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Abstract

How complicated must a proof of the unsolvability of the quintic be?
Not very.
We prove that a specific quintic x5 − 80x+30 = 0 cannot be solved by radicals,

without using the Galois correspondence, the degree of a field extension, or the
concept of a solvable group. Instead, we mix-and-match simple facts known in the
18th and 19th Centuries, ideas from Abel and Galois, and elementary pieces of
modern algebra. The proof, suitably expanded to fill in ‘obvious’ statements, is
accessible to any student familiar with basic concepts in finite groups and polyno-
mials. It could be used to provide motivation for a standard ‘groups, rings, fields’
course.

1 Introduction

We know, thanks to Abel, Galois, and others, that the quintic is unsolvable by radicals.
The classical proofs are obscure to modern eyes, and it takes many weeks to develop
Galois Theory to this point. So it seems worth finding a simple proof (‘As simple as
possible, but not more so,’ Albert Einstein) that goes straight for the jugular. We present
one such proof here. Different tactics could be used for several key steps depending on
background or what seems appropriate. Very little in it was not known to Euler, and
he could have invented the rest, if necessary by brute force. All he would really need to
know is that S5 has an element of order 5 and A5 has no cyclic quotient.

The material could be taught in about six lectures as part of a standard groups-rings-
fields course in abstract algebra, and nearly everything involved is of general interest in
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such a context. Aiming at a Big Theorem of historical interest, which can be stated
very easily, can add motivation to what might otherwise be a lengthy exercise in ‘general
nonsense’.

2 Potted History

Somewhere between 2000 BC and 1600 BC, a Babylonian scribe, priest, or mathematician
worked out how to solve quadratic equations. We know this from cuneiform tablets that
record all of the computational steps required, using ‘generic’ examples. The procedure
is equivalent to the technique of ‘completing the square’, which in turn is equivalent to
the usual formula.

Cubic equations were less tractable, but eventually cracked when the mathematicians
of Renaissance Italy unleashed the power of algebra, though not in today’s notation.
The story of Tartaglia, Scipio del Ferro, Antonio Fior, and Girolamo Cardano is too well
known to relate again here [3, 7, 8]. It culminated in a formula for the roots of a general
cubic. With the cubic in standard form

x3 + ax + b = 0

this is of course Cardano’s formula:
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Observe that this expression involves nothing worse than square roots and cube roots,
together with the basic operations of algebra. The formula requires cube roots of complex
numbers in some cases — curiously, when all three roots are real (and the cubic is
irreducible).

Shortly afterwards, Cardano’s student Ludovico Ferrari obtained a more complicated
formula to solve the quartic equation, again involving nothing worse than square roots
(iterated to get a fourth root) and cube roots. Cardano published this procedure, along
with that for the cubic, in his Ars Magna of 1545, unleashing a controversy with Tartaglia
over priority.

The obvious next step was the general quintic equation

ax5 + bx4 + cx3 + dx2 + ex + f = 0

and the obvious guess was that there would be an even more complicated formula for
the solutions involving nothing worse than square roots, cube roots, and fifth roots. Al-
gebraists would have been happy to allow 29th roots or whatever if necessary, but that
seemed unlikely. A formula that expresses a root in terms of the coefficients, using the
usual algebraic operations, together with nth roots for various n, is called a radical. So
mathematicians were seeking a solution of the quintic by radicals. However, all attempts
to derive such a formula failed, and it slowly began to dawn on the mathematical com-
munity that perhaps no such formula existed. Around 1770, Joseph-Louis Lagrange laid
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the foundations for the eventual proof that this was correct, by putting all of the known
methods for the quadratic, cubic, and quartic into the same overall framework—and
proving that this general method failed for the quintic [9]. However, that did not prove
that no formula involving radicals existed; just that a specific method failed to find one.

