software in Chapter 12:

Although the idea of free and shared software has been in existence since the 1960s,
such software has not been generally available in chemoinformatics. In contrast, the
field of Bioinformatics has produced a number of core algorithms (such as BLAST) as
freely available software. Part of the reason for this is the fact that the majority of
chemical information has been proprietary, in contrast to biological data (such as gene
sequences and protein structures), which has traditionally been freely exchanged.

Both the editors and other chapter authors make similar points: because of the proprietary nature of
chemical databases, etc., thoroughgoing academic (public sector) investigation into chemoinformat-
ics is a recent phenomenon, and many functionalities are not available for free, nor inexpensively—
nor, publicly, at all.

As a general warning to the reader, I was unable to determine how well the techniques in HCA
work, even after reviewing several Wikipedia articles and one other computational chemistry book.
Authors of most chapters in HCA make the point that the techniques they present have been used
to find compounds of potential interest more inexpensively than by using wetlab experimentation
alone, but the ratio of hits to misses is not something I was able to track down. It does seem,
especially in the area of QSAR models that I discuss in Section 2, that there has been serious
criticism leveled against in silico research as publications devoid of real-world applicability. Some
authors in HCA address those concerns, and present techniques with safeguards they claim solve
those problems, but, even so, they provide only anecdotes of success, no hit-and-miss ratio. Still,
the algorithms in HCA are employed by petroleum companies, chemical companies, pharmaceuti-
cal companies, universities worldwide, and the FDA, so, for better or for worse, they are what’s
currently available.

I will focus this review on the two chemoinformatics applications most discussed in HCA: quan-
titative structure-activity relationships (QSAR), and computer-assisted molecular design (CAMD).
Then I will briefly consider the contents of HCA chapter by chapter.

2 Principal motivating applications

2.1 Quantitative Structure-Activity Relationships (QSAR)

QSAR is far and away the most-discussed application in HCA; it is mentioned in every chapter.
A quantitative structure-activity relationship is a mathematical relationship between a molecule’s
physical properties and its chemical properties, along the lines of, “All molecules whose molecular
graphs contain subgraph G will produce reactant R when reacting with chemical C.” The primary
purpose of QSAR is to make predictions about how an as-yet-unstudied molecule will behave,
based on better-known molecules that are structurally similar to it. Some QSAR approaches use
algorithms that solve the Graph Isomorphism Problem; while this can work for small examples,
or in situations where heuristics help, all known Graph Isomorphism algorithms are (of course)
worst-case infeasible. Therefore, the main QSAR approaches collapse the information in molecules
down to individual real numbers called molecular descriptors, which are the topic of Chapter 4.
For different applications, many different molecular descriptors may be required.

30

The Wikipedia article on QSAR is well-written, and I recommend it. Tropsha and Golbraikh
in Chapter 6 of HCA describe QSAR as follows.

The discovery of novel bioactive chemical entities is the primary goal of computational
drug discovery, and the development of validated and predictive QSAR models is critical
to achieve this goal.... The main QSAR hypothesis underlying all QSAR studies is as
follows: similar compounds should have similar biological activities or properties. If
this condition for compounds in the dataset is not satisfied, building truly predictive
QSAR models is impossible. In fact, one can define two compounds to be similar
if their chemical structures are similar. In computer representation, compounds are
characterized by a set of quantitative parameters called descriptors. Similarity between
two compounds is a quantitative measure that is defined based on compounds’ descriptor
values. Different definitions of compound similarity exist.... Obviously, quantitative
values of similarity measures between two compounds also depend on which descriptors
are used. So there is no unique similarity measure.

QSAR is more complicated than “just” a massive chemical database search, because, in reality,
structurally similar molecules can have very different properties. (This is sometimes termed the
“SAR Paradox.”) As a result, much of the literature on in silico QSAR provides only conditional
results, along the lines of: assuming molecule family F has similar properties to its structural cousins
F ′, we can deduce results X, Y and Z. Recently, prominent scientists and scientific organizations
have called much of the QSAR research into question, because of the uncertainty (and probable
falsity) of many starting assumptions. The European Organization for Economic Co-operation and
Development now requires “appropriate measures of goodness-of-fit, robustness and predictivity”
for QSAR models. To address these concerns, HCA devotes two chapters to QSAR: Chapter 6,
on data preparation and modeling; and Chapter 7, on development and validation of the QSAR
models themselves.

