
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Algorithmic Cryptanalysis. By Antoine Joux. Review by Alexandre Anzala-Yamajako.
This book presents algorithms that can be used to try to break break actual cryptographic
constructions.

2. Algorithmic Bioprocesses. Edited by Condon, Harel, Kok, Salomaa, Winfree. Review
by Aaron Sterling. This book is a Festschrift that grew out of a workshop celebrating the
65th birthday of Grzegorz Rozenberg. The editors describe their reasons for choosing the
title Algorithmic Bioprocesses: “the workshop did not cover the whole spectrum of natural
computing research, but rather it was mostly focused on the interactions between computer
science on the one hand and biology, chemistry, and DNA-oriented nanoscience on the other.

3. Vehicular Networks, from Theory to Practice. Edited by Stephan Olariu and Michele
C. Weigle. Review by Yu Wang. Vehicular ad hoc network (VANET) is an emerging new
technology to integrate the capabilities of new generation wireless networks with smart vehi-
cles. This book explains some of the technological and social issues that arise from trying to
do this.

4. Graph Theory and Interconnection Networks. By Lih-Hsing Hsu and Cheng-Kuan Lin.
Review by Francesco Silvestri. This book covers some classical notions and results in graph
theory, such as graph coloring, matching and connectivity and then, using this background,
explores connectivity, fault tolerance, Hamiltonian cycles, and diagnosability. Then, these
properties are discussed for some graphs, like hypercubes, star and pancake graphs, which
are common in interconnection networks.

5. Transitions and Trees: An Introduction to Structural Operational Semantics. By
Hans Hüttel. Review by Stephan Falke. In order to reason about the behavior of computer
programs it is mandatory to have a precise definition of the semantics (i.e., the meaning) of
the various constructs that can be used in programming languages. A formal semantics of a
programming language can serve as a standard for implementing compilers or interpreters and
is necessary in order verify correctness of programs. This book studies Structural operational
semantics, developed by Gordon Plotkin in the early 1980’s. It is based on transition systems
that describe the evaluation steps of a program.

6. Origins and Foundations of Computing. By Friedrich L. Bauer. Review by Haim Kilov.
This is a book on the history of computer science, that is chiefly concerned with the field
before 1960. It stresses that this history goes back further than is commonly thought.

1 c© William Gasarch, 2012.

1



7. Introduction to Scheduling. Edited by Yves Robert and Frederic Vivien. Reviewed by
Ben Fulton. There are many different scheduling problems depending on the parameters (e.g.,
number of servers, number of customers, quantity to optimize, etc). In this book, authors
Yves Robert and Frederic Vivien put together a series of essays on scheduling problems,
solutions, and performance guarantees, from many of the top experts in the field.

8. Semantic Techniques in Quantum Computation. Edited by Simon Gay and Ian Mackie.
Review by Kyriakos N. Sgarbas. Even though we do not have quantum computers (yet?)
researchers are building logic systems, semantic structures, even programming languages for
them. This is an edited volume containing 11 lengthy articles in the broad area of semantics
for quantum computation. The articles are quite diverse, some are more technical, some are
more theoretical, some are more review-oriented, and some are definitely research papers.

9. Modern Computer Arithmetic. By Richard Brent and Paul Zimmermann. Review by
Song Yan. This book is about algorithms for performing arithmetic, and their implementation
on modern computers. More specifically, it collects, describes and analyzes state-of-the-art
algorithms for arbitrary precision arithmetic (integers, integers modulo n, and floating-point
numbers).

10. Design of Approximation Algorithms. By David P. Williamson and David B. Shmoys.
Review by Deeparnab Chakrabarty. One way to deal with NP-completeness is to devise poly
time approximation algorithms. In some cases we can even get performance guarantees such
as this algorithm will obtain a result within twice optimal. This book is on how to design such
algorithms.

2



BOOKS I NEED REVIEWED FOR SIGACT NEWS COLUMN
Algorithms and Combinatorics

1. Integrated Methods for Optimization (second edition) by John Hooke

Complexity theory and Logic

1. Computability and Complexity Theory (2nd Edition) by Homer and Selman.

2. Proof Analysis: A Contribution to Hilbert’s Last Problem by Negri and Von Plato.

3. The Universal Computer: The Road from Leibniz to Turing (Turing Centenary Edition) by
Martin Davis.

4. Programming with Higher Order Logic by Miller and Nadathur.

Misc Computer Science

1. Algebraic Shift Register Sequences by Goresky and Klapper.

2. Information Theory and Best Practices in the IT industry by Sanjay Mohapatra.

3. Software Abstractions: Logic, Language, and Analysis by Daniel Jackson.

Misc Mathematics

1. In pursuit of the Unknown: 17 Equations that changed the world by Ian Stewart.

2. A Wealth of Numbers: An anthology of 500 years of popular math writings Edited by Benjamin
Wardhaugh.

3. Applications of Combinatorial Matrix Theory to Laplacian matrices of Graphs by Jason Moli-
tierno.

3



Review of2 of
Algorithmic Cryptanalysis

by Antoine Joux
CRC Press, 2009

501 pages, HARDCOVER

Review by
Alexandre Anzala-Yamajako anzalaya@gmail.com

1 Introduction

We easily forget how much cryptography is involved in our everyday lives. Whether we are grocery
shopping with our credit card or surfing the web over a secure channel, cryptographic mechanism
are put in place even if we’re not fully aware of it.

A large part of getting a better understanding of a cryptosystem is trying to break it and the
science of ”learning by cracking” is called cryptanalysis. Cryptanalysis is in fact the main focus
of this book as it attempts to present the reader with tools as well as how to apply those tools to
exploit weaknesses in a cryptographic scheme.

2 Summary

The book is divided into three parts. The first part gives the reader some background on cryp-
tography, the second part contains nine chapters each dedicated to a specific type of algorithm
and the third part uses the results of the second one to show how to break actual cryptographic
constructions.

The goal here is to give you an outlook as to what to expect if you open this book while not
describing the content of every chapter : first it could get a bit tedious and second I’m confident
that if you were interested by this summary you will love the rest.

2.1 Background

2.1.1 A bird’s-eyes view of modern cryptography

This section introduces the various cryptographic notions that will be used throughout the book
such as symmetric ciphers, asymmetric ciphers, MAC algorithms, signature algorithms and hash
functions. The author takes great care of defining and explaining what it means for those primitives
to be secure.

2.1.2 Elementary number theory and algebra background

On top of the basic math knowledge that one must have to understand the content of this book,
the author also provides some interesting information such as an algorithm to solve univariate

2 c©2012, Alexandre Anzala-Yamajako

4



polynomial equations or a focus on the particularity of the finite field F2n and its link to LFSR
theory.

2.2 Algorithms

2.2.1 Linear algebra

This part introduces efficient algorithms to achieves goals such as matrix multiplication, mostly via
the best algorithm we have in a practical setting : Strassen’s algorithm. Also, in order to tackle
issues like finding the determinant of a matrix or finding its multiplicative inverse, the author
carefully describes Gaussian elimination and the various pitfalls that an implementer has to be
wary of. Finally since sparse matrices arise so often in cryptography a section is devoted to linear
algebra system solvers adapted to the sparse context.

2.2.2 Sieve algorithm

Eratosthenes’s sieve is probably the oldest prime finding algorithm. While somewhat inefficient in
its basic version the author presents several improvements to either time or memory requirements
to achieve either a sublinear complexity or a small memory footprint. A presentation of the Atkin
& Bernstein sieving algorithm is also given since it achieves both a sublinear running time and a
memory footprint of the order of the root of the bound. Finally the author presents algorithms
that allow sieving for smooth composite numbers since they are of great importance in various
cryptographic context.

2.2.3 Brute force cryptanalysis

At first, it is surprising to see a whole chapter dedicated to the most näıve of approaches. However
the author chose to present the subtleties of brute-force cryptanalysis and the various implemen-
tation improvements that can be made using the example of the cryptanalytic effort on the DES
symmetric encryption scheme. To further legitimize the importance of brute-force optimization the
author presents how it can be used as the final step of a larger cryptanalytic body of work through
the example of differential cryptanalysis on the hash function family SHA.

2.2.4 The birthday paradox

The birthday can be presented as follows : we have n disjoint classes of objects, assuming objects are
equiprobably distributed among classes how many objects do we need to pick until the probability of
a collision is greater than 1

2 ? The answer is of the order of
√

n. This fact has countless applications
in the field of cryptography (the first of which being collision search for hash functions) and the
author dedicates three parts of his book to treat it with details. In those three parts, one will find
out about

• Generalizations of this paradox for multicollision or collisions between sets

• Efficient sorting algorithms to find the collision once we’ve computed a list of
√

n objects

• Consequences of generating the list via the recurrence relation Xi+1 = f(Xi) where f is a
random looking function and what it means for a function to look random.

5



• Applications of that paradox to solving the discrete logarithm problem through the baby-step
giant step algorithm.

2.2.5 Fourier and Hadamard-Walsh transforms

The author introduces the Fourier transform for purposes such as fast integer or polynomial mul-
tiplication algorithms since most cryptographic implementations need efficient such primitives.
Applications of the Walsh transform are found in the design of non-linear parts of secret key algo-
rithms, the S-boxes. Without going into too much detail, the Walsh transform can help understand
the contribution of an S-box to thwart differential and linear cryptanalysis. A focus is put of laying
out efficient algorithms to compute both the Fourier transform and the Walsh transform.

2.2.6 Lattice reduction

A lattice is a discrete subgroup of Rn. Many cryptographic schemes base their security on the
hardness of lattice-related problems like finding a reduced basis a lattice (proven NP-complete)
or finding the shortest vector of a lattice (proven NP-hard). The author presents here different
approximation algorithms for those two problems of polynomial complexity such as the famous
lattice reduction algorithm LLL.

2.2.7 Polynomial systems and Gröbner base computation

Many cryptanalytic task can be easily described by multivariate polynomial systems of equations
so it’s a fair question to ask how easy it is to solve those. This part deals with the most efficient
tools to solve such system.

2.3 Applications

Four chapter are contained in this part each one of them applying the tools described in the previous
part.

In the first chapter, the author analyzes LFSRs and the various attacks that can be mounted
against cryptographic schemes based on one or several of them.

In the second chapter, the author presents some direct applications of lattice reduction such as
Knapsack problems, finding the minimal polynomial of a real algebraic number, or attacking the
NTRU public-key scheme. Is also presented the more intricate lattice-based attack on the RSA
cryptosystem by Coppersmith.

The third chapter deals with elliptic curves and contains a detailed construction of the Weil
pairing, a bilinear map on elliptic curves while the fourth and last chapter takes an in-depth look at
index calculus-type algorithms with a focus on factoring and solving discrete logarithm and finite
fields.

3 Opinion

Let’s be clear, this book is not one that I would advise to an undergraduate that doesn’t have
a particular interest in cryptography : the first 20 pages go from defining confidentiality to the
different flavors of authenticated encryption via zero-knowledge proofs and indifferentiability. Such

6



students are probably better off reading the already very complete ”Cryptography : Theory and
Practice” by Stinson or ”Handbook of Applied Cryptography” by Menezes, Van Oorschot, and
Vanstone.

That being said, in my opinion this book is a must-read/must-have-in-your-shelf for anybody
seriously involved in the field of cryptography if only to give an overview of the range of techniques
that can be applied to break cryptographic schemes and the cryptographic hurdles that ones needs
to get over to design secure systems. Also Parts of the book can also easily be used as the basis for
a cryptography course since every chapter contains exercises (hints and solution to some of them
can be found on the author’s website).

I particularly appreciated the focus on the practicality of the provided material : after an
overview in plain English, every algorithm is clearly stated in the form of pseudo-code and many of
them are also provided in C code. In that way the reader can easily follow the careful complexity
analysis to convince himself that it is the algorithm he wants to use and then write an implemen-
tation of that algorithm from the book. The practical aspect of book shines as well through the
effort of always presenting the most efficient algorithms for a given task with particular constraints
(hardware, software, limited memory, limited computing power, . . . ) in mind.

To sum it up, this book is a mine of information on cryptanalysis and goes above and beyond
to provide the reader with everything he needs to become a better cryptographer.

7



Review3 of
Algorithmic Bioprocesses

Edited by Condon, Harel, Kok, Salomaa, Winfree
Springer, 2009

742 pages, hardcover

Review by
Aaron Sterling (sterling@iastate.edu)

Department of Computer Science, Iowa State University

1 Introduction

This book is a Festschrift that grew out of a workshop celebrating the 65th birthday of Grzegorz
Rozenberg. Among many other accomplishments, Rozenberg coined the phrase “Natural Comput-
ing,” co-founded the journal of the same name, and also co-founded Theoretical Computer Science
C (Theory of Natural Computing), and the Springer book series Natural Computing, of which this
volume is a part. The editors describe their reasons for choosing the title “Algorithmic Biopro-
cesses”: “the workshop did not cover the whole spectrum of natural computing research, but rather
it was mostly focused on the interactions between computer science on the one hand and biology,
chemistry, and DNA-oriented nanoscience on the other.”

