
Open Problems Column
Edited by William Gasarch

This Issues Column! This issue’s Open Problem Column is by Daniel Frishberg and William
Gasarch. It is about Different Ways to Prove a Language is Not regular.

Request for Columns! I invite any reader who has knowledge of some area to contact me and
arrange to write a column about open problems in that area. That area can be (1) broad or narrow
or anywhere inbetween, and (2) really important or really unimportant or anywhere inbetween.

Different Ways to Prove a Language is Not Regular
.

By Daniel Frishberg and William Gasarch

1 Introduction

One semester when I (William Gasarch) was teaching Formal Language Theory a very bright
math major was taking the class and said Why teach the pumping lemma when you an prove
everything from the Myhill-Nerode Theorem? That statement might be correct mathematically
though not pedagogically. However, it raises the question: there are many ways to prove languages
not regular— how do they compares?

2 Reductions

Notation 2.1 Let Σ be a finite alphabet, σ ∈ Σ, and w ∈ Σ∗. Then #σ(w) is be the number of
σ’s in w.

The following is a common exercise in a course in formal language theory.

1. Show that X1 = {anbn : n ∈ N} is not regular.

2. Show that X2 = {w : #a(w) = #b(w)} is not regular.

3. Show that X3 = {w : #a(w) 6= #b(w)} is not regular.

One can prove X1 is not regular using the pumping lemma. One can prove X2 is not regular
either by using the pumping lemma (a version with bounds on the prefix) or by contradiction: if
X2 is regular than X2 ∩ a∗b∗ = X1 is regular. One cannot prove X3 non-regular with the pumping
theorem directly; however one can prove its regular by contradiction: if X3 is regular than X3 = X2

is regular.
We will view the proofs by contradiction as reductions.

Def 2.2 Let Σ be a finite alphabet.

1. For every regular B ⊆ Σ∗ let fB : 2Σ∗ → 2Σ∗
be fB(A) = A ∩ B. Note that if A is regular

then fB(A) is regular. Let FREG = {g : (∃B regular g = fB}.

2. Let COMP : 2Σ∗ → 2Σ∗
be COMP (A) = A.

1

3. Let RED = {g1 ◦ g2 ◦ · · · ◦ gk : (∀i)[gi ∈ FREG or gi = COMP}

4. Let X,Y ⊆ Σ∗. X ≤ Y if there exists h ∈ RED such that h(Y) = X.

Example 2.3

1. X1 ≤ X2 via h = fa∗b∗ .

2. X2 ≤ X3 via h = COMP .

The following theorem is easy and left to the reader.

Theorem 2.4 If A is not regular and A ≤ B then B is not regular.

Convention 2.5 When we have a technique to show languages are not regular we also include
languages whose non-regularity is obtained by reduction. Hence we will say X3 can be proven
not-regular by the Pumping Lemma

We could expand the definition of A ≤ B by allowing more reductions based on other closure
properties of regular languages. We have never found a case where we needed to do so. We have
never even found a case where doing so made a proof of regularity easier.

3 The Pumping Lemma

There are many different pumping lemmas. We choose the most powerful one we know that is
reasonable to present to a class of undergraduates.

Theorem 3.1 If L is regular than there exists n0 such that, for all w ∈ L, for all prefixes x′ of w,
there exists x, y, z such that the following hold:

1. w = x′xyz

2. |x| ≤ n0

3. y 6= e

4. (∀i ≥ 0)[xyiz ∈ L].

As noted in Section 2 It is a standard exercise to show that X1, X2, X3 are not regular using
the pumping lemma. {af(n) : n ∈ N} is regular iff f is a finite variant of a function of the form
f(n) = an+ b where a, b ∈ N.

Ehrenfeucht, et al [3] exhibit, for all languages Z ⊆ {1, 2}∗, a languages LZ (the mapping Z
goes to LZ is injective) such that LZ cannot be proven not regular by (an advanced version of) the
Pumping Lemma. Since most of these LZ are not regular, this would seem show there are many
non-regular languages that cannot be proven non-regular by the pumping lemma. However, in the
appendix of this open problems column we show that LZ is regular iff Z is regular, so this does not
give an example.