2.1.1 Chapter 6: Predictive Quantitative Structure-Activity Relationships Modeling:
Data Preparation and the General Modeling Workflow

There are now large (millions of compounds) chemical databases publicly available online. In
Chapter 6, the authors (Tropsha and Golbraikh) present their workflow for developing predictive
QSAR models from such databases. The workflow breaks down to the following general steps: data
treatment and preparation, calculation of molecular descriptors (i.e., construction of a similarity
metric over the dataspace); preprocessing those descriptors; clustering the dataspace according to
the similarity metric; and detecting and removing outliers from those clusters (i.e., compounds that
do not share properties with other cluster elements, even though they are metrically close to them).
A cluster thus produced can serve as a QSAR model. Finally, in addition to model validation, the
authors recommend laboratory verification of the in silico prediction that compound X will have
property Y .

The authors use a machine-learning approach. From the initial dataset, they first remove
10-20% of the compounds at random, for use as an external evaluation set, for eventual model
verification. The remaining compounds are divided into multiple training and test sets. The
current computational upper limit of the size of the training set is 2000 compounds. The authors
recommend a minimum of 20 compounds in the training set, and a minimum of ten compounds in
each of the test and external evaluation sets, to avoid chance correlation and overfitting.

31

Once compounds are chosen and assigned to sets, descriptors are calculated for each molecule.
Molecular descriptors are real numbers that quantify a molecular property. Examples that do not
require chemistry vocabulary include: how many different molecular groups (i.e., labeled subgraphs
appearing in a set of subgraphs) appear in a given molecule; or, how many distinct spanning trees
occur in a molecular graph. Over 2000 molecular descriptors appear in the chemoinformatics
literature, and this calculation step is complicated by economics: most chemical descriptors are
available only from (expensive) commercial software, although the FDA has recently produced free
software that generates some descriptors.

Once the descriptors are calculated, the authors build a multidimensional descriptor space—and
finally we can talk about theoretical computer science! The multidimensional descriptor space is a
metric space with each axis defined by a different descriptor. The most common metrics used on
this space are the Euclidean distance, the Mahalanobis distance (which weights correlation between
descriptors), and the Tanimoto coefficient, which I will present here because it is “the most popular
similarity measure used in chemoinformatics,” according to Clark and Roe, the authors of Chapter
5. Given two vectors −→x1 = 〈x10x11 · · ·x1n〉 and −→x2 = 〈x20x21 · · ·x2n〉, the Tanimoto similarity
measure (coefficient) STAN is defined as:

STAN =
∑

x1jx2j∑
x2

1j +
∑

x2
2j −

∑
x1jx2j

.

Recall that the dot product of two vectors divided by their geometric mean is the cosine of the
angle between those vectors, which provides a measure of how far the vectors are from each other.
The Tanimoto coefficient is the dot product of two vectors divided by their arithmetic mean with
a correction for the size of the dot product. So it is like the cosine measure, but it provides
more resolution when measuring similarity between vectors that are nearly maximum length in the
descriptor space.

Tropsha and Golbraikh devote several pages to normalization of descriptors, which I will skip.
Once the metric space is defined and the axes normalized, it is time to analyze clusters of data
points. Computation of the distance between each point may be infeasible, so the authors present
the following randomized algorithm. Decide upon a minimum similarity threshold. Then choose an
initial compound at random and put it into the cluster. Choose another compound at random and
put it into the cluster if its similarity with every cluster element exceeds the threshold. (Otherwise,
discard it.) Continue until all compounds have been considered. (This concludes the algorithm.)
The authors suggest running this algorithm repeatedly on the same compounds, with significantly
different thresholds, until finding a threshold that selects a cluster with the number of elements
desired.

Once the cluster space is mapped, the next step is to remove outliers, so all points in a given
cluster do indeed share common molecular properties. A “leverage outlier” is a point distant from
all other points, even though it may lie at the geographic center of the distribution. The authors
present two methods to remove leverage outliers. Once the leverage outliers are removed, one must
remove “activity outliers,” which are points that may be close to other points in the descriptor
space, but whose chemical activity is nonetheless quite different. This step seems to rely more on
chemical intuition than CS theory.

A cluster thus prepared can function as a QSAR model, for, e.g., in silico pharmaceutical or
solvent design. To establish and validate the predictive power of such a model, the authors advocate
a machine-learning procedure, “during which the model is ‘trained’ (i.e., model parameters are

32

tuned to provide the highest predictivity in terms of some statistical criterion used as a target
function which is optimized during the procedure).” This is the topic of Chapter 7, which I will
now briefly consider.

2.1.2 Chapter 7: Predictive Quantitative Structure-Activity Relationships Modeling:
Development and Validation of QSAR Models

The authors of Chapter 7 (Tropsha and Golbraikh again) measure the correctness of a predictive
QSAR model by running statistical tests on target functions the model is trained for. One such
target function is Correct Classification Rate (CCR), defined by CCR = N(correct)/N(total),
where N(correct) is the number of compounds the model has classified correctly, and N(total)
is the total number of compounds considered. Most of the measures of the target function are
well-known statistical tests, like leave-one-out cross-validation.

