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1 Introduction

When teaching Discrete Math I may ask the students the following:
From the theorem that every number factors uniquely into primes prove that

√
2 is irrational.

A student submitted the following:

1. Every number factors uniquely into primes.

2. It is well known the if p is prime then
√
p is irrational.

3. 2 is a prime.

4. Hence
√

2 is irrational.

There are two things wrong with the above proof for what I intended to ask: (1) it never uses
that

√
2 is irrational, (2) the basic assumptions that it uses are to strong.

Episodes like the one sketched above are very rare. The class does have the (correct) sense that
when I say use A to prove B I mean that the proof should (1) use A, and (2) only use easy math
steps.

The program of reverse mathematics formalizes this notion and tries to unify all of mathematics
into equivalent theorems. One goal is to examine which theorems require nonconstructive proofs
and, in a sense, how nonconstructive. We give one example. Let WKL be the weak Konig’s lemma:
every infinite binary tree has an infinite branch. The following are equivalent: (1) WKL, (2) [0, 1]
is compact (henceforth COMPACT ).

2 Summary of Contents

The first few chapters of the book discuss the reverse mathematics program due to Steve Simpson
and Harvey Friedman. There is a base-system of axioms called RCA0 and all equivalences are
proven there. For example, one can show WKL =⇒ COMPACT and COMPACT =⇒ WKL
with all reasoning in RCA0. From a proof theory prospective RCA0 is weak, though much of
mathematics can be done in it, including elementary number theory and most theorems in finite
combinatorics. There are four other systems which form a hierarchy: WKL0 (RCA0 plus the weak
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Konig’s lemma), ACA0, ATR0, and Π1
1-CA0. The R in RCA0 stands for recursive (computable)–

all of the objects you can show exist are computable. WKL0 lets you do a few other things than
what is computable; however, there is a model of WKL0 where all of the sets are low. The A in
ACA0 stands for Arithmetic. The set of all arithmetic sets is a model for ACA0. Virtually all of
mathematics can be done in ACA0. ATR0 and Π1

1 are not discussed much. The five classes are
called the big five.

The author gives some examples of theorems in math that fit exactly into one of these five
classes and points us to Steve Simpson’s book Subsystems of Second Order Arithmetic where even
more theorems are so classified. It is hard to measure how many or what percent of theorems fit
exactly into one of the big five; however, enough do to make the classification interesting.

However, the author goes in an entirely different direction. Ramsey Theory for pairs is not
equivalent to any of these classes. Ramsey for triples and beyond is equivalent to ACA0.
Notation:

• RTn
c is Ramsey theory for n-tuples and c colors.

• RT∞c is (∀n)[RTn
c ].

• RTn
∞ is (∀c)[RTn

c ].

• RT is (∀c)(∀n)[RTn
c ].

Chapter 6 is the real heart of the book. In this chapter they classify many RTn
c in terms of the

big five.

1. For all n ≥ 2 there is a computable 2-coloring of
(N
n

)
with no Σn homogenous set. Hence for

all n ≥ 1, RTn
2 is not equivalent to RCA0 (all we needed was that there was no computable

homogenous set). The same holds for c-colorings if c ≥ 2.

2. The usual proofs of Ramsey’s theorem show that for all n ≥ 1, c ≥ 2, RTn
c can be proven in

ACA0. This does not preclude the possibility of being provable in a lower system.

3. Every computable 2-coloring of
(N
2

)
has a low2 homogenous set. This is the key ingredient in

the proof that RT 2
2 does not imply ACA0. (The result that RT 2

2 does not imply ACA0 was
first proven by Seetapun; however, the proof in this book using low2 sets is a newer easier
proof.)

4. There exists a computable 2-coloring of
(N
3

)
such that every homogenous set computes HALT.

Together with point 2 this implies (with some work) that ACA0 and RT 3
2 are equivalent. This

extends to RTn
c for all c ≥ 2 and n ≥ 3.

5. RT is not in ACA0 but it is in an extension called ACA′0.

Chapter 7 is about theories being conservative. For example, if φ is a sentence in the language
of PA then PA ` φ iff ACA0 ` φ. Chapter 8 has nice diagrams summarizing the results in Chapter
6.

Chapter 9 is about weaker versions of Ramsey Theory (there was also some of this in Chapter
6) and how they relate to each other and to RCA0 It would have been helpful to have a list of all
of the variants of Ramsey Theory; hence I provide one here.
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1. RTn
c : For all c-colorings of

(N
n

)
there is a homogenous set.

2. RTn
<∞c: (∀c)[RTn

c ].

3. RT<∞
c : (∀n)[RTn

c ].