A few hardy souls turned their attention to an impossibility proof. In 1799 Paolo
Ruffini published a two-volume book totalling 516 pages, claiming to prove that the quin-
tic cannot be solved by radicals. The mathematical community was skeptical, probably
because of the length and the unfamiliar methods; however, no one found any errors,
probably because no one was willing to spend enough time to find out. A distressed
Ruffini published two further versions, intended to clarify his arguments, but these were
also ignored [9]. In 1824 Niels Henrik Abel published an impossibility proof that was
accepted [1]. It contained a key result, the ‘Theorem on Natural Irrationalities’, which
later mathematicians realised filled the main gap in Ruffini’s attempt, but at the time
this was not noticed. Abel’s proof used different methods from Ruffini’s, and it con-
tained a relatively minor error. However, this could easily be be patched up. A simpler
and complete proof was given by Leopold Kronecker in 1879, and a general conceptual
framework was established by Galois, with his famous correspondence between subfields
of a splitting field and subgroups of the Galois group [2, 4, 5, 7].

The machinery of Galois theory makes the impossibility transparent, but the resulting
proof requires a complicated analysis with many technicalities and — in modern form —
a sophisticated level of abstraction. It is therefore an interesting exercise to find a proof
that is as straightforward, and as elementary, as possible. Here we present one route to
the impossibility theorem, in which most ingredients are developed in a relatively concrete
form and the rest are easy to understand. The material could be a useful adjunct to, and
motivation for, a standard ‘groups, rings, fields’ course. It also brings several branches
of mathematics together with a common, comprehensible, objective.

The proof can be seen as an exercise in reverse engineering — a rediscovery of things
known to Abel, Galois, Kronecker, and their predecessors. It could be made even closer
to their way of thinking by removing the remaining traces of abstraction, such as the
quotient of a polynomial ring by a principal ideal. Nothing presented here is new, apart
perhaps from the overall package — though I doubt it would have surprised Abel, Galois,
or Kronecker. Or Euler, for that matter, given a few minutes to take the ideas on board.

Unlike the classical authors, we prove that a specific quintic over Q cannot be solved
by radicals, rather than the ‘general’ quintic whose roots are independent transcenden-
tals. This is a stronger result because it does not assume there is a universal ‘formula’.
Specifically, we will prove:

Theorem 2.1 The zeros of the quintic polynomial F (x) = x5 − 80x + 30 cannot be
expressed by radicals.

The same proof applies to any irreducible quintic over Q with three real and two
complex zeros. The one chosen makes it easy to establish these properties.
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3 Background

We will assume, without explicit reference, a number of basic mathematical concepts and
results. Among them are:

• Groups. Basic finite group theory up to quotients. The symmetric group S5. The
alternating group A5 is a normal subgroup of S5 with quotient Z2, and comprises
the even permutations. Commutators.

• Fields. The only fields required are subfields of C, definable as subsets closed under
the operations of algebra. In particular, if all αi ∈ C, then the field Q(α1, . . . , αs) is
defined as the smallest subfield of C containing the generators αi. We also require
the notion of isomorphism.

• Polynomials. Fundamental theorem of algebra. Polynomial ring K[x] over a sub-
field K of C. Symmetric polynomials in the zeros are functions of the coefficients.
Irreducibility, Gauss’s Lemma. Any isomorphism φ : K1 → K2 extends to an iso-
morphism φ : K1[x] → K2[x] (we use the same notation for both) by applying φ to
the coefficients.

• Field Adjunction. If K is a subfield of C and α ∈ C is algebraic over K, then its
minimal polynomial m(x) is irreducible over K. The extension K(α) is isomorphic
to K[x]/〈m(x)〉.

• Automorphisms. Define Aut(K) to be the set of all field automorphisms of K. This
is a group.

4 Solution by Radicals

Informally, a radical is constructed by a series of field operations and extractions of nth
roots. Formally, define a subfield L ⊆ C to be radical if there is a radical tower of subfields
Kj ⊆ C

Q = K0 ⊆ K1 ⊆ · · ·Kr = L (4.1)

By definition, such a tower satsifies three conditions: for i = 1, . . . , r

• Ki = Ki−1(αi)

• αi '∈ Ki−1

• αpi
i ∈ Ki−1 for some prime pi ≥ 2. (We may refine any such tower to make all pi

prime, and it is simpler to make this property part of the definition.)

Define θ ∈ C to be radical if θ is an element of some radical subfield L of C.

4



5 Permutations of the Zeros of F

We now introduce the central character in the drama. Let

F (x) = x5 − 80x + 30 ∈ Q[x]

We will study the symmetries of the zeros of F , in a sense to be made precise. This is
the classical tactic. To do so, we first prove that F has exactly three simple real zeros,
so the other two form a complex conjugate pair in C.