Rather than just test a particular descriptor space that is optimized in a particular way, the
authors recommend the combinatorial QSAR approach (combi-QSAR). In combi-QSAR, one starts
with a single dataset and produces several different descriptor spaces, with different collections of
descriptors. Then take each descriptor space, and consider its behavior under different optimization
methods. Then choose the best models out of all these, and take the consensus predictions of those
best models. The authors claim this approach adequately address the criticisms leveled against the
QSAR literature, and will allow QSAR to be a significant tool for drug exploration and discovery
in the 21st century.

2.2 Computer-Aided Molecular Design

Other than QSAR, the principal application considered in HCA is Computer-Aided Molecular
Design (CAMD). Visco, the author of Chapter 9, explains CAMD as follows.

CAMD is the application of computer-implemented algorithms that are utilized to de-
sign a molecule for a particular application.... [W]hen the desired molecules are for
biological systems, the solution space is estimated to be at least 1060, which is a rela-
tively tiny fraction of the space as a whole.... Accordingly, efforts are made a priori to
limit the search space using techniques such as full-fledged templating or requiring the
presence of certain features in a candidate molecule.

The two most visible industries using CAMD are the chemical process industry and
the pharmaceutical industry. While both industries are solving CAMD problems, they
differ in substantial ways. For example, the chemical process industry regularly uses
CAMD in the area of solvent design. Solvents are designed to have certain properties
for applications in a particular area and outputs of CAMD algorithms are scored based
on predicted properties.... In the pharmaceutical industry, CAMD is often used in a de
novo approach.

Chapter 9 focuses on molecules designed using QSAR. Chapter 10 focuses on molecules designed
de novo (Latin for “from the beginning”), i.e., building compounds from scratch to fit a target
receptor.

33

2.2.1 Chapter 9: Computer-Aided Molecular Design: Inverse Design

Historically, the first CAMD algorithms combined functional groups (predefined molecular sub-
graphs) to generate a larger structure. This suffered from combinatorial explosion, as the algo-
rithms produced many nonfeasible structures. A more feasible approach, inverse QSAR (iQSAR)
began to be studied in the early 1990s. In iQSAR, “rather than using a QSAR to score potential
molecules created from combining groups, one fixes a desired value (or range of values) and at-
tempts to solve for the set of independent variables (descriptors) that satisfy the QSAR.” The first
step in this general approach is to determine the pool of molecular fragments that will be used to
build the lager structures. Then one builds candidate structures and evaluates their fitness.

Visco, the author of Chapter 9, presents several algorithms used in Hybrid-CAMD, a popular
approach which “combines the generate and test paradigm of previous techniques with inclusion of
higher-order information (such as molecular connectivity through topological indices).”

The author then considers CAMD as an optimization problem. This approach minimizes the
differences between the desired property and the prediction of the candidate structure’s posses-
sion of that property. Visco presents a Mixed Integer Linear Programming (MILP) algorithm for
CAMD, and discusses the application of MILP to designing soybean oil products and a new phar-
maceutical with a penicillin backbone. Finally, Visco considers CAMD using signature, a method
that structures molecular generation by providing a database of atomic “signatures” and a molec-
ular “signature” that is the sum of the atomic signatures that appear in that molecule. Producing
a molecule of interest can then be done by solving a set of Diophantine constraint equations that
provide a minimum and a maximum for each atomic signature allowed to appear in the molecule
one wishes to design.

2.2.2 Chapter 10: Computer-Aided Molecular Design: de novo design

Roe, the author of Chapter 10, begins with an high-level explanation of de novo design, and its
advantages and drawbacks with respect to iQSAR.

PubChem, the largest database of known chemicals, has a little more than 19 million
compounds to date.... Even combinatorial libraries, which can range up in size to billions
of compounds, do not begin to fully sample the range of all possible compounds. As
the full compound space is too vast to search comprehensively, strategies have to be
employed to search this space efficiently for the discovery of novel lead drug compounds.

De novo design handles this challenge by building compounds from scratch to comple-
ment the target receptor. The guiding principle in this approach is that small molecules
that are complementary to the target receptor, both in shape and chemical properties,
will have the most specific binding.... To reduce the search of chemical space to a man-
ageable problem, strong physical constraints must be taken into account at each step
during the generation of the lead drug molecule, limiting the chemical space explored
to those regions specifically complementary to the target receptor. The advantage of
this approach over a virtual screening strategy [i.e., QSAR-style strategy] to identify
these compounds is that the search space is directed to the relevant regions in chemical
space with a far greater range and diversity of potential lead compounds that can be
evaluated.... The main drawback is that the resulting compounds need to be experimen-
tally synthesized and tested, rather than taken from an in-house inventory or ordered

34

commercially.