The following candidates have been suggested; however, they can be proven non-regular by
pumping and closure. We leave these proofs as an exercise.

1. {aibj : i, j are relatively prime}.

2. {xxRw : x,w ∈ Σ∗ − {e}}. (xR is x written backwards.)

2

4 Kolmogorov Complexity

Def 4.1 The Kolmogorov complexity of a string x, denoted KC(x), is the length of the shortest
program that prints out x. For example, the C(an) ≤ lg(n)+O(1) since the n in binary takes lg(n)
bits and the following program prints out an

For i = 1 to n print(a).

If you flip a coin n times and record the heads and tails to obtain a string x of length n then
the shortest program that prints x is likely to be

print(x).

Hence C(x) = n+O(1).

For more on Kolmogorov complexity see the awesome book by Li and Vitanyi [7].
Li and Vitanyi have proven (see [6] or [7]) the following:

Def 4.2 Let L be a language. For all x ∈ Σ∗ let Lx = {y : xy ∈ L}.

Theorem 4.3 (The Li-Vitanyi Non-Regularit Theorem.) Let L be a language. The following are
equivalent.

1. L is regular.

2. For all x, if y is the nth element of Lx then C(y) ≤ C(n) +O(1).

We give four examples of showing languages non-regular using Theorem 4.3. They are all from
Vitanyi and Li [7].

1) Let f(i) : N → N be any function such that lim inf i→∞f(i + 1) − f(i) = ∞. Let A be the
image of f . Let L1 = {1i : i ∈ A}.

Assume L1 is regular. Let m be arbitrary but large. Let i and j be consecutive elements of A
such that C(j − i) = log(m) + O(1) (any nonconstant function will suffice). Let x = 1i. The first
y (so n = 1 in Theorem 4.3) such that xy ∈ L1 is y = 1j−i. By Theorem 4.3.

C(y) = C(1j−i) = C(j − i) +O(1) = log(m) +O(1) ≤ C(1) +O(1) = O(1).

Since m is arbitrarily large this is a contradiction.

2) L2 = {xxRw : x,w ∈ Σ∗ − {e}}.
Assume L2 is regular. Let m be arbitrary but large. Let x = (01)m where C(m) = logm+O(1)

(any nonconstant function will suffice). The first y (so n = 1 in Theorem 4.3) such that xy ∈ L2 is
y = (10)m0. By Theorem 4.3.

C(y) = C((10)m0) = C(m) +O(1) = log(m) +O(1) ≤ C(1) +O(1) = O(1).

Since m is arbitrarily large this is a contradiction. This is a contradiction.

3

3) L3 = {0i1j : gcd(i, j) = 1}.
Assume L3 is regular. Let m be arbitrary but large. Let x = 0(p−1)! where C(p) = logm+O(1)

(any nonconstant function will suffice). The first y (so n = 1 in Theorem 4.3) such that xy ∈ L3 is
y = 1p By Theorem 4.3.

C(y) = C(1p) = C(p) +O(1) = log(m) +O(1) ≤ C(1) +O(1) = O(1).

Since m is arbitrarily large this is a contradiction. This is a contradiction.

4) L4 = {p : p is a prime expressed in binary}. We give two proofs
Proof one: If L4 is regular then L4 ∩ 1∗ is regular. This is the set of binary representations of
primes of the form 2n−1. These are called Mersenne primes. It is know that if 2n−1 is a Mersenne
prime then n is prime. Hence the elements of L4 ∩ 1∗ can be arbitrarily far apart. Hence they are
a language of L1-type and is not regular.
Proof two: Assume L4 is regular. Let pi be the ith prime. Let m be arbitrary but large. Note
that if x, y ∈ {0, 1}∗ then xy is the number x2|y| + y.