Algorithmic Bioprocesses contains 36 chapters, contributed by scientists from a wide variety
of backgrounds. The first chapter, by Arto Salomaa, is a prose portrait of Rozenberg, both as a
scientist and as a man. The remaining chapters are loosely grouped by biological subject area.
Rather than attempt to summarize these chapters in order, I will assume that the reader of this
review is a theoretical computer scientist with an interest in viewing biological processes through
an algorithmic lens. I will describe some of the contributions, categorized by TCS area they seem
most related to. Hopefully, this approach will help the reader identify research areas of potential
interest.

2 Sampler of contents grouped by TCS area

2.1 Chemical Cost

Before considering chapters by more “formal” TCS area, I’ll start by noting that one of the meta-
questions arising from the 2007 NSF “Algorithmic Lens” workshops was how to quantify the “chem-
ical cost” of nanomanufacturing [2]. Several contributions to Algorithmic Bioprocesses are provided
by esteemed scientists with little CS background, who report on successes and obstacles from their
laboratories. I will briefly consider two such chapters. The chapters in this vein may improve the
ability of TCS researchers to create models that better address real-world laboratory complexities.

Nadrian Seeman is the inventor of DNA Nanotechnology. In 1998, he wrote a paper that offered
rules of thumb for other experimentalists interested in DNA fabrication and DNA computation. His
chapter, “The Perils of Polynucleotides Revisited,” reconsiders these rules of thumb, and provides
updates and annotations as necessary. As just one example, Seeman had encountered the problem

3 c©2012, Aaron Sterling

8



that DNA bases do not always pair as we are taught in high school (adenine to thymine, guanine
to cytosine), but, rather, “Every base appears capable of pairing with every other base, including
itself.” While this is still a phenomenon to watch out for, some 21st-century nanochemists have
exploited this to advantage (!), obtaining stable motifs with nonstandard base pairings.

In “Algorithmic Control: The Assembly and Operation of DNA Nanostructures and Molecular
Machinery,” Andrew Turberfield discusses the algorithmic steps laboratories go through to build
two-dimensional DNA tiles and three-dimensional structures (such as tetrahedra), and also provides
an introduction to the new subfield of molecular motors. There now exist DNA “tweezers,” which
open or close depending on the addition of components of DNA fuel, and DNA “walkers” that
literally step along a track. Turberfield illustrates two such devices, and provides references to
several more.

In what follows, I will consider chapters more directly related to TCS, ordered alphabetically
by subject area.

2.2 Automata Theory

“Programmable DNA-Based Finite Automata” by Ratner and Keinan states: “Comparison between
the Turing machine and the intracellular processing of DNA and RNA show remarkable similarities.
Both systems process information stored in a string of symbols built upon a fixed alphabet, and
both operate by moving step-by-step along those strings, modifying or adding symbols according
to a given set of rules.” Ratner and Keinan describe their real-world construction of a two-state,
two-symbol finite automaton built from DNA, as well as their more recent DNA implementation
of a three-state, three-symbol automaton.

The authors also address how to read the output of a biocomputation in real time. In one of
their experiments, they cause the two-state, two-symbol machine to output differently-luminescing
bacteria, depending on whether the answer is “yes” or “no.” This literally means that the Petri
dish turns blue if the input ab-sequence contains an even number of b’s, and the Petri dish turns
white if the input contains an odd number of b’s. In a separate class of experiments, they cause the
output to be produced in the form of a DNA strand. In their words, this demonstrates that “an
appropriately designed computing machine can produce an output signal in the form of a specific
biological function via direct interaction with living organisms.”

Moving from the world of experiment to pure theory, J. Kari and Lukkarila apply a new reduc-
tion from cellular automata to Wang tiling in “Some Undecidable Properties for One-Dimensional
Reversible Cellular Automata.” A reversible cellular automaton (RCA) is one in which it is possible
to track back uniquely from any configuration to the previous configuration. As natural computing
processes are reversible (for example, steps in quantum computations are unitary matrices), RCA’s
are considered to be an interesting simplification of localized natural computation.

The Immortality Problem for Turing machines is, “Given this extended configuration (a tape
that may have infinitely many non-blank symbols), will Turing machine T run forever?” (Answer:
it’s undecidable.) Motivated by this problem, the authors define notions of global and local im-
mortality for two-dimensional RCA’s. Roughly, an RCA is globally immortal if there is a subset
of states (e.g., the nonhalting states) such that a configuration exists so that all cells are in one of
those states, and no cell at any future point will achieve a state outside that subset. Again roughly,
an RCA is locally immortal if there is a starting configuration such that one cell never leaves the
subset of desired states. The authors strengthen previous undecidability results about the domino

9



problem in Wang tiling, and use the new machinery to show that these immortality questions about
RCA’s are undecidable, both in general, and also for special subclasses of RCA’s.

Last, but certainly not least, I will consider “Artificial Biochemistry” by Luca Cardelli. Cardelli’s
chapter is perhaps the most remarkable one in the whole volume, both for its ambition and its
breadth of vision. Cardelli sets himself two tasks: creation of an automata theory that models
the behavior of biological macromolecules, and creation of a concise visual notation for algorith-
mic biochemical interactions. About the second goal, he says: “Our main criterion is that, as in
finite-state automata, we should be able to easily and separately draw the individual automata,
both as a visual aid to design and analysis, and to emulate the illustration-based approach found
in molecular biology textbooks. As a measure of success, in this paper, we draw a large number of
examples.”

About the first goal, Cardelli points out that standard models of automata do not capture the
behavior of biological macromolecules: “A characteristic feature of biochemistry, and of proteins in
particular, is that biological molecules can stick to each other to form complexes. They can later
break up into the original components, with each molecule preserving its identity. This behavior can
be represented by chemical reactions, but only by considering a complex as a brand new chemical
species, thus losing the notion of molecular identity.” (We have already implicitly encountered this
modeling problem in Turberfield’s chapter on nanomachines. TCS models of DNA self-assembly
assume that, barring errors, the growing assembly is static, not dynamic; whereas DNA walkers
attach to a substrate, then detach, then attach again further along the track.) Cardelli proposes:
“In order to model the complexation features of biochemistry directly, we introduce polyautomata,
which are automata that can form reversible complexes, in addition to interacting as usual.”

Cardelli demonstrates that his formalisms allow for efficient construction of Boolean circuits,
Boolean inverters, and toggle switches, among other constructions. It is too early to tell how
influential his approach will be, but there is no question that he has identified key problems with
current TCS formalisms, and has proposed intriguing possible solutions.

Before moving on, I should note that, even as finite automata and Turing machines are dis-
appearing from CS curricula because of their lack of relevance to the “mainstream” computing
market, small machines that can run small-but-powerful programs are more important than ever
for nanocomputing. For example, Qian et al. recently designed a DNA implementation of a stack
machine [4].

2.3 Bioinformatics

The chemical costs of Bioinformatics are laid out in “On the Concept of Cis-regulatory Information:
From Sequence Motifs to Logic Functions” by Tarpine and Istrail. This chapter provides a near-
slapstick exposition of challenges faced by experimentalists when they attempt to sequence genetic
code. Problems include a multitude of different names for the same gene in the literature, the
difficulty of distinguishing functional binding sites from nonfunctional ones, and the lack of clear
criteria to test whether a model is correct. I finished this chapter thinking, “What a mess!”
Bringing clarity to this mess, for example by defining useful metrics for correctness of a genomic
model, seems like an intriguing research possibility.

Brijder and Hoogeboom bridge the gap between biological “messiness” and the crispness of
graph theory in “Reality-and-Desire in Ciliates.” They consider the reproduction of a ciliate whose
cells contain two nuclei—a small one and a large one—instead of just one nucleus. As part of the

10



reproductive cycle, the genes in the small nucleus replicate themselves to form a large nucleus.
Unlike many other reproductive cycles, no exterior organism is involved with this process, so fewer
external variables are introduced. Hence, this process lends itself to graph-theoretic idealization,
while remaining grounded in reality.

The authors provide a tutorial on the application of “sorting by reversal” to ciliate gene as-
sembly. They begin, “In the theory of sorting by reversal one tries to determine the number of
reversal operations to reorder . . . a series of genomic ‘blocks’ from one species into that of another.
An essential tool is the breakpoint graph (or reality-and desire diagram) which is used to capture
both the present situation, the genome of the first species, and the desired situation, the genome
of the second species.” The chapter discusses applications of this breakpoint graph, states three
theorems without proof, and concludes with two open problems.

The delightfully named “Monotony and Surprise,” by Alberto Apostolico, is a purely mathe-
matical overview of attempts to answer the question, “What makes a pattern inside a sequence
interesting—and how can I find it?” One might think the least rigorous word in that sentence is
“interesting,” but Apostolico fixes “interesting” to mean “surprising,” and considers increasingly
sophisticated meanings of “pattern.”

First, if a pattern is a finite string over alphabet Σ, its surprisingness within a sequence can be
determined by the classical z-score (the departure of a pattern’s actual frequency from its expected
frequency). Now, suppose we don’t know the string. Apostolico sketches an algorithm that finds
overrepresented patterns in a sequence even though the patterns were not a priori defined. He also
considers the problem of finding subsequences that are within a certain distance of a given pattern
(for different notions of distance), and finding patterns with internal blanks (if abc is the pattern
and • is the blank symbol, then abc, a• b• c, and a••• b••c are all sequences the algorithm should
detect). Apostolico also addresses the metamathematical question, “When modeling a system, how
can we determine which patterns we should look for?”

2.4 Combinatorics

The award for Most Mathematical Contribution goes to Hage and Harju for “On Involutions Arising
from Graphs,” because their motivation is one sentence long: “Involutions occur in biological
processes especially in the base inversions of DNA.” (Truthful joke: the first section of a computer
science paper provides motivation, while the first word of a mathematics paper is “Let.”) An
involution of a group G is a mapping δ such that δ(δ(g)) = g for all g ∈ G; the identity map and
(∀g ∈ G)[δ(g) = g−1], the inversion of G, are simple examples of involutions. For a more visual
example, let H be an undirected graph. Define H ′ to be a graph with the same vertex set, such
that the edge ab is in the edge set of H ′ iff ab is not in the edge set of H. H and H ′ are said to
be switch graphs, and the mathematical motivation for Hage and Harju’s chapter is to investigate
generalizations of switch graphs.

The authors provide an algorithm that finds all involutions of finite cyclic groups, and another
algorithm to find all involutions of the direct product of two groups. They then consider the set of
“skewed squares”: for a group G and involution δ, the set of skewed squares is ∆2(G, δ) = {a ∈ G |
a = gδ(g) for some g ∈ G}. The authors show that if G is a direct product of two groups, the set
of skewed squares of G is the direct product of the skewed squares of the two smaller groups, with
appropriate involutions. (Note that there is a typo in the book in the definition of skewed squares.
∆2 is defined for δ an inversion, but it should be for δ an involution.) This chapter concludes with

11



several open problems.
In keeping with the interdisciplinary spirit of the volume, Satoshi Kobayashi combines stochastic

physics with enumerative combinatorics in “Applying Symmetric Enumeration Method to One-
Dimensional Assembly of Rotatable Tiles.” Kobayashi considers models of tile self-assembly in
which the tiles can rotate. (By contrast, most, perhaps all, of the tile assembly models in papers
at major TCS theory conferences make the simplifying assumption that tiles cannot rotate.) He
then counts the number of possible configurations for certain kinds of tile assembly systems, and
investigates the use of symmetry to limit the brute force counting required to answer questions
about paths from one configuration to another. I found this chapter hard to follow, but it presents
concepts that are important to consider when asking how we might make TCS models of self-
assembly more realistic.

2.5 Distributed Computing

Perhaps the most theoretically satisfying chapter is “Programmability of Stochastic Chemical Re-
action Networks” by M. Cook et al. A stochastic chemical reaction network (SCRN) is defined
by a finite set of possible reactions, a finite set of chemical species at some initial concentrations,
and a continuous-time Markov process according to which the system evolves. Chemists have used
SCRNs for years, to describe systems. The authors of this chapter propose, instead, to take SCRNs
as a primitive for a new programming paradigm: “while [SCRNs] are usually used descriptively, we
will be using them prescriptively : we imagine that if we can specify a network of interest to us, we
can then hand it off to a talented synthetic chemist or synthetic biologist who will design molecules
that carry out each of the reactions.”