Roe presents three CAMD algorithms—Grow, Fragment-Link, and Evolutionary Strategies
based on sampling—and discusses programs that currently run each. Grow has performed well
when all features of a receptor are near one another, while Fragment-Link has performed better
if the receptor consists of two or more subpockets separated by a large gap. Sampling strategies
do not direct molecular generation explicitly toward linking with interaction sites, but rather they
maximize a general fitness evaluation, so they tend to produce structures that are more stable (have
lower molecular energy). However, sampling strategies have to investigate much larger search spaces
than do either Grow or Fragment-Link.

Grow is a Metropolis Monte Carlo algorithm. At a given stage, a candidate to add to the
structure is chosen at random and its probable binding affinity is calculated. Then a random
number is generated, and if the binding affinity is greater than that random number, the candidate
is added to the structure; otherwise, it is discarded and the process repeats. Fragment-Link requires
more user interaction. The algorithm places binding structures in all the “hot spots” of the receptor,
and then a user has to clean up the molecule through visual inspection. Evolutionary strategies
are often programmed as genetic algorithms; Roe presents pseudocode for one such strategy.

3 Summary of Chapters

Chapter 1 (by Ivanciuc) discusses molecular graphs. It begins by introducing notions familiar to
many SIGACT News readers (walks, adjacency matrix, Laplacian matrix, etc.), and then presents
many different ways to represent two-dimensional chemical structures as graphs. For example, one
can weight both vertices and edges, as well as labeling vertices with chemical symbols. Vertices
then represent atoms (or, more generally, chemical groups); and edges, the bonds between those
atoms. When constructing a graph for a biological (i.e., carbon-based) molecule, the vertices are
weighted according to the atomic number of the atom the vertex represents, normalized so the
weight of a carbon atom is 0. An edge representing a single bond is weighted 1; one representing a
double bond, 2; etc.

Chapter 2 (by Misra and Faulon) considers Algorithms to Store and Retrieve Two-
Dimensional (2D) Chemical Structures. One of the most-used approaches to build chemical
databases is SMILES (Simplified Molecular Input Line Entry Specification), which produces a linear
string representation of a molecule. The SMILES representation can then be parsed using string pro-
cessing algorithms. (For example, the SMILES string for acetaminophen is “C(=O)[Nc1ccc(cc1)O]C”.)
The authors present the canonical SMILES algorithm: it has a worst-case running time of O(n!)
if one wants to find the minimum-length SMILES string that correctly represents a molecule. The
authors discuss more recently proposed notations that do not have this problem. Also, as one can
see from the string for acetaminophen, SMILES only records names of molecules and their qualita-
tive relationships. It is useful to include more information in a database, like the physical distance
between pairs of atoms. To do this, more complex languages have recently come into use, like CML
(Chemical Markup Language), an XML-based molecular file format hosted on Sourceforge.

Chapter 3 (by Willighagen) is titled Three-Dimensional (3D) Molecular Representa-
tions. The author’s main concern is “how to represent 3D molecular geometries such that they are
useful for analysis and computation,” because a coordinate representation useful for visualization
may be cumbersome tool for data analysis or pattern recognition. Therefore, much of the chapter

35

examines how to convert between different coordinate systems, and how to produce a numerical,
fixed-length vector representation (i.e., a molecular descriptor) from a molecule’s coordinate rep-
resentation. Willighagen presents an algorithm to calculate the molecular center-of-mass from a
Cartesian representation of the molecule; from a TCS point of view, this calculation proceeds in the
“expected” way. He defines a notion of “internal coordinates,” which provide a 3D description of
a molecule without an external frame of reference, by describing “the molecular geometry in terms
of distances between atoms and angles and torsions between bonds.” He presents an algorithm to
convert internal coordinates to Cartesian coordinates. Willighagen also discusses how to compare
two 3D geometries: one method is to find the maximum common substructure (MCSS) shared by
two molecules, and to orient the molecules by minimizing the root mean square deviation of the
coordinates of their shared MCSS.

Several pages of Chapter 3 are devoted to a practical example of the use of Radial Distribution
Functions (RDFs) to classify different types of crystal packing, so I’ll make the following advisement
to the reader. The Wikipedia article on RDFs states that RDFs are a measure of how atomic density
is distributed through a molecule. However, RDFs are used in HCA in a more general way: to
measure the geographic distribution of some feature in the molecule, or to evaluate how influential
an atom is on its neighbors and neighbors’ neighbors, etc.