4. RT : (∀c)(∀n)[RTn
c ].

5. SRT 2
c : For all stable c-colorings of

(N
2

)
there is a homogenous set. A stable coloring COL :(N

2

)
→ [c] is one such that, for all x, limy→∞COL(x, y) exists.

6. COH : For all countable sequences of sets of naturals R1, R2, R3, . . . there exists an infinite
set C (called a cohesive set) such that, for all i, C ⊆∗ Ri or Ri ⊆∗ C. This follows from RT 2

2 .

7. ADS : Every infinite linear orderings has either an infinite ascending subsequence or an
infinite descending subsequence.

8. SADS : Every Stable infinite linear orderings has either an infinite ascending subsequence or
an infinite descending subsequence. An ordering is stable if it is discrete and every element
has either a finite number of elements less than it or greater than it. A nontrivial example is
ω + ω∗ where ω∗ is the naturals in reverse order.

9. CADS : Every infinite linear orderings has a stable suborder.

10. CAC : Every infinite partial order has either an infinite Chain or an infinite Anti-Chain.

11. SCAC : Every Stable infinite partial order has either an infinite Chain or an infinite Anti-
Chain.

12. CCAC : Every infinite Stable partial order has an infinite Stable suborder.

13. EM (Erdos-Moser): If T is a tournament on N then there is an infinite A ⊆ N on which T
is transitive. A tournament is a directed graph where, for all x, y, exactly one of R(x, y) or
R(y, x) holds.

14. FS(n) (Free Set): For all f :
(N
n

)
→ N there is an infinite A ⊆ N such that for all s ∈

(
A
n

)
either f(s) ∈ A or f(s) ∈ s.

15. TS(n) (Thin Set): For all f :
(N
n

)
→ N there is an infinite A ⊆ N such that f(

(
A
n

)
) 6= N.

16. FIP (Finite Intersection Principle): Every nontrivial family of sets has a maximal subfamily
with the finite intersection property. A family of sets satisfies finite intersection property if
every finite subfamily has a nonempty intersection.

Chapter 10 is about theorems that are beyond ACA0. We give two examples:

1. A well partial order (wpo) is a partial order that has neither infinite descending sequences
or infinite antichains. J. Kruskal showed that the set of trees under embedability (or under
minor) form a wpo. We denote this KTT . H. Friedeman showed that ATR0 6` KTT . Hence
KTT is a natural theorem which requires a rather strong proof system.

2. Laver showed that the set of all countable linear orderings under embedding is a wpo. This is
called FRA since it was original Fraisee’s conjecture. Shore showed that FRA implies ATR0,
hence it also requires a rather strong proof system.
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3 Opinion of the Book

Who can read this book? To read this book you need to already know some computability theory
and some Ramsey theory. Knowing some Reverse math would also be good; however, that is less
necessary. Many theorems are left for the exercises so the reader has to do some work themselves.

Who should read this book? The book gathers together in one place most of the theorems
known about where Ramsey Theory and some variants of it fit into the Reverse math framework.
The book also discusses many combinatorial principles that the reader may not realize are really
Ramsey Theory, but they are!

There are two theorems that I was surprised were not discussed. (1) Mileti has done work on the
reverse mathematics of the Canonical Ramsey Theorem that does not seem to have been discussed,
and (2) Schmerl has done work on the reverse mathematics of the chromatic number of a graph.

However, if you care about the proof strength of Ramsey Theory, this is THE book for you!

4 Opinion of the Field

(Keep in mind that THIS section really is just MY opinion.)
When is asking where theorems fit into the Reverse Math framework interesting?

1) When it leads to new proofs of old theorems. Jockusch’s proof that every computable coloring
of

(N
2

)
has a Π2-homogenous set can be presented as a different proof of Ramsey Theory without

even mentioning Π2, but noting that the proof is vaguely more constructive.

2) When it leads to interesting computability theory. The construction of a computable coloring
that has no Σ2 homogenous sets is interesting.

3) When you tie together many different theorems as being equivalent. This is similar to in NP-
completeness you need to think of SAT and HAM CYCLE as being the same problem.

But I do have one criticism. One of the main results in this book is that RT 2
2 is definitely

weaker in proof strength than RT 3
2 . But the usual proofs of RT 2

2 and RT 3
2 really don’t seem any

different from a constructive point of view. AH-HA- hence there should be a new proof of RT 2
2

that is more constructive. Or more something. Alas, I’ve asked people in the field and they can’t
really point me to this better proof.

Added later: I’ve discussed this point with Denis Hirschfeldt when I gave him a copy of the
review and we may soon have a different proof of Ramsey Theory inspired by these results.
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