I have placed this chapter in the Distributed Computing section because some of the results
about SCRNs are independent rediscoveries of theorems about “population protocols,” a model of
distributed computing in which there are many agents of limited computational power [3]. The
population protocol work is more abstract, so some of the results obtained there are more general.
However, this chapter about SCRNs derives results within a specific model that is already in general
use by practicing chemists, so it may have more real-world applicability. In any event, I believe
more results lie available to the researcher who applies the literature of population protocols to
SCRNs.

The proofs in this chapter are extremely pretty. As one example, to show that a certain question
about SCRNs has the same computational complexity as the class of primitive recursive functions,
the authors design a chemical system that computes sections (but not all!) of the Ackermann
Function. The authors also relate SCRNs to Vector Addition Systems, Petri nets, register ma-
chines, and to Conway’s number-theoretic programming language Fractran. TCS researchers may
find these relationships to be useful entry points through which to say something about chemical
computation.

“Process Calculi Abstractions for Biology” by Guerriero et al. provides a tutorial on how
to model biological systems with process algebras (aka process calculi). Process algebras have
been studied for years in concurrency theory, and, over the last five years or so, there have been
many results in natural computing along the lines of, “Bioprocess X can be modeled by process
algebra Y.” (Also interesting: Cardelli’s website contains an updated version of the “Artificial
Biochemistry” chapter, which presents simulation results for some of his automata. The simulations
are programmed in a process algebra language.) This line of research connects to the model checking

12



of biological systems (discussed below), as many model checkers accept as input distributed systems
defined by process algebras.

Guerriero et al. exposit the process algebra approach with a running example from biology,
the lymphocyte T helper, which, as they say, “is sufficiently complex to be an interesting case
study for modeling issues, [but] abstract enough to allow us to omit a number of biological details.”
They survey several process calculi that have been developed to model biological systems, and
discuss strengths and weaknesses of each. Some are better suited to model cellular systems; others,
better suited to model signaling pathways. Overall, this research direction appears to still be in
its infancy. The authors conclude with, “Process calculi for biology are in their pioneering phase
and, although they are powerful and promising, a closer collaboration between life and computer
scientists is required to bring appreciable results.”

2.6 Membrane Computing/P-Systems

There are several chapters relating to Membrane Computing, or P-Systems, the computational
objects of Membrane Computing. This is probably the area of least familiarity to most SIGACT
News readers, so I will provide an informal definition of a P-System before summarizing one chapter
in Algorithmic Bioprocesses.

First, though, a word of caution: like many other models of natural computation (including DNA
computing, quantum computing and neural nets), there are claims that P-Systems can solve NP-
complete problems in polynomial time. The Wikipedia page on P-Systems currently says, “It has
been proven that certain P system variants are capable of solving the SAT (boolean satisfiability)
problem in linear time,” and provides a supporting reference to a journal article. Unless P=NP,
this claim is overly optimistic. One variant of P-Systems achieves this special ability by being
able to replicate membranes exponentially often in linear-many steps. This runs into the same
obstacle encountered by the claims made in the 1990s that DNA computing could solve NP-complete
problems efficiently: the computation requires an exponentially large amount of matter to perform.
Even if one could transport matter to the computation site instantaneously (which one can’t, so
we’re back to solving SAT in exponential time again), for problem instances of interesting size, one
would need to compute with enough membranes that they would weigh more than the mass of the
Earth itself. (As an aside, though I have nothing formal to offer here, my working hypothesis is
that the class of problems efficiently solvable by DNA computing is strictly weaker than the class
P, because DNA computations are charged a cost Turing machines are not: the physical space
consumed by the computation. If a multi-tape Turing machine reaches a configuration in which its
heads are separated by trillions of cells, the transition from that configuration to the next is still
counted as one time step—no delay from communication between the heads. DNA molecules get
no such free pass.)

A membrane system, or P-System (the “P” comes from the name of the originator, Gheorghe
Păun; Păun and Pérez-Jiménez contributed a chapter to Algorithmic Bioprocesses about the mod-
eling of brain function with membrane computing), is an unconventional model of computation
that was biologically inspired, and now is being applied to computations about biology itself. A
P-system includes a membrane structure—a set of membranes embedded in a unique all-inclusive
membrane called the skin membrane. The exterior of the skin membrane is termed the environ-
ment. Objects—finite strings over a finite alphabet—are placed in each membrane, and in the
environment, according to an initial state. Each membrane obeys evolution rules; different mem-

13



branes may follow the same rules, or different ones of their own. Like cellular automata, there is a
globally synchronous evolutionary process, where at each time step, the objects in all membranes,
and in the environment, are updated simultaneously, according to the rules that apply in each
region. Wikipedia has articles on both P-Systems and Membrane Computing; there is also a web
page (and a conference culture) dedicated to P-Systems [1].

I recommend “A Multi-Volume Approach to Stochastic Modeling with Membrane Systems”
by Besozzi et al. because it provides an introduction to several methods of modeling stochastic
systems, in addition to describing how the authors used a P-System with probabilistic evolutionary
rules to model a genetic oscillator system within a cell. (Mizunuma and Hagiya’s chapter, “Hybrid
Method for Simulating Small-Number Molecular Systems,” also provides a helpful introduction to
issues of chemical modeling, from a different perspective.) Besozzi et al. discuss the performance of
their algorithm during several different simulations, and compare it qualitatively to more standard
methods of chemical simulation.

The overall sense I got from the membrane computing chapters is that this approach, and the
process algebra modeling approach, are at similar levels of development. (Process algebras have the
advantage of having been around far longer, outside of biology.) The use of membrane computing
to model cellular processes is an intriguing idea that shows potential, but much more work is needed
before it will be a powerful tool for biochemical practitioners.

2.7 Model Checking

I will conclude this section with “Quantitative Verification Techniques for Biological Processes” by
Kwiatowska et al. A “biological pathway” can be thought of as a real-world algorithm executed
by biological agents, such as the transformation of one compound into another by going through a
series of steps. Biological pathways are often represented by diagrams reminiscent of flowcharts or
directed graphs. However, while it is helpful to consider these pathways as sequential, the chemical
systems that instantiate them are, in reality, stochastic, and can present challenges to model, as
already discussed above.

Kwiatowska et al. provide a tutorial on the application of probabilistic model checking to the
analysis of biological pathways with a running example from their own research, and by discussing
related work. They show that, instead of obtaining just qualitative information about the behavior
of a system when it is simulated multiple times, they can obtain the answers to quantitative
questions through the exhaustive search of model checking, and posing queries in a probabilistic
temporal logic such as, “What is the probability in the long run that there are precisely l kinases
of this type activated?” or, “What is the expected number of reactions between these two agent
types during the first t seconds?” In the words of the authors, “The intention is that probabilistic
model checking should be used in conjunction with other, well-established approaches for analyzing
pathways based on simulation and differential equations. In combination, these techniques can offer
greater insight into the complex interactions present in biological pathways.”

3 Opinion

In a real sense, this book answers the question, “What is the cutting edge of research connecting
computer science with the biological sciences?” Of course there are subject areas not covered in the
book (such as amorphous computing), but its breadth of content is impressive, and its combination

14



of advanced tutorials with ambitious new proposals is scientifically exciting. On the other hand,
these same characteristics would not make it suitable for a textbook, except perhaps as a guide to
an advanced graduate seminar. Algorithmic Bioprocesses will best serve TCS researchers who are
looking for new questions to ask, and for new areas in which to apply their skills.

References

[1] The P-Systems web page. http://ppage.psystems.eu/.

[2] Arora, S., Blum, A., Schulman, L., Sinclair, A., and Vazirani, V. The computational
worldview and the sciences: a report on two workshops. NSF Report (October 2007).

[3] Aspnes, J., and Ruppert, E. An introduction to population protocols. In Middleware for
Network Eccentric and Mobile Applications, B. Garbinato, H. Miranda, and L. Rodrigues, Eds.
Springer, 2009, pp. 97–120.

[4] Qian, L., Soloveichik, D., and Winfree, E. Efficient Turing-universal computation with
DNA polymers. In DNA 16 (2010).

15



Review of4

Vehicular Networks, from Theory to Practice
Edited by Stephan Olariu and Michele C. Weigle

CRC Press, 2009
472 pages, HARDCOVER

Review by
Yu Wang (yu.wang@uncc.edu)

University of North Carolina at Charlotte, Charlotte, NC 28223

1 Introduction

Vehicular ad hoc network (VANET) is an emerging new technology to integrate the capabilities
of new generation wireless networks with smart vehicles. The idea is to provide (1) ubiquitous
connectivity while on the road to mobile users, who are otherwise connected to the outside world
through other networks at home or at the work place, and (2) efficient vehicle-to-vehicle (V2V)
and/or vehicle-to-infrastructure (V2I) communications that enable the Intelligent Transportation
Systems (ITS). ITS includes a variety of applications such as co-operative traffic monitoring, control
of traffic flows, blind crossing (a crossing without light control), prevention of collisions, nearby
information services, and real-time detour routes computation.

The idea of vehicular network has been proposed and studied for several decades. However, with
the rapid development of wireless networking technology (such as mobile ad hoc networks), VANETs
recently have drawn significant research interests from both academia and industry. Several major
automobile manufacturers have already begun to invest in real inter-vehicle networks. For example,
Audi, BMW, DaimlerChrysler, Fiat, Renault and Volkswagen have united to create a non-profit
organization called Car2Car Communication Consortium (http://www.car-to-car.org) which is
dedicated to increasing road traffic safety and efficiency by means of inter-vehicle communications.
IEEE has also formed the IEEE 802.11p task group which focuses on providing wireless access for
vehicular environment.

Even though vehicular network is just another form of wireless networks, it is distinguished
from other kinds of wireless networks by its hybrid network architecture, special node movement
characteristic, and new application scenarios. These unique characteristics pose many challenging
research issues, such as mobility model, routing, data sharing, and security issues. This book
edited by Olariu and Weigle aims to provide a comprehensive overview on current research in
vehicular networks. It includes 14 chapters written by 33 researchers from both academia and
industry. It covers a wide range of topics, including background knowledge from transportation
science (e.g. traffic modeling), basic application scenarios of vehicular networks, current status of
relevant projects in U.S. and Europe, and challenges and existing solutions on networking issues.

2 Summary

The book consists of 14 chapters which are organized into 6 sections covering topics from traffic
engineering to human factors. The following sections briefly present the content of each section

4 c©2012, Yu Wang

16



and chapter.

2.1 Traffic Engineering

The first section focuses on the study of traffic data (on traffic flows or vehicle motions) in trans-
portation systems. This data and its derived model are critical to design and operate an effective
transportation system. The study will also benefit the design of vehicular networks. This section
includes two chapters which cover two aspects of traffic engineering: monitoring and modeling.

Chapter 1: Traffic Monitoring provides an overview of the current state-of-the-practice in traffic
monitoring. It starts with a discussion on the causes of congestion, and then reviews common types
of traffic monitoring data (including traffic volume, vehicle classification, traffic speed and density,
and travel time) and types of sensor technologies used by DOTs to gather information. Several
applications of this traffic data are then introduced. Finally, four emerging probe-based methods
for monitoring traffic are reviewed. These methods track the movements of a subset of the vehicle
population in order to estimate the travel characteristics of all vehicles on the road.

Chapter 2: Models for Traffic Flow and Vehicle Motion focuses on mathematical descriptions of
traffic dynamics. Different traffic models (including both models for longitudinal vehicle movement
and models for discrete-choice situation) are introduced in this chapter. For example, the longitu-
dinal movement models include car-following model, macroscopic traffic flow model, and intelligent
driver model, while the discrete-choices models consider situations such as lance changes, turning
decisions, and approaching a traffic light. These models can be used to optimize vehicular net-
works and evaluate and simulate various control methods in intelligent transportation systems. As
one example, the authors of this chapter present how to simulate vehicle-to-vehicle communication
using some of the traffic models.

2.2 U.S. and European Initiatives

The second section reviews current initiatives on vehicular communication systems in U.S. and
European in two chapters respectively. The vehicular communication system (supporting both V2V
and V2I communication) is called by different names in the two chapters: Vehicle-Infrastructure
Cooperation (VIC) in U.S. and CAR-2-X Communication in European.

Chapter 3: Vehicle-Infrastructure Cooperation first reviews the developments of VIC in Europe,
Japan and U.S. Then using the a testbed building in California (the VII California Testbed) as an
example, this chapter describes the current VIC communication system of U.S. in detail (including
roadside equipments, transport layer protocols, and performances). The chapter is concluded with
a discussion of future trends of VIC.