Chapter 4, Molecular Descriptors (by Fechner, Hinselmann and Wegner), is the largest
chapter in HCA, at over fifty pages. It presents multiple ways to measure structural properties
with real numbers, from graph-theoretic topological indices, to hash functions on molecular graphs,
to notions of edit distance, to graph kernels and kernel functions. It also presents pseudocode for
several algorithms, but many of these are “introductory” from a TCS perspective, such as Dijkstra’s
shortest path, or DFS/BFS traversal. More interesting is the algorithm for shapelet extraction,
which approximates the shape of a molecule by local approximations to its surface using hyperbolic
paraboloids. (The definition of a molecule’s surface is not something I will get into here.) Speaking
philosophically, the authors note:

Graph complexity can be defined in various ways, but still there is no standard def-
inition. In [Complexity and Chemistry: Introduction and Fundamentals by Bonchev
and Rouvray] various criteria are compiled from different sources, which describe the
requirements for a “good” molecular complexity descriptor. For example, a complexity
index should

• Increase with the number of vertices and edges

• Reflect the degree of connectedness

• Be independent from the nature of the system

• Differentiate nonisomorphic systems

• Increase with the size of the graph, branching, cyclicity, and number of multiple
edges.

Still, this is an ongoing discussion, with even conflicting positions.

Rather than attempt to summarize the breadth of material in Chapter 4, I will offer an opinion.
The material is presented in a style of, “This descriptor has worked for some applications, now
let’s move on to the next descriptor.” The approach is pragmatic, and even in the more special-
ized Complexity and Chemistry, there is no construction of a mathematical theory, only informal

36

arguments from induction on small examples. Also, it seems, from a literature search, and two
questions I asked on cstheory.stackexchange.com, that these molecular descriptors have not been
studied much in TCS or in graph theory (though more general notions certainly have). Therefore,
I believe there is an interdisciplinary research opportunity here.

Chapter 5 (by Clark and Roe) is on Ligand- and Structure-Based Virtual Screening.
The authors define virtual screening as “the selection of molecules likely to show desired bioactivity
from a large database.” In other words, once one has assigned descriptors to molecules, the objective
is to select molecules that are similar to one another. Clark contributes a section on similarity
searching, in which he discusses similarity metrics, including the Tanimoto coefficient.

Roe begins by considering the docking problem: given a target receptor, find the molecule that
docks best in that receptor (i.e., find the best-fitting peg for a hole). As Roe puts it:

The docking problem can be broken down into three components: (1) orientational
search, or the search for the 3D orientation of a molecule with respect to another; (2)
conformational search, or the search through rotatable torsions; and (3) scoring, or
evaluation “pose” or orientation/conformation by some measure of predicted binding.

Docking algorithms include the search for all cliques of a limited size (this search problem is
tractable), in order to find sections of the receptor that match up correctly to sections of the molecule
(this is an example of orientational search); and the Lamarckian Genetic Algorithm (LGA), which
combines orientational and conformational search. In LGA, the genetic algorithm’s chromosome
is created to represent the orientation/conformation of the molecule with respect to the target
receptor. This chromosome then evolves according to a fitness function. LGA is nondeterministic,
and it terminates based on user parameters.

Chapters 6 and 7 are about QSAR modeling, and I have considered them already in Section
2.

Chapter 8 (by Meringer) is on Structure Enumeration and Sampling. The motivating
questions are:

Given a molecular formula plus, optionally, a list of structural constraints, the typical
questions are: (1) How many isomers [nonisomorphic graphs satisfying these constraints]
exist? (2) Which are they? And, especially if (2) cannot be answered completely: (3)
How to get a sample?

The mathematical foundation used to answer these questions is Pólya’s theory of counting. Meringer
gives an example of Pólya’s theory by counting the 22 permutational isomers of dioxin by calcu-
lating the cycle index of the binding sites of the molecular graph and then inserting a generating
function into the cycle index. Meringer generalizes this approach to an algorithm and provides
more examples. The author then considers the construction problem of producing all structurally
distinct molecules that have the same chemical formula (i.e., all distinct isomers). He begins with
the DENDRAL system, which was perhaps the first expert system of any sort, and was “one of the
roots of chemoinformatics.” DENDRAL (short for DENDRIC ALgorithm) was generating isomers
as early as the 1960s.

Until the 1970s, only acyclic structures could be constructed. Eventually, Masinter described
a cyclic structure generator, which Meringer sketches. The weakness of Masinter’s generator is an
inability to process structural constraints effectively, so different methods were introduced that,
for example, put an ordering on the set of graphs to be generated, so it is not necessary to do

37

pairwise isomorphism testing. One can accelerate structure enumeration by placing constraints
(like planarity, or minimum cycle size) on the graphs to be generated. The author mentions several
other generation methods. Nevertheless, “it is often impossible to generate all molecular graphs
belonging to a given molecular formula” due to combinatorial explosion. As a result, sampling
techniques are essential, in order to produce a representative subset of the total isomer space.
Monte Carlo methods, simulated annealing and genetic algorithms are most often used for this
purpose. Meringer presents pseudocode for a simulated annealing algorithm and a genetic algorithm
for isomer sampling. The chapter concludes with the application of constructing combinatorial
libraries, i.e., chemical databases where either the compounds possess high structural diversity, or,
alternatively, all share some common relation.