The derivative F ′[x] = 5x4 − 80. This is prime to F , so all zeros are simple. The
turning points of F are given by F ′(x) = 0, so x = ±2. Since real zeros of F are
separated by those of F ′ (Rolle’s Theorem) there are at most three real zeros. Now
F (−4) = −674, F (0) = 30, F (1) = −49, F (3) = 33, so F has three changes of sign, hence
there exist exactly 3 real zeros. Since the coefficients of F are real, the other two zeros
form a complex conjugate pair. As a check, Figure 1 shows the graph of F .
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Figure 1: Graph of F .

We claim that F is irreducible over Q. This follows from Eisenstein’s Criterion for
irreducibility, which we now prove for monic polynomials. Here | means ‘divides’ and ' |
means ‘does not divide’.

Theorem 5.1 (Eisenstein’s Criterion) Let a(x) = xn+an−1xn−1+· · ·+a0 be a monic
polynomial over Z. Suppose there exists a prime p such that p ' |an, p|aj (0 ≤ j ≤ n− 1),
and p2 ' |a0. Then a is irreducible over Q.

Proof Suppose a(x) = b(x)c(x) where b, c have smaller degree than a and without loss
of generality are monic. By Gauss’s Lemma we can assume b, c have coefficients in Z.
Use hats to denote images modulo p. Then

b̂(x)ĉ(x) = â(x) = xn

By unique factorization in Zp[t], b(x) = xr, c(x) = xn−r for 1 ≤ s ≤ n − 1. Therefore
the constant terms b0 and c0 are both divisible by p, so a0 = b0c0 is divisible by p2, a
contradiction. !

Eisenstein’s Criterion with p = 5 implies that F is irreducible over Q, as claimed.
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Let the zeros be θ1, θ2, θ3, θ4, θ5, so that

F (x) = (x − θ1)(x − θ2)(x − θ3)(x − θ4)(x − θ5) (5.1)

Let
Σ = Q(θ1, θ2, θ3, θ4, θ5) ⊆ C

be the field generated by the five zeros. (This is usually called the ‘splitting field’ of F ,
but the general concept is not required.)

Proposition 5.2 The group Aut(Σ) permutes the θj.

Proof Let α ∈ Aut(Σ). Then α̂(F ) = F since F ∈ Q[t] and α is the identity on Q.
Therefore

F = α̂(F ) = (x − α(θ1))(x − α(θ2))(x − α(θ3))(x − α(θ4))(x − α(θ5))

Comparing with (5.1), α must permute the five zeros. !

We may identify Aut(Σ) with a subgroup of S5 by making it act on the subscripts j
of the θj .

Proposition 5.3 Aut(Σ) contains a 2-cycle.

Proof Suppose that the non-real zeros are θj , θk, with θk = θj . Complex conjugation is
an automorphism of Σ, and acts as the transposition (jk) because the other three zeros
are real. !

Proposition 5.4 Aut(Σ) acts transitively on {1, 2, 3, 4, 5}.

Proof Let j ∈ {2, 3, 4, 5}. We prove that there exists an automorphism sending θ1 to
θj . Since F is irreducible over Q, θ1 and θj have the same minimal polynomial over Q,
namely F . Therefore there is an isomorphism

ψ : Q(θ1) → Q(θj)

We claim that ψ extends to an automorphism of Σ.
Let m(x) be the minimal polynomial of θ2 over Q(θ1). Then m(x) divides F (x) since

F (θ2) = 0 and F is a polynomial over Q, hence over Q(θ1). Also (x − θ2) divides m(x).
From (5.1)

m(x) = (x − θj1) · · · (x − θjs)

where the jt are distinct numbers in {1, 2, 3, 4, 5} and j1 = 2.
Clearly ψ(m(x)) is the minimal polynomial of ψ(θ2) over ψ(Q(θ1)) = Q(θ2). Since

F (ψ(θ2)) = ψ(F )(θ2) = F (θ2) = 0

we must have
ψ(m(x)) = (x − φj1) · · · (x − φjrsr)

where the φ’s are some subset of the θ’s. Now Q(θ1, θ2) = Q(θ1)(θ2) is isomorphic to
Q(θ2)(φ1) = Q(θ2, φ1) by an isomorphism extending ψ. Continue inductively, adjoining
θ3, θ4, θ5 in turn, and the result follows. !
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Corollary 5.5 |Aut(Σ)| is divisible by 5.