Chapter 4: CAR-2-X Communication in Europe provides an overview of vehicular communi-
cation system (CAR-2-X system) from a European perspective. It first introduces the Intelligent
Car Initiative supported by the European Union and reviews current relevant R&D projects con-
ducted under this initiative. Then the authors present the CAR-2-X system architecture and
discuss three key techniques in such system, namely, Geocast protocols, Internet integration, and
frequency/channel allocation. Finally, an overview of standardization activities and an outlook of
CAR-2-X communication in Europe are provided.

17



2.3 Applications

The third section covers a wide range of vehicular network applications in different levels of detail.
Each of the chapters focuses on certain types or subtypes of applications.

Chapter 5: Safety-Related Vehicular Application gives an overview of safety-related applications.
It starts with an introduction of basic message types and a message dispatcher used by safety
applications. Then it outlines different types of safety applications: collision avoidance, public
safety, sign extension, vehicle diagnostics/maintenance, and information from other vehicles. For
each type of applications, a few examples are given. Then the authors explain two specific safety
applications: Extended Emergency Brake Light (EEBL) and Cooperative Intersection collision
Avoidance System (CICAS).

Chapter 6: Emerging Vehicular Applications summarizes vehicular P2P applications, such as
interactive mobile game and distributed information sharing, in which certain content or data
are shared among vehicles. This chapter classifies these applications into three categories based
on the vehicle’s role in managing data: source, consumer, or source/consumer. For each type of
P2P applications, one or more examples are provided in detail. In the beginning of this chapter,
the authors also give brief reviews of different wireless access methods, characteristics of VANET
environment, and VANET routing protocols.

Chapter 7: Use of Infrastructure in VANETs focuses on how infrastructure is used for VANET
applications. It starts with discussions on security and privacy in infrastructure-based VANETs
which are the advantages provided by the road-side infrastructure. A few examples of VANET
applications which use infrastructure are introduced. Then a large of portion of this chapter
concentrates on detail of an infrastructure-based system (called NOTICE) which is developed by
the authors of this chapter for the notification of traffic incidents and congestion. In NOTICE,
sensor belts are embedded in the road at regular intervals and they act as the infrastructure to
support inter-vehicle communication for notification messages.

Chapter 8: Content Delivery in Zero-Infrastructure VANETs focuses on a particular P2P ap-
plication: content sharing in VANETs. After a brief review of previous work in VANET P2P area,
the authors spend most of this chapter describing their solution: ZIPPER, a zero-infrastructure
P2P system, where no infrastructure is used. ZIPPER is based on TAPR, a traffic-adaptive packet-
relay protocol which is also proposed by the authors of this chapter. Both TAPR and ZIPPER
are described in detail. Analytical and simulation results on the performance of ZIPPER are also
provided.

2.4 Networking Issues

The fourth section concentrates on networking issues in VANETs, particularly, routing and local-
ization. Routing aims to delivery packets from a source vehicle to a destination vehicle, while
localization aims to obtain the location of an individual vehicle.

Chapter 9: Mobile Ad Hoc Routing in the Context of Vehicular Networks provides an overview
on both mobile ad hoc routing and VANET routing protocols. It starts with a short summary
of differences among different ad hoc networks, then it reviews most of the well-known ad hoc
routing protocols based on classical classification: proactive/reactive protocols, hybrid protocols,
and geographic protocols. Next, the authors describe the characteristics of VANETs and explain
why VANET routing is more challenging than ad hoc routing. Several VANET-specific routing

18



protocols are then introduced in detail. They are categorized into three groups: source-routing-
based protocols, geographical-routing-based protocols, and trajectory-based protocols.

Chapter 10: Delay-Tolerant Networks in VANETs also considers routing (or more general data
dissemination which includes broadcast and multicast routing) in VANETs. However it models
VANETs as Delay-Tolerant Networks (DTNs). In DTNs, continuous end-to-end connectivity is
sporadic. This chapter first reviews the state-of-art of DTNs and routing protocols for DTNs
(including both deterministic and stochastic methods). Treating VANETs as a special type of
DTNs, this chapter introduces a classical call-following model as the underlying mobility model of
VANETs. It then reviews a solution for vehicle-roadside data access problem where roadside units
are used as an infrastructure in VANETs. Finally, for infrastructure-less VANETs, both sets of
solutions for unicast routing and data dissemination are reviewed in detail.

Chapter 11: Localization in Vehicular Ad-Hoc Networks studies the localization problem in
VANETs. Many VANET applications relies on the availability of position information of vehicles.
This chapter first reviews three main groups of such applications. Then it introduces several
localization techniques which can be used to obtain positions of vehicles (including GPS, map
matching, dead reckoning, cellular localization, image/video processing, infrastructures localization
services, and ad hoc localization). To achieve better accuracy and anywhere availability, multiple
localization techniques can be combined. Data fusion techniques for this purpose are also introduced
at the end of this chapter.

2.5 Simulations

The fifth section covers two simulation-related topics for vehicular networks: network simulators
and mobility models used by simulators.

Chapter 12: Vehicular Mobility Models covers mobility models for vehicular networks. This
chapter overlaps with Chapter 2 (traffic models), but with additional analysis/simulation results
on these models and from networking perspective. It starts with a classification of vehicular mobility
models: stochastic, traffic stream, car-following, and flows-interaction models. For each category,
example models are given. Then it validates these mobility models by presenting several test results
on both car-to-car interaction and flows interaction in simulation and comparing them with real-
world behavior. Finally, the impact of different mobility models on the connectivity of a network
is verified and discussed.

Chapter 13: Vehicular Network Simulators provides an overview of current vehicular network
simulators. It starts with a summary of statistic of vehicular network simulators used by papers
from ACM VANET workshop. Then it classifies all simulators into three categories: mobility
simulators (for generating travel paths of vehicles, usually used with network simulators), general
network simulators (supporting general networking simulation), and tightly integrated simulators
(embedding the mobility simulator into the network simulator). For each category, several simula-
tors are introduced.

2.6 Human Factors

The last section has only one chapter: Chapter 14: Mental Workload and Driver Distraction with
In-Vehicle Displays, which discusses driver distraction from in-vehicle display. It covers (1) what’s
driver distraction and its impact, (2) how to study the effects of distraction, and (3) how to

19



design in-vehicle display to mitigate distraction. The topic of this chapter is irrelevant to vehicular
networks.

3 Opinion

Overall, this book provides well-organized resources on vehicular networks and achieves the authors’
goal: providing a broad and interdisciplinary overview of vehicular networks. Since the topic of
vehicular network is relevantly new and this book is one of the first set of books covering this
emerging networking topic, it is well-worthy to read for researchers or students who want to enter
this new networking research area as an introduction handbook. However, for maturer researchers
who already work in this area, it does not provide much new in-depth knowledge and insights. This
book is also very usable as a textbook or reference book for a senior-undergraduate- or graduate-level
CS networking course on vehicular networks. It does not assume that the reader has a great deal
of background besides basic networking concepts. For teaching usage, the reader would definitely
supplement the book with something more technical.

Even though this book has the word “theory” in its title, it covers very limited theoretical aspects
of vehicular networking research except for two chapters on mobility/traffic models (Chapter 2 and
Chapter 11) and a simple analysis of a protocol presented in Chapter 8. The majority of chapters
are basically descriptions of various protocols, systems, or applications. Therefore, readers from
theory community may not find exciting topics in this book.

As many edited handbooks, this book also has several obvious weaknesses: (1) several chapters
overlap and share certain redundancy (such as traffic/mobility models and VANET routing); (2)
the depth and level of details in each chapter are unbalanced among sections; (3) the last section
on human factors is separated from the other chapters and its topic is completely out of scope of
this book. In the reader’s opinion, studying the impact of driver behavior on networking may be
more suitable for this book than focusing on impact on driver from in-vehicle displays. Personally,
the reader enjoys Section 4 and Section 5 the most (but maybe mainly because of his background).

20



Review of5

Graph Theory and Interconnection Networks
by Lih-Hsing Hsu and Cheng-Kuan Lin

CRC Press, 2009
706 pages, hardcover

Price on Amazon: new $162.95, used $97.09

Review by
Francesco Silvestri, silvest1@dei.unipd.it

1 Introduction

Interconnection networks appear in almost all systems where some components communicate: the
telephone network and the communication system of a parallel/distributed computing platform are
some notable examples. When designing the interconnection network of a system, many different
issues should be taken into account, ranging from the physical properties of connections to com-
munication protocols. One of the first problems to deal with is: which topology do we use for
connecting nodes? Since an interconnection network can be seen as a graph where vertexes repre-
sent nodes and edges the links among them, graph theory has provided a valuable mathematical
tool for the design and analysis of the topology of an interconnection network.

There are several ways to interconnect n nodes, and each one has its pros and cons. For example,
a complete graph guarantees connectivity even if n−2 nodes or links break down, but it requires an
high number (n(n− 1)/2) of links. On the other hand, a linear array requires only n− 1 links, but
just one fault disconnects the system. A number of graphs with interesting properties, regarding
for example connectivity and fault tolerance, have been presented in the literature. The reviewed
book Graph Theory and Interconnection Networks presents the structures and properties of some
of these graphs and provides the background in graph theory for understanding them.

As the title suggests, the book is divided into two parts. The first one covers some classical
notions and results in graph theory, such as graph coloring, matching and connectivity. The intent
of this part is not to provide a profound coverage of graph theory, but just to put down necessary
tools for studying the interconnection networks described in the following chapters. The second part
of the book introduces some graph properties of interest in the design of interconnection networks,
in particular connectivity, fault tolerance, Hamiltonian cycles, and diagnosability; these properties
are also discussed for some graphs, like hypercubes, star and pancake graphs.

2 Summary

The book consists of 21 chapters which are partitioned into two parts. The first part (Chapters
1–10, pages 1–170) introduces some general notions and results in graph theory, while the second
one (Chapters 11–21, pages 171–685) focuses on some graph properties regarding connectivity, fault
tolerance, Hamiltonian cycles and diagnosability, and discusses them for some graphs.

5 c©2012, Francesco Silvestri

21



Part I. Chapter 1 is the mandatory chapter introducing the essential terminology, like graph,
path and cycle. Some basic results, in particular on vertex degrees, are also given.

Chapters 2 builds on notions given in the previous chapter, and provides some examples of
isomorphic graphs and of graphs containing a mesh or an hypercube even when k edges are removed
(k-edge fault tolerant graphs).

Chapter 3 deals with the diameters of some graphs: shuffle-cubes, de Bruijn, star and pancake
graphs. Few words are also devoted to routing algorithms for the aforementioned interconnections.

Chapter 4 is about trees and covers breadth and depth-first searches, tree traversals, number
of (binary) trees.

Chapter 5 is devoted to Eulerian graphs. After describing the classical results, the chapter
provides some applications, like the Chinese postman problem.

Chapter 6 is on graph matching and includes perfect matching as well as the more general
notion of k-factor.

Chapter 7 deals with different measures of graph connectivity (e.g., k-connectivity, supercon-
nectivity) and analyzes their relations; in particular, the relations between vertex cuts and the
number of pairwise vertex-independent paths are shown (Menger’s theorem).

Chapter 8 is about graph coloring, in particular vertex coloring: here we find bounds on the
chromatic number and properties on color-critical graphs. The chapter closes with some remarks
on edge coloring.

Chapter 9 covers Hamiltonian graphs. The chapter describes sufficient and necessary conditions
of Hamiltonian graphs, the Hamiltonian-connectivity, and mutual independent Hamiltonian paths.

Chapter 10 closes the first part with some results on planar graphs.

Part II. Chapter 11 deals with k-fault-tolerant Hamiltonian and k-fault-tolerant Hamiltonian-
connected graphs. The first ones are graphs that contain an Hamiltonian circuit even with k edge or
vertex faults; the second ones are graphs where each pair of vertexes is connected by an Hamiltonian
path even with k faults. After describing some methods for constructing these kinds of graphs,
some examples are investigated, including Peterson networks and pancake graphs.

Chapter 12 focuses on the special case of cubic 1-fault-tolerant Hamiltonian graphs. The chapter
provides some construction schemes and discusses some graphs, like a variation of the Honeycomb
mesh.

Chapter 13 covers k-fault-tolerant Hamiltonian-laceable graphs, that is, bipartite graphs where
an Hamiltonian path exists between each pair of vertexes belonging to distinct sets even when k
faults occur. This property is an extension of the aforementioned k-fault-tolerant Hamiltonian-
connectivity which does not apply to bipartite graphs. As usual, after some general results, the
chapter focuses on Hamiltonian-laceable graphs, like hypercubes and star graphs.

Chapter 14 covers k∗-connected graphs, which are graphs where each pair of vertexes is con-
nected by k distinct paths which span all the vertexes (these paths compose a k∗-container of the
vertex pair), and the extension to bipartite graphs, named k∗-laceable graphs, which requires the
two vertexes to belong to distinct sets. These properties are discussed for some graphs, such as
hypercubes and crossed cubes.