Chapters 9 and 10 are about computer-aided molecular design, and we have considered them
already in Section 2.

Chapter 11 (by Faulon and Carbonell) shifts gears, and instead of focusing on molecules, it
focuses on Reaction Network Generation. The authors explain:

Designing new drugs or chemicals, understanding the kinetics of combustion and petroleum
refining, studying the dynamics of metabolic networks, and using metabolism to synthe-
size compounds in microorganisms are applications that require us to generate reaction
networks. As the networks may be quite large, there is a need to automate the proce-
dure....

While formal techniques are robust, their computational scaling limits their applicability
to real reacting systems....[T]he number of reactions and intermediate species that are
created generally scales exponentially with the number of atoms of the reactants.... With
all these systems, not only the time taken to generate networks may scale exponentially,
but simulating the dynamics of large networks may be computationally prohibitive.

Note that the simulation cost is not exponential, but “only” N3 where N (the number of chemical
species) can easily be larger than 104 or 105.

The authors present a network generation/sampling algorithm, which simultaneously generates
a reaction network, and also “reduces” it, i.e., removes reactions not critical to the particular task
at hand. The method of applying a reduction strategy is a standard one to mitigate the otherwise
exponential blowup of the reaction network, and the definition of a reduction strategy will depend
on what products of a reaction are considered important. The authors first present pseudocode for a
deterministic network generator, and illustrate its application to ethane thermal cracking. There is
a comprehensive database of 324 elementary transformations that carbon atoms can take in organic
reactions. The input of the deterministic reaction generator is “a list of reactant species, a list of
constraints, and a list of elementary transformations.” The authors then present pseudocode for
three distinct sampling algorithms that are stochastic, not deterministic, and “samples” the total
set of reactions generated at each stage, preserving only the ones considered most important. One
way of measuring importance, for example, is to keep only the reactions whose reactants have the
highest concentration in the system.

Chapter 12 (by Guha) covers Open Source Chemoinformatics Software and Database
Technologies. These open-source efforts are quite recent (all starting in the 2000s). For exam-
ple, the SMILES language (which as we saw above produces strings that represent chemicals in
databases) has suffered from ambiguities in its original specification, and proprietary implemen-
tations of SMILES have extended it in different ways. Therefore, there is now an open-source

38

OpenSMILES project which intends “to explicitly define the SMILES language in a public manner.
The end result is expected to be a formal grammar for the language along with reference imple-
mentations” that is completely free-of-charge. Guha compares three open source chemoinformatics
toolkits (CDK, OpenBabel, and RDKit), reviewing which functionalities they provide and their
development activity. All three toolkits are hosted on SourceForge. A computer scientist could
read this chapter with little chemistry background.

As I mentioned in Section 1, Chapters 13-15 are applications of Bioinformatics techniques to
chemoinformatics. Indeed, Chapter 13 (by Akutsu) on Sequence Alignment Algorithms:
Applications to Glycans and Trees and Tree-Like Structures could be considered pure
Bioinformatics. Glycans are carbohydrate sugar chains that are usually found on the surface
of cells. According to Akutsu, “The importance of Glycans has been recognized in the field of
Bioinformatics since the beginning of the twenty-first century and then various studies have been
carried out.” There is now a publicly available Glycans database called KEGG Glycan, and a search
tool with alignment algorithms for that database, called KCaM (KEGG Carbohydrate Matcher).
Like RNA or DNA, the alignment problem for Glycans is: given two Glycans, find the way to
align them so there is maximum possible matching of locations. Glycans are usually represented
as rooted trees, so the main theoretical tool used is tree edit distance (i.e., how many steps it takes
to turn one tree into another by using only node deletions, insertions and substitutions). Akutsu
presents one tree-edit distance algorithm and discusses others. The author then considers Glycans
as unrooted trees. Tree-edit distance becomes NP-hard in that case, so KCam algorithms have
been developed that combine finding the Maximum Common Subtree (MCST, which can be done
in polynomial time) with the standard Bioinformatics tools of score matrices and local alignment.
Akutsu discusses an MCST algorithm and presents pseudocode for both global and local Glycan
alignment algorithms.