Proof This is the orbit-stabilizer theorem. Bare hands:
Let Γ = Aut(Σ) ⊆ S5, and define

Γj = {g ∈ Γ : g(1) = j} 1 ≤ j ≤ 5

Then Γ is the disjoint union of the Γj. We claim that for each j there exists a bijection
φj : Γ1 → Γj . By transitivity there exists gj ∈ Γ such that gj(1) = j. Define

φj(h) = gjh h ∈ Γ1

Then h(1) = 1 so gjh(1) = gj(1) = j. Therefore

φj : Γ1 → Γj

Clearly φj is one-to-one. It is onto since if k ∈ Γj then φj(g
−1
j k) = k and g−1

j k(1) =
g−1

j (j) = 1. Therefore

|Γ| =
5∑

j=1

|Γj| = 5|Γ1|

!

We next observe that any subgroup of S5 of order divisible by 5 has an element of
order 5. This is a special case of Cauchy’s Theorem [6]. The simplest direct proof I can
find (other than using heavy machinery such as Sylow) follows.

Lemma 5.6 If A is a finite abelian group and a prime p divides |A|, then A has an
element of order p.

Proof Induction on |A|. Let 1 '= a ∈ A and consider the subgroup B generated by
a. If p divides |B| we are done, unless B = A in which case A is cyclic of order sp for
some s, and as has order p. If p does not divide |B| then A/B has an element Bg (using
multiplicative notation) of order p. Now g generates a cyclic subgroup of order divisible
by p and we argue as before. !

The next proposition is very artificial, but does exactly what we need. It refers to
the commutator subgroup Γ′ ⊆ Γ.

Proposition 5.7 If Γ is a quotient of a subgroup of S5 and |Γ| is divisible by 5, then
either Γ′ = Γ or Γ contains an element of order 5.

Proof If Γ′ = Γ we are done, so we may assume Γ′ ! Γ. If |Γ′| is divisible by 5 then
the result holds by induction on |Γ|. Otherwise |Γ/Γ′| is divisible by 5. If Γ′ = {1} then
Γ is abelian and Lemma 5.7 applies. If not, then by induction |Γ/Γ′| has an element of
order 5. Let this be the coset Γ′g for g ∈ Γ. Then the order of g is divisible by 5, say
equal to 5s, so gs has order 5. !
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Proposition 5.8 Aut(Σ) = S5.

Proof By Proposition 5.3, Aut(Σ) contains a 2-cycle. By Proposition 5.4, it is tran-
sitive, so its order is divisible by 5. By Proposition 5.7 either Γ′ = Γ or Γ contains an
element of order 5. Now Γ * (12) which is an odd permutation, but Γ′ ⊆ A5 which consist
of the even permutations, so Γ′ '= Γ. Thus Γ contains an element of order 5, which must
be a 5-cycle. Conjugating the 2-cycle by suitable powers of the 5-cycle, Aut(Σ) contains
every 2-cycle. But these generate S5. !

Proposition 5.9 If α ∈ Σ and σ(α) = α for all σ ∈ S5, then α ∈ Q.

Proof By assumption α is a symmetric polynomial in the θj , hence a polynomial in the
coefficients of F , which are in Q. !

6 Nice Radicals

A nice radical tower is one such that L = Σ in (4.1). That is, all the radicals αi belong to
Σ. A nice radical is an element of a nice radical tower. We next prove a weak impossibility
theorem, essentially what Ruffini proved:

Theorem 6.1 The zeros of F are not nice radicals.

First, we need:

Lemma 6.2 (1) The group Sn has a cyclic quotient of prime order p if and only if p = 2
and the kernel is the alternating group A5.
(2) The group A5 has no nontrivial cyclic quotient.

Of course A5 is simple, but this will not be needed.
Proof

(1) Suppose that N is a normal subgroup of S5 and S5/N ∼= Zp. Then S5/N is abelian,
so N contains every commutator ghg−1h−1 for g, h ∈ S5. Let g = (12), h = (13). Then

ghg−1h−1 = (123)

is a 3-cycle. Since N is a normal subgroup, it is closed under conjugation by elements of
S5, so it contains all 3-cycles. But the 3-cycles generate A5. Since |S5/A5| = 2 the rest
follows.