Chapter 15 focuses on cubic 3∗-connected and 3∗-laceable graphs, investigating their relations
with 1-fault-tolerant Hamiltonian and Hamiltonian-laceable graphs.

Chapter 16 deals with the k∗-diameter of k∗-connected graphs. The length of a k∗-container
is the length of its longest path, and the k∗-distance of a vertex pair is the minimum among the

22



lengths of all the k∗-containers associated with the pair. Then, the k∗-diameter is defined as the
maximum k∗-distance between any two vertexes. The chapter investigates the k∗-diameter of star
graphs and hypercubes.

Chapter 17 deals with pancyclic and panconnected graphs and their bipartite versions: a graph
of n vertexes is pancyclic if it contains a cycle of length `, for each ` from 3 to n; a graph is
panconnected if between each pair of two distinct vertexes there exists a path of length `, for each `
ranging from their distance to n. As usual, these properties are discussed for some interconnections,
as hypercubes and augmented cubes.

Chapter 18 is devoted to k-mutually independent Hamiltonian graphs, which are graphs where
k mutually independent Hamiltonian cycles start in each vertex of the graph. The chapter provides
bounds on k for many graphs, like hypercubes, pancake and star graphs.

Chapter 19 deals with k-mutually independent Hamiltonian-connected graphs, that is, graphs
where each pair of vertexes is connected by k mutually independent Hamiltonian paths. As in the
previous chapter, bounds on k for different graphs are provided.

Chapter 20 is completely devoted to wrapped butterfly graphs and studies how the aforemen-
tioned properties apply to these graphs. Indeed, since a wrapped butterfly of n vertexes is bipartite
if and only if n is even, it is preferable to discuss its topological properties in a unique chapter.

The conclusive Chapter 21 covers the diagnosability of a network, that is, how the network
can identify all the faulty nodes. The chapter describes two models for self-diagnosis, namely the
Preparata, Metze and Chien model and the Maeng and Malek model. Then, some graphs are
studied under both models.

3 Opinion

As evidenced by the Summary, Graph Theory and Interconnection Networks is almost devoted to
advanced properties of some graphs representing interconnection networks. The first part provides
only the basic background for handling the second one, and hence some graph theoretical topics
may not be found in the book, such as Ramsey theory and random graphs (see, e.g., [1]). Also, the
book does not cover, with few exceptions, classical interconnections like linear arrays and meshes,
parallel and routing algorithms, performance evaluation and deadlocks (see, e.g., [3, 2]).

In my opinion, the main target of the book is a veteran researcher working on the topologies of
interconnection networks. This reader may use this book as a reference where looking for results
concerning the topological properties of some interconnections, such as hypercubes, butterflies,
star and pancake graphs. The book may be also used by a researcher wishing to begin working
on interconnection topologies since the first part provides the background required in the whole
book. However, this reader may find some difficulties due to the lack of exercises and non-technical
sections describing some concepts and results.

A remarkable feature of this book is the generous use of figures for explaining concepts and
proofs. Furthermore, I also appreciate its completeness, since almost all of the statements are
proved and suitable references to the literature are provided. Nevertheless, there are some aspects
of the book that in my opinion should be improved in a future edition. The first one is that looking
for a result in the book is not simple since the index is incomplete and there is no symbol index,
which may be useful when you forget the meaning of a symbol. The second aspect is that there
should be more non-technical sections with the purpose of describing at high level concepts and

23



results and of giving an overview of the content presented in a chapter: these sections may be useful
for newbie researchers in interconnection networks.

References

[1] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.

[2] Jose Duato and Sudhakar Yalamanchili and Lionel M. Ni. Interconnection Networks. M. Kauf-
mann Publishers, 2002.

[3] Frank Thomson Leighton. Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes. M. Kaufmann Publishers, 1992.

24



Review6 of
Transitions and Trees: An Introduction to Structural Operational Semantics

by Hans Hüttel
Cambridge University Press 2010, 272 pages

ISBN 978-0-521-19746-5, Hardcover ($99.00, £60.00)
ISBN 978-0-521-14709-5, Paperback ($50.00, £30.00)

Review by
Stephan Falke (falke@iti.uka.de)

1 Introduction

In order to reason about the behavior of computer programs it is mandatory to have a precise
definition of the semantics (i.e., the meaning) of the various constructs that can be used in pro-
gramming languages. A formal semantics of a programming language can serve as a standard for
implementing compilers or interpreters and is necessary in order verify correctness of programs.

Several ways of providing the formal semantics of a programming language have been developed:

• Denotational semantics, pioneered by Dana Scott and Christopher Strachey in the 1960’s, uses
functions that assign a meaning to every construct in the programming language. Typically,
these functions are state transformations operating on complete partial orders.

• Structural operational semantics, developed by Gordon Plotkin in the early 1980’s, is based
on transition systems that describe the evaluation steps of a program.

• Axiomatic semantics, due to Tony Hoare (1969), uses mathematical logic in order to define
the semantics of the language constructs. For this, a set of rules describing the pre- and
postconditions of the constructs is defined.

• Algebraic semantics, developed by Joseph Goguen et al. in the 1980’s, is similar to deno-
tational semantics. It also uses functions that assign a meaning to every construct in the
programming language, but algebraic semantics is rooted in concepts from universal algebra.

As the subtitle suggests, the book Transitions and Trees deals almost exclusively with structural
operational semantics. The final two chapters, however, present a brief introduction to denotational
semantics, including an equivalence result between the denotational and the structural operational
semantics of a basic imperative programming language.

2 Summary

The book consists of a preface, 15 chapters, 2 appendices, references, and an index. With the
exception of the first chapter, each chapter contains exercises of varying difficulty.

6 c©2012, Stephan Falke

25



Chapter 1: A question of semantics. This introductory chapter briefly discusses problems
that arose due to the informal semantics given to early programming languages. Next, the four
approaches to formal semantics outlined above are introduced. Finally, uses of formal semantics
in the development of compilers and interpreters and in program verification and debugging are
sketched.

Chapter 2: Mathematical preliminaries. This chapter reviews mathematical preliminaries
including mathematical induction, logical notation, sets and operations on sets, relations, and
functions.

Chapter 3: The basic principles. The third chapter starts the presentation of structural oper-
ational semantics (SOS). For this, it introduces the simple imperative programming language Bims
using its abstract syntax. Since SOSs are based on transition systems, these are defined next. Typ-
ically, SOSs come in two flavors: big-step and small-step. In big-step SOSs, each configuration can
only perform a single transition to its terminal configuration. In small-step SOSs, each transition
describes a single step in a larger computation. This chapter presents big-step and small-step SOSs
for (variable-free) arithmetic and Boolean expressions and discusses the issue of their determinacy.

Chapter 4: Basic imperative statements. The SOSs of Bims are completed in this chapter.
Since statements in imperative programming languages alter the program state, this concept is
introduced. Next, the SOSs of arithmetic and Boolean expressions are refined to allow variables.
Furthermore, big- and small-step SOSs for statements are given. Finally, the equivalence of the
big- and small-step SOSs is proved.

Chapter 5: Control structures. The only control structures in Bims are if-then-else state-
ments and while-loops. This chapter enriches Bims by repeat-loops and for-loops. The concept of
semantical equivalence is introduced and it is shown that these new control structures can already
be simulated in Bims. Next, bounded nondeterminism is introduced and it is shown that its big-
step SOS corresponds to angelic nondeterminism (non-terminating computations are suppressed)
whereas its small-step SOS corresponds to demonic nondeterminism (non-terminating computa-
tions are not suppressed). Finally, non-communicating parallelism is introduced with a small-step
SOS.

Chapter 6: Blocks and procedures (1). After considering the simple language Bims in chap-
ters 3–5, this chapter introduces Bip, which extends Bims by blocks and parameter-free procedures.
Since blocks entail a scope for variables, the simple program state used before needs to be replaced
by an environment-store model. The various possible scope rules (fully dynamic, dynamic only
for variables, dynamic only for procedure declarations, and fully static) give rise to four different
big-step SOSs for Bip.

Chapter 7: Parameters. The procedures as introduced in chapter 6 do not accept parameters.
This chapter extends Bip to Bump, where all procedures accept exactly one parameter. Furthermore,
procedures may now be recursive, which was not allowed in Bip. Since there are several parameter
passing mechanisms, big-step SOSs are given for call-by-value, call-by-reference, and call-by-name

26



parameter passing. The treatment of call-by-name requires the concept of α-conversion in order to
avoid name clashes between local variables and variables passed in the parameter term.

Chapter 8: Concurrent communicating processes. Extending the non-communicating par-
allelism introduced in chapter 5, this chapter introduces communicating parallel processes. This
is done using communication via channels, similar to the setting in process calculi such as CSP
or CCS. Both synchronous and asynchronous communication is discussed. Next, the chapter gives
a brief introduction to the π-calculus, where channel names may the communicated via channels.
The equivalence of two semantics for the π-calculus is discussed.

Chapter 9: Structured declarations. The ninth chapter introduces structured declarations
in the form of records, where records may contain both variables as well as procedure declarations.
A big-step SOS for this extension of Bip is provided. Next, the dynamic creation of records in the
form of objects is discussed, again by giving a big-step SOS.

Chapter 10: Blocks and procedures (2). The introduction of blocks and procedures in
chapter 6 only considered a big-step SOS. This brief chapter introduces a small-step SOS for the
same constructs, again considering different possible scope rules.

Chapter 11: Concurrent object-oriented languages. The eleventh chapter combines ideas
from chapters 8 and 9 by introducing concurrently running objects that communicate using remote
procedure calls. A small-step SOS for this setting is developed.

Chapter 12: Functional programming languages. Chapter 12 leaves the realm of imperative
programming languages that has been the considered in chapters 2–11. After briefly recalling the
defining features of functional programming and the history of functional programming languages,
the λ-calculus is introduced as a theoretical foundation of functional programming languages. Fi-
nally, the simple (untyped) functional language Flan (a syntactic fragment of ML) is introduced
and both big-step and small-step SOSs using call-by-value parameter passing are developed.

Chapter 13: Typed programming languages. All example programming languages intro-
duced thus far are untyped. This chapter introduces types into the programing languages Bump
from chapter 7 and Flan from chapter 12. It is discussed how to determine whether a given pro-
gram is type correct and SOSs for the typed programming languages are developed. Furthermore,
it is show that well-typed programs cannot go “wrong”, i.e., do not produce type-related runtime
errors.

Chapter 14: An introduction to denotational semantics. As the title suggests, this chapter
is not about SOS. Instead, it gives a brief introduction to the ideas of denotational semantics. For
this, the language Bims from chapter 4 is considered and a denotational semantics for arithmetic
expressions, boolean expressions, and program statements is developed. A complication is caused
by while-loops, whose denotational semantics is defined in terms of itself. The question of whether
this definition is indeed well-defined is left for chapter 15.

27



Chapter 15: Recursive definitions. The final chapter of Transitions and Trees is concerned
with recursive definitions. In order to ensure that these have a “least” solution, a fixed point
existence theorem for continuous functions in complete partial orders is proved. This fixed point
theorem is then used in order to show that the denotational semantics of Bims from chapter 14
is well-defined if the semantics of while-loops is taken as the least fixed point of the recursive
definition. Furthermore, the equivalence of Bim’s big-step SOS and its denotational semantics is
shown and further applications of the fixed point theorem are sketched.

Appendix A: A big-step semantics of Bips. This appendix collects all rules for the big-step
SOS of Bip that were defined in chapters 3–6.

Appendix B: Implementing semantic definitions in SML. The second appendix briefly
shows how to implement big-step and small-step SOSs of Bims in SML, resulting in a simple
interpreter for Bims.

3 Opinion

Transitions and Trees is a detailed, rigorous, and thorough textbook on structural operational se-
mantics on an advanced undergraduate level. It allows for some flexibility in teaching since there
are several self-contained paths that can be taken through the book. The book’s strength is the
comprehensive coverage of many aspects of structural operational semantics. As the subtitle al-
ready suggests, alternative methods of providing the semantics of programming languages are only
mentioned in passing (axiomatic semantics and algebraic semantics) or briefly introduced (deno-
tational semantics). Textbooks that contrast the different approaches to programming language
semantics include [1, 2]. Transitions and Trees is generally well written and the large number of
examples and interspersed exercises help in understanding the material.

References

[1] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, 1993,

[2] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Springer-Verlag, 2007.