Chapter 14 (by Martin) is titled Machine Learning-Based Bionformatics Algorithms:
Applications to Chemicals. The author first considers applications of clustering to Bioinfor-
matics and chemoinformatics, and then considers applications of classification and regression to
both fields. Martin presents pseudocode for an agglomerative hierarchical clustering algorithm ,
and for the Jarvis-Patrick clustering algorithm. (Hierarchical clustering is O(n2) time and O(n2)
space, while Jarvis-Patrick is O(n2) time but only O(n) space, so Jarvis-Patrick is the preferred
method used in chemoinformatics.) This chapter is readily accessible to most TCS readers, and,
for purposes of this review, I will focus on the author’s description of the differences between the
two fields.

[B]ioinformatics uses a much wider variety of algorithms, but...chemoinformatics uses
a much broader set of data types. Bioinformatics applications use a huge variety of
algorithms but are generally restricted to microarray (numerical) and sequence (string)
data. Chemoinformatics applications generally use two to three clustering algorithms
(Jarvis-Patrick, Ward clustering, and k-means) but use very large datasets and a huge
number of chemical descriptors as their input....

In [the QSAR] approach, the...protein is usually fixed and all attention is focused on
the drug. In Bioinformatics, it is more common to consider a network of interactions,
as in the case of a protein-protein interaction network. If we combine both types of ap-
proaches, we arrive at the prospect of predicting a protein-chemical interaction network.
(Although the general area of large-scale (informatics-based) protein-chemical interac-

39

tion prediction is relatively unexplored, both approaches mentioned here use SVMs.)

HCA concludes with Chapter 15 (by Mu, Bauer, Faeder and Hlavacek) on Using Systems
Biology Techniques to Determine Metabolic Fluxes and Metabolite Pool Sizes. This
chapter begins with a discussion of Flux Balance Analysis (FBA). Intuitively, suppose you know
the individual reactions that take place between a cell and its exterior, and you have measured
experimentally how the mass of the cell changes over time. Then, by plugging all the reactions
into a “stoichiometric matrix” and setting the objective function as the (already known) mass
of the cell, it is possible to determine how the reactions affect one another—to understand the
relations among the cell’s different biological pathways. FBA is a computational technique. An
experimental technique related to FBA is to mark certain molecules with radioactive isotopes
(often 13C). Then, by measuring the labeling patterns created by allowing reactions to progress,
one can determine the fluxes (i.e., types of interrelations) of the reactions using the isotopes.
Most of this chapter is devoted to 13C Metabolic Flux Analysis (13C MFA). In the words of the
authors, “13C MFA has reached a state of relative maturity. The experiments themselves have
become a routine procedure, the measurement techniques are well-established, and sophisticated
mathematical evaluation algorithms are available. However, 13C MFA is still a time-consuming and
low-throughput process.” Therefore, Chapter 15 focuses on in silico 13C MFA. By using a database
of “carbon fate maps” that simulate how carbon isotopes move within individual reactions, it is
possible to program a complex system in the BioNetGen software package, and graph the results
using MATLAB. The authors devote several figures to BioNetGen code for a specific example.

4 Conclusion

While Handbook of Chemoinformatics Algorithms is probably a must-have for computational chemists,
it will only interest computer scientists who are actively looking for an interdisciplinary project, and
who are willing to put in the effort required to learn the vocabulary and perspective of a different
field. This review has been heavy on application-explanation but light on math, and HCA has
the same flavor. I wrote a much longer review than “necessary,” in an attempt to build a bridge
between chemoinformatics and TCS, and I hope this bridge encourages more computer scientists
to investigate this area. Chemists could use help from TCS to build a mathematical and algorith-
mic theory for their work, and I believe chemoinformatics, like Bioinformatics, will prove to be an
important source of problems for computer science. My suspicion is that a “small” increase in the
mathematical sophistication of one or more of the algorithms in HCA could yield a big payoff.

40

Review12 of
Dynamic Fuzzy Logic and its Applications

by Fanzhang
Nova Science Publishers, Inc., New York 2008

x+296 pages, hardcover

Reviewed by Song Yan syan@math.harvard.edu

1 Introduction

According to Zadeh [4], a fuzzy set is a class of objects with a continuum of grades of membership.
Such a set is characterized by a membership function which assigns to each object a grade of
membership ranging between 0 and 1. Hence, the theories of fuzzy sets and fuzzy logic, provide
a mathematical tool suitable for reasoning about uncertainty in static environment. The dynamic
fuzzy sets and dynamic fuzzy logic (see [1], [2] and [3]), however, are natural extensions to static
fuzzy sets and static fuzzy logic for reasoning uncertain information in dynamic environment.
Although a large amount of work has been done in fuzzy logic and fuzzy sets, little has been done
in dynamic fuzzy sets and dynamic fuzzy logic, particularly in a book form. The book Dynamic
Fuzzy Logic and Its Applications by Fanzhang Li fills the gap.