We first present an approach that does not quite work. Let k be such that all numbers y larger
than the first pk have C(y) ≥ logm + O(1) (any nonconstant function will suffice). Let x be the
binary representation of the product of the first k primes.

Let xy be prime. Then x2|y|+ y is a prime. Since x is the product of the first k primes y is not
divisible by any of the first k primes. So it seems that y must be > pk. But that is not true. y = 1
could work. For example:

2× 3× 5× 7× 11 = 2310 so x = 100100000110
x1 = 100100000110 : 1 = 121441 which is prime.
Even if x1 is not prime, x01 could be prime. So we need to pre-plan what prime we want xy to

be. The key is that we don’t want it to end in 0 ∗ 1.
We now present the real proof. Let k be a number to be determined later. Let u be the binary

representation of the product of the first k primes. Claim: There exists v such that u2|v| + v is
prime and v is not in 0∗1.
Proof: Consider the interval I = [u2|u|, u2|u| + (u2|u|)11/20]. Note that (1) u2|u| in binary is u
followed by |u| 0’s, and (2) u2|u| + (u2|u|)11/20 in binary is u followed by some |u|-long sequence.
Health-Brown and Iwaniec showed that, for all n, there is a prime in [n, n11/20]. The prime p in I
is of the form u2|u| + v where |v| = |u|.
End of Proof of Claim

Let x be the binary representation of the product of the first k primes.
There is good new and bad news here:

1. Assume xy is a prime. Then x2|y| + y is a prime. Since x is the product of the first k primes
y is not divisible by any of the first k primes. Yeah!

2. y could be 1. Or 01. Or 001. Etc.

Let y be the first y (so n = 1 in Theorem 4.3) such that xy ∈ L4. Then x2|y| + y has to be
prime. Since the first k primes divide x, y has to have as a factor some prime that is not in the
first k primes. Hence y is larger than any of the first k primes. Hence C(y) ≥ logm + O(1). By
Theorem 4.3.

C(y) ≤ C(1) +O(1) = O(1).

4

Since m is arbitrarily large this is a contradiction.
Note that in the proofs that L1, L2, L3, , L4 are not regular we did not need to use reductions.

5 The Myhill-Nerode Theorem

Def 5.1 Given u, v ∈ Σ∗, u ≡R v if for all w ∈ Σ∗, uw ∈ L iff vw ∈ L.

Easily, this is an equivalence relation.

Theorem 5.2 A language L is regular iff L is a finite union of ≡R classes.

This theorem, known as the Myhill-Nerode theorem, is used to show that X1 is not regular: If
i, j ≥ 0, i 6= j, then ai 6≡R aj , because aibi ∈ X1, but ajbi /∈ X1. Therefore, there are ω distinct ≡R
classes, not finitely many. The same proof works for X2. For X3: ajbi ∈ X3, but aibi /∈ X3.

6 Monoids

Def 6.1 Given a language L ⊆ Σ∗ and words u, v ∈ Σ∗, define u ≡ v if for all x, y ∈ Σ∗, xuy ∈ L
iff xvy ∈ L.

Note 6.2 x ≡ y ⇒ x ≡R y. One may verify that Σ∗ is a monoid under concatenation (with λ as
the identity), and that ≡ is a congruence.

Def 6.3 Given L ⊆ Σ∗, let M = {[u] | u ∈ Σ∗}. Call the quotient monoid Σ∗/L, via the semigroup
homomorphism φ(u) = [u], the syntactic monoid, and denote it as M(L).

It is known that:

Theorem 6.4 If L is a language, then L is regular iff its syntactic monoid is finite.

Since the elements of M(L) are precisely the ≡ classes, this is identical to the statement of the
Myhill-Nerode theorem (except that the latter uses only equivalence on the right).

7 Communication Complexity

The techniques in this paper are essentially due to Birget [1] and Galister and Shallit [4].