28



Review of7

Origins and Foundations of Computing
Author of Book: Friedrich L. Bauer8

Springer Verlag, 2010. ISBN 978-3-642-02991-2
Review by Haim Kilov haimk@acm.org

1 Introduction

Friedrich L. Bauer is one of the founding fathers of computing. He invented the stack (for the patent
in German, see [1]), was the Chairman of the legendary NATO Garmisch Software Engineering
Conference [2], and was one of the authors of the Algol 60 Report. Some of us may recall his
outstanding book [3]. His current interests are in the history of computing and cryptology.

This book is a translation from the German edition Kurze Geschichte der Informatik published
in 2007, and its target audience appears to be the broader public (from the very short review
by Niklaus Wirth). In most but not all instances the contents is understandable to a relatively
uninitiated reader.

2 Summary

This very concise book is not only, and not even mainly, about software (engineering) as it is
understood now. Half of the book is about calculations and devices before 1935, and only 10 pages
are about informatics after 1960. Bauer stresses that the roots of informatics extend much further
back into history and notes the role of Leibniz who introduced the concept of freeing humanity from
the wearisome burden of monotonous mental activity. Bauer goes even further into the past; for
example, he mentions the Antikythera astronomical calculator of 82 BC (see [4] for a lot of very
interesting details). Thus, we read a lot about the pre-history of modern informatics.

The breadth-first presentation is illustrated with 227 figures (mostly portraits and some devices).
Pretty often, the reader encounters only somewhat commented upon pointers (names, concepts,
terms) and has to look elsewhere for details. At the same time, the amount of material is huge,
and the material is interesting and probably not always well-known.

The book starts with a Preamble consisting of two subsections: The Roots of Informatics,
and Informatics and Mathematics. The next two sections are about numerical calculations and
calculations using symbols (with a strong emphasis on cryptology). The following section After
1890: In Thrall to Mechanical and Electromechanical Devices is mostly about machines (including
cryptological instruments), with digressions into analog computers, process control, etc. The After
1935 section brings the reader to a more familiar territory of Formal languages and algorithms,
‘Universal Machines’, and electronic solutions (including a very terse overview of formal languages,
computability, recursion and related numerous new ideas and techniques that began to flesh out
the bare bones of informatics that revolutionized the ways of thinking and of working), while the
final section After 1960 shows how Informatics begins to take shape when one could begin to suspect
that software would one day acquire spectacular economic significance. The Conclusion claims that

7 c©2012, Haim Kilov
8In Cooperation with Heinz Nixdorf MuseumsForum. With editorial assistance from Norbert Ryska.

29



Informatics and microelectronics are mutually dependent. There is a huge index of names, an index
of figures, and a reference list.

The importance and role of mathematics (not classical mathematics but mathematics as noted
by Bauer in [2]) is emphasized throughout the book, and the reader is supposed to have some
mathematical maturity. Bauer’s statement
The supercilious sneers of socialites who take pride in saying “I was never any good at math” can,
in the future, be countered with “If you had paid proper attention to math you might have made
something of yourself.”

is obviously pleasing. At the same time, his 1968 [!] statement that
systems should be built in levels and modules, which form a mathematical structure [2]

would perhaps be even more appropriate in this book, but it is not mentioned. Programming
as a (mathematical) discipline in itself began to be discussed in the 1960s, both by the participants
of the NATO Garmisch Conference and elsewhere (for example, independently in the then USSR
by A. Brudno, A. Kronrod, B. Levi, and others). To quote N. Wirth, another software pioneer,
[i]t was slowly recognized that programming was a difficult task, and that mastering complex problems
was nontrivial, even though—or perhaps because—computers were so powerful. Salvation was sought
in “better” programming languages, in more “tools”, and in automation. [. . .] [Computer system]
complexity can be mastered intellectually by one tool only: abstraction. [5]

This ought to be of importance for the target audience of the book, but there is only one—very
nice!—page there on software engineering, and the enormous intellectual challenges of informatics,
noted in [2] and even earlier, for example, by E.W. Dijkstra in [6], are not stressed emphatically
enough, although hints for the initiated are certainly there (The candid [Garmisch] conference
report did not fail to have a salutary effect on the development of informatics in the NATO countries
and beyond.). The deteriorating quality of modern-day software (and programming languages) is,
unfortunately, not mentioned by Bauer in this book; for a strongly-written (historical) overview by
N. Wirth, see [5].

3 Opinion

The book is very interesting, insightful, and quite enjoyable. Here and there, certain passages
look like they were from Wikipedia provided that the pointers actually point somewhere for a
curious reader to find out more. The prehistory of informatics is not too well-known, so its modern
presentation is very welcome, and the emphasis on mathematics throughout is highly appropriate.
For a reader well-versed in A discipline of programming (E.W. Dijkstra), this book is an excellent
historical overview; for a reader less well-versed in this discipline, Wirth’s paper [5] appears to be
an essential addition.
References

1. Broy, Manfred (ed.); Denert, Ernst (ed.) Software pioneers. Contributions to software engineer-
ing. Incl. 4 DVD. Berlin: Springer, 2002. 728 p.
2. Software Engineering. Report on a conference sponsored by the NATO Science Committee.
Garmisch, Germany, 7th to 11th October 1968. Chairman: Professor Dr. F.L. Bauer. Co-chairmen:
Professor L. Bolliet, Dr. H.J. Helms. Editors: Peter Naur and Brian Randell. 231 p.
3. Bauer, F.L.; Wossner, H. Algorithmic language and program development. In collaboration with

30



H. Partsch and P. Pepper. Transl. from the German. Texts and Monographs in Computer Science.
Berlin-Heidelberg New York: Springer-Verlag, 1982. XVI, 497 p.
4. Russo, Lucio. The forgotten revolution. How science was born in 300 BC and why it had to be
reborn. Transl. from the Italian by Silvio Levy. With the collaboration of the translator. Berlin:
Springer, 2004. ix, 487 p.
5. N. Wirth. A brief history of software engineering. IEEE Annals of the History of Computing.
July-September 2008, pp. 32-39.
6. E.W. Dijkstra, Programming considered as a human activity. EWD117 (1965). http://www.

cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD117.html.

31



Review of
Introduction to Scheduling 9

Author: Yves Robert and Frederic Vivien
Publisher: Chapman & Hall-CRC 2010

978-1-4200-7273-0

Reviewer: Ben Fulton ben@benfulton.net

1 Overview

A wide variety of problems fall under the rubric of scheduling algorithms. An engineer attempting
to select which job to run on a processor, a curriculum designer deciding which instructors are
available for a semester and a shop manager trying to optimize an assembly line are all trying to
solve problems with an underlying similarity: they all are attempting to determine the best way to
allocate limited resources over time. Whether dealing with servers that break down, teachers going
on vacation, or defective widgets on the line, each issue must be dealt with by analyzing times,
availabilities, difficulties and other constraining parameters of the generic problem of resource
allocation. In this book, authors Yves Robert and Frederic Vivien put together a series of essays
on scheduling problems, solutions, and performance guarantees, from many of the top experts in
the field.

2 Summary of Contents

Chapter 1 is devoted primarily to introducing the notation used to describe scheduling problems,
a notation that can grow greatly complicated as the various parameters of scheduling problems
are introduced. Several important definitions are introduced, such as makespans, feasibility, and
precedence, and the three-field scheme of classifying scheduling problems according to their pro-
cessor environment (one processor, many processors, identical processors or different), their job
characteristics (whether jobs have deadlines or release times, or if some jobs must take place before
others), and the schedule objective (getting all jobs done as quickly as possible, minimizing proces-
sor downtime, or minimizing lateness of the jobs). Different processor models are introduced, such
as single-processor, parallel-processor, and multi-processor, and common scheduling terms such as
general shop, job-shop and flow-shop problems are defined in terms of the three-field notation.
Finally, a section is devoted to NP and the complexity of solving scheduling problems with various
parameters.

Chapter 2 delves deep into approximation theory. The chapter mostly consists of theorems and
proofs. Several polynomial-time algorithms are presented, some related to scheduling, some not,
but only a very little space is used to explain the algorithms, with the majority of the chapter given
over to proving the algorithms’ complexity characteristics. In Chapter 3, Suzanne Albers considers
problems that arise when scheduling jobs that arrive at unknown times and with unknown pro-
cessing times. This is known as Online Scheduling. The analysis technique known as Competitive
Analysis is introduced, and algorithms that attempt to minimize makespans are considered in its
light: the classic List algorithm; Imbal, an algorithm which attempts to keep some machines lightly

9 c© Ben Fulton, 2012

32



loaded; and one nondeterministic algorithm. Also, minimizing flow time (the time between arrival
and completion of a given job) is considered, and two algorithms to solve that problem are analyzed:
processing the job with the shortest remaining processing time, and processing the job that has
had the least time devoted to it.

Also in this chapter is an analysis of load-balancing using the Robin Hood algorithm, and
then scheduling power-downs for idle machines. Finally, the case of variable-speed processors is
considered. These processors are assumed to be able to increase speed and power together, and
algorithms for minimizing power use over a series of jobs are considered.

Scheduling problems can have additional constraints beyond precedence requirements, deadlines,
and due dates. In chapter 4, Uwe Schwiegelshohn considers weighted job scheduling, preemption,
and release dates for a single processor. For multiple machines, both makespan optimization and
completion time optimization are considered. (The authors make the point that while complex
algorithms can be used to minimize worst-case problems, in practice simpler algorithms tend to be
used to allow additional constraints. Therefore they focus attention on the simpler algorithms). For
makespans, the algorithms of Longest Processing Time First and List Scheduling are considered.
For completion time, the Shortest Processing Time algorithm is considered, and the rather complex
proof of its efficiency is given.

Chapter 5 concerns scheduling of tasks that reoccur periodically, such as the manufacture
of a complex part that requires several steps and needs many copies. This is known as cyclic
scheduling. Author Claire Hanen begins by defining several concepts, including schedule throughput
and schedule stability. A very general scheduling problem called a uniform task system is defined,
and then refined to a periodic schedule. A polynomial algorithm for computing an optimal periodic
schedule is demonstrated by mapping the schedule to a directed graph. Finally, periodic schedules
with resource constraints are considered, and several interesting results are shown. A small section
on using a priority rule to simplify the schedule concludes the chapter.

Chapter 6, although it is titled Cyclic Scheduling for the Synthesis of Embedded Systems, is
actually about timed weighted event graphs (WEGs). After defining WEGs, definitions are given
for precedence relations and for unitary WEGs, and for unitary WEGs, normalization and expansion
routines are given. Finally, periodic schedules are defined and a polynomial algorithm for finding
an optimal periodic schedule is given.

Algorithms used in partitioning parallel jobs across multiple machines, in the way that Google
has implemented Map/Reduce, are the subject of chapter 7, ”Steady-State Scheduling”. Authors
Olivier Beaumont and Loris Marchal begin by defining the problem, with a graph defining multiple
machines and the connections between them, some applications that might be defined on the graph,
and definitions of allocations and valid patterns. From there, an algorithm is defined to create a
periodic schedule for the grid. Maximizing throughput is discussed, and some helpful polynomial
algorithms explained.

Chapter 8, in many ways the most easily understandable chapter of the book, deals with divisible
load scheduling, or algorithms for passing out bits of data to be computed in the style of the
SETI@home project. The authors build to their subject by considering how to apportion data
between several machines, both in bus-shaped and star-shaped networks. Several properties that
an optimal solution must have are proved, and a polynomial-time formula then derived for optimal
solutions. Finally, complicating factors such as latencies, multiple rounds of data, and return data
are considered.

Chapter 9 concerns techniques for optimizing many objectives at the same time, such as

33



makespan and average time to completion, or sharing a processor fairly between multiple users. To
solve these problems, definitions of optimal solutions are given, called Pareto-optimal solutions and
zenith solutions. The complexity of finding such solutions is covered, and polynomial approxima-
tion algorithms for certain multi-objective problems are given. Finally, fairness is discussed, along
with the difficulty of finding a universally satisfactory solution.

Chapter 10 demonstrates comparing the performance of systems by modeling with random
incoming tasks. Several types of stochastic ordering are discussed, and then several properties of
systems, both modeling a finite number of tasks, and with an infinite number of tasks, are shown
to hold.

Finally, chapter 11 gives some models of network topology, and considers how the selected
model may affect problems in scheduling. Examples are given for divisible load scheduling, and for
efficiently redistributing data between processors.

3 Opinion

The title of the book is mildly misleading - an engineer wishing to solve a specific problem quickly
should not pick up this book to learn about approaches to scheduling. It is an introduction to
scheduling theory, not scheduling itself.

There are two large problems associated with scheduling even before a potential algorithm
can be considered: recognizing the similarities between various problems, and designing notation
to compactly describe those similarities. Robert and Vivien do a good job covering the existing
notation, but the disjointed nature of the essay format might make it difficult for a student to relate
a new problem to a problem in the book.

