1 Limits On How Well We Can Approximate $a + \sqrt{b}$ With Rationals

Let SQ be the set of squares of naturals. Let SQQ be the set of squares of rationals.

We want to find see how well we can approximation $a + \sqrt{b}$. Since shifting by a natural number does not change how well the $a + \sqrt{b}$ can be approximated, and we want \sqrt{b} to be real and irrational, we only look for $a \in \{0\} \cup Q - N$ and $b \in Q^+ - SQQ$.

We get conditions on a, b and the approximation bounds at the end. We will determine a, b, Δ to satisfy the following:

$$(\exists^{\infty} p, q \in \mathsf{N}) \left[\left| \frac{p}{q} - (a + \sqrt{b}) \right| < \frac{\Delta}{q^2} \right] \implies A \text{ CONTRADICTION.}$$

Assume p, q, Δ are such that $\left| \frac{p}{q} - (a + \sqrt{b}) \right| < \frac{\Delta}{q^2}$.

We will find (a, b, Δ) such that if q is large we get a contradiction. There exists $\delta < \Delta$ such that

$$\begin{split} \left| \frac{p}{q} - (a + \sqrt{b}) \right| &= \frac{\delta}{q^2}. \\ p - q(a + \sqrt{b}) &= \frac{\delta}{q} \\ \frac{\delta}{q} &= p - aq - \sqrt{b}q \\ \frac{\delta}{q} + \sqrt{b}q &= p - aq \\ \left(\frac{\delta}{q} + \sqrt{b}q \right)^2 &= (p - aq)^2 \\ \frac{\delta^2}{q^2} + 2\frac{\delta}{q}\sqrt{b}q + q^2b &= p^2 - 2apq + q^2a^2 \\ \frac{\delta^2}{q^2} + 2\delta\sqrt{b} &= p^2 - 2apq + q^2a^2 - q^2b \end{split}$$

$$\frac{\delta^2}{q^2} + 2\delta\sqrt{b} = p^2 - 2apq + q^2a^2 - q^2b = p^2 - 2apq + q^2(a^2 - b)$$

Want that as $q \to \infty$ LHS $\notin \mathbb{Z}$ and RHS $\in \mathbb{Z}$. LHS $\notin \mathbb{Z}$: $2\delta\sqrt{b} < 1$, so $\delta < \frac{1}{2\sqrt{b}}$. SO we can take $\Delta = \frac{1}{2\sqrt{b}}$. RHS $\in \mathbb{Z}$.

Note that p, q could be ANYTHING IN Z. Hence we need to make have $2apq \in \mathsf{Z}$ and $a^2 - b \in \mathsf{Z}$. Recall that $a \in \{0\} \cup \mathsf{Q} - \mathsf{N}$ and $b \in \mathsf{Q}^+ - \mathsf{S}\mathsf{Q}\mathsf{Q}$. To make $2apq \in \mathsf{Z}$ need $a \in \{-\frac{1}{2}, 0, \frac{1}{2}\}$.

- 1. a = 0: To make $q^2(a^2 b) \in \mathsf{Z}$ we need $b \in \mathsf{N} \mathsf{SQ}$. Upshot It works to take $a = 0, b \in \mathsf{N} - \mathsf{SQ}$, and $\Delta = \frac{1}{2\sqrt{b}}$.
- 2. $a = \frac{1}{2}$: To make $q^2(a^2 b) \in \mathsf{Z}$ we need $q^2(\frac{1}{4} b) \in \mathsf{Z}$. Hence

$$b \in X = \left\{ \frac{c}{4} : c \equiv 1 \pmod{4}, c \notin \mathsf{SQ} \right\}.$$

Upshot It works to take $a = \frac{1}{2}$, $b = \frac{c}{4}$ where $c \equiv 1 \pmod{4}$, $c \notin SQ$, and $\Delta = \frac{1}{2\sqrt{b}} = \frac{1}{\sqrt{c}}$.

3. $a = -\frac{1}{2}$: To make $q^2(a^2 - b) \in \mathsf{Z}$ we need $q^2(\frac{1}{4} - b) \in \mathsf{Z}$. Hence

$$b \in Y = \left\{ \frac{c}{4} : c \equiv 1 \pmod{4}, c \notin \mathsf{SQ} \right\}.$$

Upshot It works to take $a = -\frac{1}{2}$, $b = \frac{c}{4}$, $c \equiv 1 \pmod{4}$, $c \notin SQ$, and $\Delta = \frac{1}{2\sqrt{b}} = \frac{1}{\sqrt{c}}$.

How big does q have to be? Need

$$\frac{\delta^2}{q^2} + 2\delta\sqrt{b} < 1$$

 δ is at most $\Delta,$ so we need

$$\Delta^{2} + 2\Delta\sqrt{b}q^{2} < q^{2}$$
$$\Delta^{2} + 2\Delta\sqrt{b}q^{2} < q^{2}$$
$$\Delta^{2} < q^{2}(1 - 2\Delta\sqrt{b})$$
$$q^{2} > \frac{\Delta^{2}}{1 - 2\Delta\sqrt{b}}$$

		1	
a	b	$\Delta = \frac{1}{2\sqrt{b}}$	empirical Δ
0	2	$\frac{1}{2\sqrt{2}} =$	
0	3		
0	5	1 _	
$ \begin{array}{c c} 0 \\ \frac{1}{2} \\ 0 \end{array} $	$ \frac{5}{4} $	$\frac{1}{2\sqrt{5}} \equiv$	
$\tilde{0}$	6	$\frac{\frac{1}{\sqrt{5}}}{\frac{1}{2\sqrt{6}}} =$	
0	7	$\frac{1}{2\sqrt{7}} =$	
0	8	$\frac{\frac{2}{1}}{2\sqrt{8}} =$	
0	10	$\frac{1}{2\sqrt{10}} =$	
0	11	$\frac{1}{2\sqrt{10}} =$	
0	12	$\frac{1}{2\sqrt{12}} =$	
0	13	$\frac{1}{2\sqrt{13}} =$	
$\frac{1}{2}$	$\frac{13}{4}$	$\frac{1}{\sqrt{13}} =$	