2 Overview

The book starts by a Foreword by Yi Pan, Chair and Professor in the Department of Computer
Science at Georgia State University and a Preface by the author. The Foreword and the Preface
provide a brief introduction to the book. The main contents consist of 12 chapters on the two main
topics: dynamic fuzzy sets and dynamic fuzzy logic. These 12 chapters can be naturally divided
into 3 parts. The first part, consisting of chapters 1 to 6, introduces the basic concepts and results
of dynamic fuzzy sets. The second part, consisting of chapters 7 to 11, discuses the basic concepts
and results of dynamic fuzzy logic. The last part, i.e., Chapter 12, discusses the applications of
dynamic fuzzy logic to machine learning and reasoning. More specifically, Chapter 1 introduces
the basic concepts, ideas and operations of classical fuzzy sets, these concepts are then generalized
to dynamic fuzzy sets. For transformation between dynamic fuzzy sets and classical fuzzy sets, the
concept and properties of cut sets are introduced. Chapter 2 deals with the module operations,
the axiomatic structure of ∧ and ∨, the decomposition theorem of dynamic fuzzy sets, respectively.
Chapter 3 studies the lattices properties and module structures of dynamic fuzzy sets. Chapter 4
presents the basic definitions and results, particularly the representation theorem of nested fuzzy
dynamic sets. Chapter 5 gives discusses the extension theorem of dynamic fuzzy sets, the prob-
ability and operation, and particularly the measure space theory of the dynamic fuzzy number.
Chapter 6, the last chapter of the first part, deals mainly with the dynamic fuzzy measure theory,
including dynamic fuzzy relation, dynamic fuzzy relation equation, dynamic fuzzy measure, and
solution to the dynamic fuzzy integral. Chapter 7, the first chapter of part 2 on dynamic fuzzy logic,
is on fuzzy Boolean variables, propositional calculus, predicate calculus and resolution principle of

12 c©2011, Song Yan

41

dynamic fuzzy logic, which is a natural extension of the classical fuzzy logic to dynamic fuzzy logic.
Chapter 8 discusses automated reasoning methods within the framework of dynamic fuzzy logic,
including dynamic fuzzy knowledge representation and dynamic fuzzy reasoning rule description.
It also contains discussions on connection reasoning and default assumption reasoning of dynamic
fuzzy logic and their applications in medical diagnosis. Chapter 9 provides a basis for dynamic
fuzzy logic programming languages (including syntax and structures operational semantics), data
types, Lambda calculus,verifications and correctness proof in dynamic fuzzy logic. Chapter 10
presents a multi-agent learning model based on dynamic fuzzy logic. This model consists of agent
intelligence model, agent intelligence states and their axioms, agent working theory, single-agent
learning algorithms, and multi-agent learning algorithms. Chapter 11 presents an autonomic com-
puting model based on dynamic fuzzy logic, which can be used in many real-world applications
including business decision-making. Chapter 12, the last chapter of the book, discusses applications
of dynamic fuzzy logic to machine learning, particularly, it studies a geometric model of dynamic
fuzzy machine learning. The book finally ends with 397 bibliographic items and about 300 index
entries.

3 Opinion

Although fuzzy sets and fuzzy logic provide tools for reasoning about uncertain information, it
seems that they are unable to provide solutions to dynamic problems. This book, however, offers
alternative tools for reasoning about dynamic uncertain information. It extends the static fuzzy
sets and fuzzy logic to the dynamic fuzzy environment and provides tools in machine learning for
dynamic fuzzy systems. Although the book is basically a collection of results published in paper
form, jointly by the author and his graduate students, it is largely self-contained; it is easy to read
and easy to follow. It is suited either as a basic reference in the field, or as graduate text in the
relevant courses in fuzzy mathematics and machine learning.

Reference

[1] J. X. Lee and G. Vukovich, The Dynamic Fuzzy Logic System: Nonlinear System Identification
and Application to Robotic Manipulators, Journal of Robotic Systems, Vol 14, 1997, pp
391405.

[2] O. V. R. Murthy, R. K. P. Bhatta and N. Ahmada, Extended Dynamic Fuzzy Logic Sys-
tem (DFLS) Based Indirect Stable Adaptive Control of Non-Linear Systems, Applied Soft
Computing, Vol 4, 2004, pp 109-119.

[3] J. L. Pérez-Silva and F. Lara-Rosano, Dynamic Fuzzy Logic, MICAI 2000: Advances in Arti-
ficial Intelligence, Lecture Notes in Computer Science, Vol 1793, Springer, 2000, pp 661-670.

[4] L Zadeh, Fuzzy Sets, Information and Control, Vol 8, 1965, pp 338-352.

42