Although the level of difficulty of the chapters ranges widely, students should have at least
exposure to an undergraduate algorithms class before attempting this book. The first chapter
offers a quick review of ”easy” and ”hard” problems, but chapter 2 goes into some fairly complex
proofs; on the other hand chapter 8, for example, should be accessible to most undergraduates.
An astonishing amount of knowledge can be gleaned from this book, but many sections would
probably be better left to graduate courses, and even graduate students might need a fair amount
of explanation as they work through all the chapters. Still, the difficulty of the subject probably
precludes any kind of lightweight treatment.

34



Review of10

Semantic Techniques in Quantum Computation
Edited by Simon Gay and Ian Mackie

Cambridge University Press, 2010
xiv+478 pages, ISBN: 978-0-521-51374-6 (Hardback, £60.00, $90.00)

Review by
Kyriakos N. Sgarbas (sgarbas@upatras.gr)

Electrical & Computer Engineering Department,
University of Patras, Hellas (Greece)

1 Overview

Although we still have to wait for a while (or a little bit longer) until we see quantum computers
at our desktops, researchers are building logic systems, semantic structures, even programming
languages for them. This is an edited volume containing 11 lengthy articles in the broad area of
semantics for quantum computation. The articles are quite diverse, some are more technical, some
are more theoretical, some are more review-oriented, and some are definitely research papers. After
reading this review you might be interested in checking the site of the past QPL workshop11 or the
EPSRC Network on Semantics of Quantum Computation12.

2 Summary of Contents

The book begins with a Table of Contents and a list with names, affiliations, and addresses of the
27 researchers who have contributed their articles. Then follows a 4-page Preface where the editors
give a very brief overview of the evolution of the particular branch of quantum computation history
since Feynman’s original idea until the recent QPL workshops and the QNET research network on
Semantics of Quantum Computation (in the framework of which most of the presented research
was conducted); also a brief presentation of the articles loosely relating them into more specific
thematic categories and the preface concludes with a one-page bibliography. The main content of
the book is organized in 11 articles (each with its own bibliography) as follows:

Article 1 “No-Cloning in Categorical Quantum Mechanics” by Samson Abramsky. The no-
cloning theorem is a fundamental theorem in quantum information processing stating that a qubit
cannot be forced to copy an arbitrary unknown state of another qubit. The standard proof is
rather straightforward, if we consider that all operations in quantum computing are unitary and
reversible. The article relates the no-cloning theorem to Joyal’s lemma (Lambek and Scott, 1986)
in categorical logic and proposes an alternative proof of it from the perspective of the categorical
formulation of quantum mechanics. It uses the graphical calculus for monoidal categories and
proves that the existence of a qubit cloning operation is incompatible with the existence of the Bell
states. (28 pages)

10 c©2012, Kyriakos N. Sgarbas
11http://web.comlab.ox.ac.uk/people/Bob.Coecke/QPL\_10.html
12http://www.informatics.sussex.ac.uk/users/im74/QNET/index.html

35



Article 2 “Classical and Quantum Structuralism” by Bob Coecke, Éric Oliver Paquette, and
Dusko Pavlovic. Graphical calculus is used again in this article to represent operations over classical
and quantum states from a categorical semantics point of view. The analysis considers all options
(i.e. deterministic, non-deterministic, and probabilistic operations for classical data, pure and
mixed states for quantum systems) and describe the morphisms that control classical information
flows between classical interfaces, as well as the information flow between the quantum universe
and a classical interface. The article concludes with some open questions for future research. (41
pages)

Article 3 “Generalized Proof-Nets for Compact Categories with Biproducts” by Ross Duncan.
This article presents the logic of compact closed categories and biproducts, which allows quantum
processes to be represented as proof-nets. After an adequately detailed introduction to logic,
processes, categories and their relation to quantum mechanics into the formation of appropriate
proof-nets, follow the descriptions of the main categorical structures (i.e. monoidal, compact closed,
freely constructed compact closed, compact symmetric polycategories, etc) up to the definition of
zero objects and biproducts. The formal syntax of a tensor-sum logic is then introduced and used
to produce tensor-sum proof-nets and generalized proof-nets constructed over the generators of
compact symmetric polycategories. A normalization procedure is also defined for such proof-nets,
based on local rewrite rules, resulting to the proof that the aforementioned proof-nets are strongly
normalizing. (65 pages)

Article 4 “Quantum Lambda Calculus” by Peter Selinger and Benôıt Valiron, as its title sug-
gests, presents a typed lambda calculus for quantum computation. The corresponding operational
and categorical semantics are defined, along with a type inference algorithm. The article examines
some common quantum computation examples (namely, the Deutsch-Jozsa algorithm, quantum
teleportation, and Bell’s experiment) (Nielsen and Chuang, 2000) expressed in terms of higher-
order functions and uses them as starting points in order to design the lambda calculus. There are
adequate usage examples (including the quantum Fourier transform). The article concludes with a
brief discussion on whether a concrete model of the quantum lambda calculus could be obtained.
(38 pages)

Article 5 “The Quantum IO Monad” by Thorsten Altenkirch and Alexander S. Green presents
a Haskell interface to quantum programming. After a brief example-based introduction to the basics
of Haskell functional programming language, the functional interface to quantum programming is
introduced as an analogy to the interface that the IO monad provides to conventional stateful
programming. Some examples follow, showing how the quantum IO monad (Green, 2008) can
be used to model Deutsch’s algorithm, quantum teleportation, and quantum Fourier transform,
building up to a complete implementation of Shor’s algorithm. The article concludes with some
implementation details concerning the quantum IO API. (33 pages)

Article 6 “Abstract Interpretation Techniques for Quantum Computation” by Philippe Jorrand
and Simon Perdrix demonstrates that abstract interpretation (Cousot and Cousot, 1977) techniques
can be successfully applied to quantum computing and exhibits how abstract interpretation can be
used for establishing a hierarchy of quantum semantics and for analyzing entanglement evolution.
After two very brief introductionary sections to abstract interpretation and quantum computing
basics, a simple quantum imperative language (QIL) is defined and used for the expression of
denotational semantics (probabilistic, observable, and admissible) and entanglement analysis. (29
pages)

Article 7 “Extended Measurement Calculus” by Vincent Danos, Elham Kashefi, Prakash Panan-

36



gaden, and Simon Perdrix presents an alternative quantum computation model called Measurement
- Based Quantum Computation (MBQC). Instead of performing operations to the whole quantum
register and save the measurement for the end as is the case in the traditional quantum circuit
model, in MBQC one performs only single-qubit unitary operations and selective intermediate
measurements to direct the computation. In the article the authors describe the syntax, the opera-
tional and denotational semantics of the MBQC model, prove its universality and present an algebra
on MBQC patterns (i.e. the series of MBQC operations that produce the intended computation)
with corresponding examples. Using this algebra, they manage to produce standardized versions of
MBQC patterns that although semantically equivalent to the initial ones they are computationally
more efficient. The authors also provide methods for converting patterns to quantum circuits and
vice versa. (76 pages)

Article 8 “Predicate Transformer Semantics of Quantum Programs” by Mingsheng Ying, Run-
yao Duan, Yuan Feng, and Zhengfeng Ji. The article begins with a review of the state transformer
semantics of quantum programs represented via superoperators as suggested by Selinger (2004),
and a review of D’Hondt-Panangaden’s (2006) theory of quantum weakest preconditions. Then it
focuses on projection operators and presents relevant predicate transformer semantics using Birkoff-
von Neumann (1936) quantum logic, also introducing various healthiness conditions for quantum
programs. The authors examine the relationship between quantum predicate transformer seman-
tics and projective predicate transformer semantics as introduced in the article. Finally, quantum
versions of the universal conjunctivity and termination laws are proved, along with a generalization
of Hoare’s (1971) induction rule. (50 pages)

Article 9 “The Structure of Partial Isometries” by Peter Hines and Samuel L. Braunstein
uses partial isometries (Halmos and McLaughlin, 1963) to study the dynamic processes (as unitary
maps) and measurements (as projectors) involved in quantum computation, from order-theoretic
and category-theoretic viewpoints. The article proves that the subspace ordering of projectors on a
Hilbert space is a special case of a partial isometry ordering. Using this partial ordering the authors
define a category of partial isometries (which is proved to be an inverse category) and compare
it to compact closed categories and monoidal closed categories in order to exhibit an inherent
incompatibility between the “categorical foundations” and “orthomodular lattices” approaches to
the foundations of quantum mechanics. (28 pages)

Article 10 “Temporal Logics for Reasoning about Quantum Systems” by Paulo Mateus, Jaime
Ramos, Amı́lcar Sernadas, and Christina Sernadas uses as a starting point a restricted sublogic of
the exogenous logic dEQPL (Mateus and Sernadas, 2006) for reasoning about quantum states and
combines it with computational tree logic (CTL) (Clarke and Emerson, 1981) and linear temporal
logic (LTL) (Pnueli, 1977). The authors provide axiomatization, a weakly complete Hilbert calculus,
as well as SAT and model-checking algorithms. (25 pages)

Article 11 “Specification and Verification of Quantum Protocols” by Simon J. Gay, Rajagopal
Nagarajan, and Nikolaos Papanikolaou presents QMC (Quantum Model Checker), an automated
verification tool utilizing model-checking techniques for protocols used in quantum information and
quantum cryptography applications. QMC uses an imperative concurrent specification language
for quantum protocols (QMCLang) which is also defined in the article. The authors provide many
implementation details and present applications to several case studies, including quantum tele-
portation, quantum coin-flipping, quantum key distribution, and quantum error correction. (59
pages)

The book concludes with a 6 page Index covering all articles.

37



3 Opinion

I have to confess that I am generally not very fond of edited volumes; in fact, I never liked the
policy of collecting a set of papers and publish them as a book. But reading this one, I was pleased
to find a nice exception. The articles are really good, well written, from leading researchers in their
fields, and they provide state-of-the-art research information.

I refer to them as “articles” instead of “chapters” because they are exactly that, independent
articles (review and/or research papers) that one can read selectively, with any order. They do not
cross reference one another even when they discuss the same notions. However, in the Preface the
editors group articles 1-3 within the category-theoretic framework for quantum mechanics, articles
4-8 into applications of semantic techniques, and articles 9-11 on quantum logic.

Most of the articles require a substantial theoretical background to be understood, but this
background seems rather imbalanced. Concerning semantics, the reader should be familiar with
many different aspects (you may check the content descriptions of the articles to realize the range),
but concerning quantum computation just the classic textbook (Nielsen and Chuang, 2000) is more
than enough in most cases. Therefore, the overall impression is of a set of articles trying to extend
existing semantic techniques to quantum computers, rather than examining quantum computers
and building special semantic techniques for them.

In conclusion, this is a well written and interesting research oriented book. I write “research
oriented” because I could not imagine using it in class as a textbook, although some of the articles
might interest some post-graduate students. But indeed this book provides a great source of
information for all researchers working in the fields of logic, semantics, and quantum computation.

References

1. Birkhoff, G., and von Neumann, J. (1936) The Logic of Quantum Mechanics. Annals of
Mathematics, vol.37, pp.823-843.

2. Clarke, E. M., and Emerson, E. A. (1981) Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logics. In Proceedings of the Workshop on Logics of
Programs, LNCS 131, Springer-Verlag.

3. Cousot, P., and Cousot, R. (1977) Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction of Approximation of Fixpoints. In Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp.238-252, ACM Press.

4. D’Hondt, E., and Papangaden, P. (2006) Quantum Weakest Preconditions. Mathematical
Structures in Computer Science, vol.16, pp.429-451.

5. Green, A. (2008) The Quantum IO Monad, source code and examples. http://www.cs.
nott.ac.uk/~asg/QIO/.

6. Halmos, P. R., and McLaughlin, J. E. (1963) Partial Isometries. Pacific Journal of Mathe-
matics, vol.13, no.2, pp.585-596.

7. Hoare, C. A. R. (1971) Procedures and Parameters: An Axiomatic Approach. In Engeler,
E. (ed), Symposium on Semantics of Algorithmic Languages, pp.102-116, Lecture Notes in
Mathematics 188, Springer Verlag.

38



8. Lambeck, J., and Scott, P. J. (1986) Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press.

9. Mateus, P., and Sernadas, A. (2006) Weakly Complete Axiomatization of Exogenous Quan-
tum Propositional Logic. Information and Computation, vol.204, no.5, pp.771-794.

10. Nielsen, M.A., and Chuang, I. L. (2000) Quantum Computation and Quantum Information.
Cambridge University Press.

11. Pnueli, A. (1977) The Temporal Logic of Programs. In Symposium on the Foundations of
Computer Science (FOCS), IEEE Computer Society Press, Providence, Rhode Island, pp.46-
57.