(2) Suppose that N is a normal subgroup of A5 and A5/N ∼= Zp. Again, N contains
every commutator. Let g = (123), h = (124). Then

N * ghg−1h−1 = (12)(34)

By conjugation, N contains all permutations (ab)(cd). Now

(12)(34) · (12)(35) = (354)
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so N contains a 3-cycle, hence all 3-cycles. But the 3-cycles generate A5. !

Next, consider the expression

δ =
5∏

j<k

(θj − θk)

Then δ is not a symmetric polynomial in the θj , but its square ∆ = δ2 is, because

∆ =
5∏

j #=k

(θj − θk)

The expression ∆ is the discriminant of F . If σ ∈ S5, then the action of σ sends δ to ±δ.
The even permutations (those in A5) fix δ, and the odd ones map δ to −δ. Indeed, this
is a standard way to define odd and even permutations.

Proof of Theorem 6.1 Assume that F (x) = 0 is solvable by nice radicals, with a
tower (4.1) of subfields Kj . Consider the first step in the tower

Q ⊆ K1 ⊆ Σ

where K1 = Q(α1), α
p
1 ∈ Q, α1 '∈ Q, and p = p1 is prime.

Since α1 ∈ Σ we can act on it by S5, and since every σ fixes Q we have

(σ(α1))
p = αp

1

Therefore σ(α1) = ζj(σ)α1, for ζ a primitive pth root of unity and j(σ) an integer between
0 and p − 1.

The set of all pth roots of unity in C is a cyclic group under multiplication, isomorphic
to Zp. Indeed ζaζb = ζa+b where a + b is taken modulo p. The map j : S5 → Zp taking σ
to j(σ) is clearly a group homomorphism. Since α1 '∈ Q, the map j is nontrivial. Since
Zp has prime order, hence no nontrivial proper subgroups, j must be onto. Therefore S5

has a homomorphic image that is cyclic of order p. By Lemma 6.2, p = 2 and the kernel
is A5. Therefore α1 is fixed by A5.

We claim that this implies that α1 ∈ Q(δ). Suppose that h ∈ Σ is fixed by A5, and
let σ = (12), which lies in S5 \ A5. Write h = he + ho where

he = 1
2(h + σ(h)) ho = 1

2(h − σ(h))

Then he is fixed by A5 and σ, which generate S5, so he ∈ Q. Clearly ho is mapped to −ho

by σ and fixed by A5. Therefore δho is fixed by σ and A5, so is fixed by S5, so δho ∈ Q.
Therefore ho ∈ Q(δ). Finally, h = he + ho ∈ Q + Q(δ) = Q(δ). Now apply this result
with h = α1.

If r = 2 in (4.1) we are finished. Otherwise consider the second step in the tower

Q(δ) ⊆ K2 = Q(δ)(α2)

By a similar argument, α2 defines a group homomorphism j : A5 → Zp, which again
must be onto. But this is a contradiction. !
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7 Natural Irrationalities

In order to prove the main theorem, we follow the traditional route (Ruffini’s omission,
proved by Abel without realising it filled the only serious gap).

Theorem 7.1 If F (x) = 0 can be solved by radicals, then it can be solved by nice radicals.

Corollary 7.2 The equation F (x) = 0 is unsolvable by radicals.

These follow from Theorem 6.1 once we establish:

Theorem 7.3 (Natural Irrationalities) If u ∈ Σ and u lies in a radical field R, then
there exists a radical field R′ with u ∈ R′ ⊆ Σ.

Once we have proved Theorem 7.3, any solution of F (x) = 0 by radicals can be
converted into one by nice radicals. Theorem 7.1 and Corollary 7.2 are then immediate.

It remains to prove Theorem 7.3. We follow Abel’s strategic insights. We need several
lemmas, and a technical definition.

Definition 7.4 Let L be radical. The height of L is the smallest r in a radical tower
(4.1).

We prove Theorem 7.3 by induction on the height of a radical field R that contains
u. The key step is height 1.