12. Selinger, P. (2004) Towards a Quantum Programming Language. Mathematical Structures
in Computer Science, vol.14, pp.527-586.

39



Review of 13

Modern Computer Arithmetic
by Richard Brent and Paul Zimmermann

Cambridge University Press, 2010
xvi+ 221 pages, HARDCOVER

Review by
Song Yan

syan@math.harvard.edu

1 Introduction

Fast algorithms for arithmetic on modern computers are extremely important in many areas of
mathematics, computer science, and especially cryptography. This book is about algorithms for
performing arithmetic, and their implementation on modern computers. More specifically, it col-
lects, describes and analyzes state-of-the-art algorithms for arbitrary precision arithmetic (integers,
integers modulo n, and floating-point numbers). It is an excellent addition and timely update to
many of the well-known books and references in the field, such as those by Aho, Hopcroft and
Ullman [2], Borodin and Munro [3], Brent [4], von zur Gathen and Gerhard [6], and particularly
Knuth [7].

2 Summary

The book consists of the following five main chapters:
Chapter 1 (46 pages) describes integer arithmetic, including representation, addition, subtrac-

tion, multiplication, division, roots, gcd, and base conversion, etc. Readers who are familiar with
polynomial arithmetic will find that many algorithms for polynomial arithmetic are similar to the
corresponding algorithms for integer arithmetic discussed in this chapter.

Chapter 2 (32 pages) deals with modular arithmetic, including representation, multiplication,
division/inversion, exponentiation, conversion, applications of FFT, and the use of the Chinese
Remainder Theorem. Modular (some times called clock) arithmetic is a system of arithmetic for
integers, where numbers wrap around upon reaching a fixed value, the modulus, say, e.g., 7 in the
case of the weekdays.

Chapter 3 (45 pages) discusses the basic arithmetic operations such as addition, subtraction,
comparison, multiplication, division, square root, algebraic functions, and conversion on arbitrary
precision floating-point numbers, similar to the arithmetic operations on arbitrary precision integers
discussed in Chapter 1. The algorithms in this chapter focus on correct rounding, extending the
IEEE 754 standard in a natural way to arbitrary precision.

Chapter 4 (60 pages) considers various applications of Newton’s method and its variants to the
computation in arbitrary precision of functions such as sqrt, exp, ln, sin, cos, and more generally
functions defined by power series or continued fractions. As the computation of special functions

13 c©2012, Song Y Yan

40



is a huge topic, so the algorithms presented in this chapter are selective and at a rather high-level,
omitting the detailed analysis.

Finally, Chapter 5 (6 pages) gives pointers to software tools, implementations, useful web-sites,
mailing-lists, and on-line documents.

At the end of the book, there are 235 related bibliographic entries and more than 1000 index
entries. There is also one page summary of the complexities of integer, modular and floating-point
arithmetic operations.

The book also contains many helpful exercises, varying considerably in difficulty; some of them
may be suitable as student projects.

Many algorithms from the book are implemented in the GNU MP and MPFR libraries.
Errata for the book may be found at http://maths.anu.edu.au/{\char’176}brent/pd/CUP-errata.

txt.

3 Opinion

This is a concise, well-written and beautiful book in modern computer arithmetic. I found the
book very pleasant to read. Compared with other books in the field, the book have the following
unique and important features:

1. It gives detailed algorithms for all operations (not just multiplication as in many textbooks),
such as addition, subtraction, comparison, division, roots, gcd, base conversion, exponentia-
tion, etc.

2. It gives detailed algorithms for all size ranges (not just schoolbook methods or FFT-based
methods). For example, in addition to the schoolbook O(n2) method and Schönhage-Strassen
FFT-based O(n log n log log n) method, the book also includes Karatsuba and Toom-Cook
methods for an intermediate range of precisions. It also considers the case where the op-
erations have different lengths (not just the same length), and the methods that are not
FFT-based, such as the divide-and-conquer methods, the Newton’s method and the Toom-
Cook method.

3. It gives detailed algorithms for computation of floating-point numbers ([1] and [5]) and for
evaluation of special functions.

4. It gives detailed algorithms for polynomials, as they are simpler due to lack of carries.

The book should be useful for graduate students and final-year undergraduate students in com-
puter science and mathematics (although it is not intended to be used as a textbook), researchers
in discrete and computational mathematics, computer algebra, number theory, and cryptography,
and developers of arbitrary precision libraries. It should be particularly useful if readers can read
the book in conjunction with Knuth’s classic book [7].

References

[1] ARITH Proceedings, Proceedings of the IEEE Symposium on Computer Arithmetic 1969–2011.
http://www.acsel-lab.com/arithmetic/html/.

41



[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman, Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[3] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems,
Elsevier Computer Science Library, 1975.

[4] R.P. Brent, Algorithms for Minimization without Derivatives, Dover Publications, 2002.
(Reprint from Prentice-Hall, 1973)

[5] N. Brisebarre and F. de Dinechin, et al. Handbook of Floating-Point Arithmetic, Birkhäuser,
2009.

[6] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 2nd Edition, Cambridge Uni-
versity Press, 2003.

[7] D. E. Knuth, The Art of Computer Programming II: Seminumerical Algorithms, 3rd Edition,
Addison-Wesley, 1998.

42



Review of14 of
Design of Approximation Algorithms

by David P. Williamson and David B. Shmoys
Cambridge, 2011

516 pages, Hardcover

Review by
Deeparnab Chakrabarty, deeparnab@gmail.com

1 Introduction

Many optimization problems are NP-hard, and unless P = NP there do not exist polynomial time
algorithms to solve them exactly. One way to cope with this hardness is to design approximation
algorithms, which run in polynomial time and return solutions guaranteed to be within a certain
factor of the actual optimum solution. For instance, c-approximation algorithm for the traveling
salesman problem takes as input an instance, and finds a tour whose cost is provably within c times
that of the optimal tour. The quality of the algorithm is governed by how small the factor c is.

The study of approximation algorithm began about three and a half decades back, almost as
soon as Karp’s famous paper on 21 NP-complete problems appeared. Since then the field has seen a
tremendous growth in its set of results and techniques, and applicability. In this book, Williamson
and Shmoys provide an in-depth coverage of the various techniques developed over the years, as
well as expositing on state-of-the-art results.

2 Summary

In the opening chapter of the book, the authors start off with a discussion on the importance of
approximation algorithms. Subsequently in the chapter, the authors focus on one problem, the set
cover problem, and discuss four different techniques of designing approximation algorithms for it.
This sets up the tone of the book: the main focus of the book seems to be the techniques rather
than the problems, although these almost always go hand-in-hand. In the book, the authors discuss
seven different techniques, and each technique has two chapters devoted to it. The first introduces
the technique via relatively straightforward applications, while the second, which starts with the
prefix “Further uses of ... ”, discusses more involved ones. The authors also provide one chapter
on inapproximability, the study of what can’t be done, and conclude with ten open problems which
they believe will shape the field further in the years to come. Below, I provide short descriptions
of these techniques; the readers should look into the book for a much more enlightening discussion.

• Greedy and Local Search Algorithms. Arguably, these are the first techniques algorithm de-
signers try out when faced with a problem: from a given solution can one improve the solution
by making best possible moves (greedy), or moves that improve upon the current scenario
(local search). Many a times such a simple minded procedure does give provably good algo-
rithms. The authors exhibit this for various problems: the traveling salesman problem and

14 c©2012, Deeparnab Chakrabarty

43



the parallel machine job scheduling problem being two notable ones in the first chapter. In
the second chapter on this topic, among other things the authors describe the local search
algorithm for the k-median problem, which till date is the best algorithm known for it.

• Rounding Data and Dynamic Programming. In this chapter, the authors describe the use
dynamic programming in the design of approximation algorithms. One of the ways to do is
to “group” the input data into a small number of classes, and then exploit the structure in the
problem to run a dynamic program. The number of classes need to be small enough so that the
algorithm runs in polynomial time. Of course, this coarsening of data loses information, and
the solution obtained is only an approximate one. This procedure often leads to the design of
polynomial time approximation schemes (PTAS), algorithms which can get a solution within
an (1 + ε) factor and run in time polynomial in n when ε is a constant. The authors describe
this for the knapsack and bin packing problem in the first chapter, and in the second they
describe the algorithm for the Euclidean traveling salesman problem.

A simple but powerful idea in the design of approximation algorithms is to search for polynomial
time computable (lower/upper) bounds on the optimum solution. One way to do so is to cast
the problem as integer linear/quadratic programs, and using the linear semidefinite programming
relaxations to obtain the bounds.

• Deterministic Rounding of Linear Programs. When a problem is cast as an integer linear
program, one often uses variables which are supposed to take values in {0, 1} where the value
1 indicates whether the corresponding element is picked in the solution or not. The relaxation
to a linear program returns solutions where the variables take values in the continuous range
[0, 1]. One class of approximation algorithms takes such a fractional solution and “rounds”
it to a feasible integer solution. In the first chapter on rounding algorithms, the authors
describe deterministic algorithms for the uncapacitated facility location problem and the bin
packing problem, among others. In the later more detailed chapter, the authors describe
more sophisticated rounding algorithms for the generalized assignment problem, and also
introduces the strong technique of iterative rounding. In the latter, the algorithm proceeds
in iterations rounding one variable per iteration – this strong technique has in the past five
years led to a flurry of improved approximation algorithms for various problems.

• Randomized Rounding of Linear Programs. As mentioned above, the solution to the linear
programming relaxation returns variables in the continuous range [0, 1]. One way to interpret
these fractional quantities as probabilities that the corresponding element is present in the
solution or not. Using this, several randomized approximation algorithms have been proposed.
In the first chapter, the authors describe algorithms for many such problems including integer
multicommodity flow problem, the problem with which this technique arguably arose. In the
second chapter on randomized rounding, the authors describe improved algorithms for the
facility location problem, and also touch upon some very recent developments on the Steiner
tree problem. In these two chapters, the authors also describe the technique of random
sampling in approximation algorithm design, a technique which works provably well when the
input instances are dense.

• Randomized Rounding of Semidefinite Programs. Optimization problems can often be cast
as integer quadratic programs, which can be relaxed to semidefinite programs. Solutions

44



to semidefinite programs return vector variables in high-dimension corresponding to each
element. The rounding algorithm must convert such a vector solution into a binary solution of
whether the element is picked or not. The authors describe the seminal work of Goemans and
Williamson who started off this technique with their approximation algorithm for the max-
cut problem. In the subsequent chapter on semidefinite programming, the authors describe
rounding algorithms for the coloring problem, and for the unique games problem. The latter
is, as of today, one of the central problems in theoretical due to an eponymous conjecture.

• The Primal-Dual Method. (Almost) every linear/semidefinite program has a dual linear/semidefinite
program which is of the “opposite type” and has the same value. For instance, the dual of
a minimization linear program is a maximization one, and the value of any feasible solution
to the dual is a lower bound on the optimum solution of the primal. Primal-dual algorithms
exploit this by constructing a solution to the problem at hand and a dual solution, and prove
guarantees by comparing the costs of the two. Often times, the two solutions are constructed
simultaneously, and the algorithms are indeed intertwined. Such algorithms are desirable
since these almost never actually solve the linear programs (often an time-intensive step).
The authors describe this technique using basic problems such as the shortest path problem,
the facility location and the k-median problem. In the later section, the authors describe the
primal-dual algorithm for the prize collecting Steiner tree problem.

• The seventh technique described in the book is a strong technique based on the theory of
metric embeddings. Many optimization problems, such as the traveling salesman problem,
have an underlying metric space on which they are defined. The theory of metric embeddings
considers the problem of embedding one class of metric into another while minimizing the
‘distortion’ in the distances. There are two ways in which this becomes relevant to approx-
imation algorithms. Firstly, the second metric might be ‘simpler’, and designing algorithms
on such metrics may be easier. Then the distortion straightaway relates to the approxima-
tion factor. Secondly, it is known that many partitioning problems are “equivalent” to how
well one metric embeds into another. In this spirit, a lot of research has gone into this area
in the past decade. The authors start of by describing algorithms for various cut-problems
(minimum cut, multiway cut, multicut), and algorithms for embedding general metrics onto
tree metrics. In the second chapter on cuts and metrics, the authors describe the recent
breakthrough on the sparsest cut problem. This description is probably the longest and most
technically challenging part of the whole book.

3 Opinion

Any researcher interested in approximation algorithms would benefit greatly from this new book
by Williamson and Shmoys. It is an ideal starting point for the fresh graduate student, as well as
an excellent reference for the experts in the field. The first part of the book (which introduces the
various techniques) is accessible to maybe a senior undergraduate, although many chapters in the
latter half may require more mathematical maturity. The writing style is very clear and lucid, and
it was a pleasure reading and reviewing this book.

45