Lemma 7.5 Let M be a subfield of Σ and let a ∈ M , where a is not a pth power in M .
Then

1. ak is not a pth power in M for k = 1, 2, . . . , p − 1.

2. The polynomial m(x) = xp − a is irreducible over M .

Proof
(1) Since k is prime to p there exist integers q, l such that kl + pq = 1. If ak = bp with
b ∈ M , then

(aqbl)p = aqpblp = aqpakl = a

contrary to a not being a pth power in M .
(2)

Let ζ be a primitive pth root of unity in C. Let b satisfy bp = a. Over Σ,

xp − a = xp − bp =
p−1∏

i=0

(x − ζ ib)

If xp − a is reducible, it must have a factor

P (x) =
∏

i∈X

(x − ζ ib) ∈ M [x]
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where X ⊆ {0, 1, . . . , p − 1} and 1 ≤ |X| ≤ p − 1. Let x = 0 to deduce that

ζsbc ∈ M

for some s, where c = |X| so 1 ≤ c ≤ p − 1.
There exist h, k ∈ Z such that hc + kp = 1. Now M contains (ζsbc)h = ζhsbhc =

ζhsb1−kp. But bp = a ∈ M so ζhsb ∈ M . However, (ζhsb)p = bp = a so a is a pth power in
M , a contradiction. !

Now suppose that R = M(α) where αp ∈ M , α '∈ M . Then u ∈ R \ M is uniquely
expressible as

u = u0 + u1α + u2α
2 + · · ·up−1α

p−1 (7.1)

where the uj ∈ M .This follows by irreducibility of m. We want to put u into a more
convenient form, by changing α to some other element β of M(α) and therefore changing
a to b = βp. In this new form, u1 = 1. The precise statement is:

Lemma 7.6 For given u ∈ R, there exist β ∈ M(α) and b ∈ M with b = βp, such that
b is not the pth power of an element of M , and

u = y0 + β + y2β
2 + · · ·yp−1β

p−1

where the yj ∈ M .

Proof We know that u '∈ M , so in (7.1) some us '= 0 for 1 ≤ s ≤ p − 1. Let β = usαs,
and let b = βp. Then b = up

sα
sp = up

sa
s, and if b is a pth power of an element of M then

as is a pth power of an element of M , contrary to Lemma 7.5(1). Therefore b is not the
pth power of an element of M .

Now s is prime to p, and the additive group Zp is cyclic of prime order p, so s generates
Zp. Therefore the powers βj of β run through the powers of α precisely once as j runs
from 0 to p − 1. Since β0 = 1, β1 = αs, we have

u = y0 + β + y2β
2 + · · ·+ yp−1β

p−1

for suitable yj ∈ M , where in fact y0 = u0. !

Lemma 7.7 Let q ∈ Σ. Then the minimal polynomial of q over Q splits into linear
factors over L.

Proof The polynomial
fq(x) =

∏

σ∈S5

(x − σ(q))

has q as a zero. Symmetry under S5 implies that fq ∈ Q[x]. The minimal polynomial mq

of q over Q divides fq, and fq is a product of linear factors; therefore mq is the product
of some subset of those linear factors. !

We are now ready for the climax of Galois Lite:
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Proof of Theorem 2.1 We prove the theorem by induction on the height h of R.
If h = 0 then the theorem is obvious.
Suppose that h ≥ 1. Then R = R1(α) where R1 is radical of height h − 1, and

αp ∈ R1, α '∈ R1, with p prime. Let αp = a ∈ R1.
By Lemma 7.6 we may assume without loss of generality that

u = u0 + α + u2α
2 + · · ·+ up−1α

p−1

where the uj ∈ R1. (Replace α by β as in the lemma, and then change notation back to α.)
The mimimum polynomial m of x over Q splits into linear factors in Σ by Lemma 7.7. In
particular, u is a zero of m, while all zeros of m lie in Σ. Therefore α, u0, u2, . . . up−1 ∈ Σ.

Also, α, u0, u2, . . . up−1 ∈ R1. The height of R1 is h − 1, so by induction, each of
these elements lies in some radical extension of Q that is contained in Σ. The subfield
J generated by all of these elements is clearly radical, and contains αp, u0, u2, . . . up−1.
Then u ∈ J(α) ⊆ Σ, and J(α) is radical. This completes the induction step, and with
it, the proof. !
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