Def 7.1 Let A ⊆ {0, 1}n × {0, 1}n. Imagine that Alice has x ∈ {0, 1}n and Bob has y ∈ {0, 1}n.
They want to determine if (x, y) ∈ A. The Communication Complexity of A is the minimum
number of bits they need to communicate in order for them both to know if (x, y) ∈ A.

Let
EQ = {(x, x) ∈ {0, 1}n × {0, 1}n}.
MAJ = {(x, y) ∈ {0, 1}n × {0, 1}n : #1(xy) ≥ n/2}
EQL = {(x, y) ∈ {0, 1}n × {0, 1}n : #0(xy) = #1(xy)}
The following are well known.

5

Theorem 7.2 D(EQ) = n+ 1, D(MAJ) = log(n) +O(1), D(EQL) = log(n) + 1.

Theorem 7.3 Let L be a language. Let n ∈ N. Let

Ln = {(x, y) : |x| = |y| = n ∧ xy ∈ L}.

If D(Ln) is not constant than L is not regular.

Proof: We show that if D(Ln) is regular via DFA M then D(Ln) is constant. Alice has x, Bob
has y. Alice runs M(x) and sends the resulting state q to Bob (this is a constant number of bits).
Bob then takes the state q and runs M from there with y. If the final result is (is not) an accept
state then xy ∈ L (xy /∈ L) , Bob knows this, and sends Alice a 1 (0).

Theorem 7.3 can be used to show that (1) X2 is not regular since D(EQ) is not constant, and
(2) {w : #a(w) ≥ #b(w)} is not regular since D(MAJ) is not constant. But what about X1? Here
Ln = {an/2bn/2} which does have D(Ln) = O(1). So we cannot use Comm Comp directly. We can
use it a different way.

The following proof is due to Narad Rampersad and Marzio De Biasi independently (they both
left comments on my blog post of October 16, Boss’s day!).

Theorem 7.4 If X1 is regular then D(EQ) = O(1). Hence X1 is not regular.

Proof: Assume X1 is regular via DFA M . We give the protocol that shows D(EQL) = O(1).

1. Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n. They want to determine if #0(xy) = #1(xy).

2. Let s be the start state of M . Alice runs M(s, 0#0(x)) and ends up at state p. Alice sends p
to Bob.

3. Bob runs M(p, 0#0(y)1#1(y) and ends up in state q. Bob sends q to Alice.

4. Alice runs M(q, 1#1(x)) and ends up in state r. If r is an accept state then transmit to bob
YEAH! If r is a reject stat then transmit to bob BOO!

8 E-F Games

We define a set of formulas and their interpretations. They are interpreted over a string w ∈ Σ∗.
The first order quantifiers will range over positions in the string. The second order quantifiers will
range over sets of positions in the string.

Def 8.1

1. Terms are used to refer to positions in the word. A term is (1) an expression of the form x+1
where x is a variable. (2) F , F + 1 (L, L+ 1). This is the index of the first (last) symbol in
the word, and the next one. Note that x+ 2, F + 2, L+ 2 are not terms.

6

2. Let t1, t2, t be terms, σ ∈ Σ, and X be a second order variable. The following are atomic
formulas:

(a) t1 = t2 + 1. This conveys the obvious meaning.

(b) t ∈ X. This conveys the obvious meaning.

(c) Qσ(t). This is interpreted as saying the tth letter in w is σ.

(d) PARTk(X0, . . . , Xk). The meaning is that X0, . . . , Xk are a partition of the indices of
the word.

3. A formula φ is defined recursively:

(a) Any atomic formula is a formula.

(b) If φ1, φ2, φ are formulas then φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ are formulas.

(c) If φ(x) is a formula with a free variable x (either first or second order, and there could
be other free variables as well) then (∃x)[φ(x)] and (∀x)[φ(x)] are formulas.

4. A sentence is a formula with no free variables. Note that if φ is a sentence and w ∈ Σ∗ then
φ is either true or false of w.

5. If w ∈ Σ∗ and φ is a sentence then w |= φ means that φ is true when interpreted over w.

6. Let n be an integer, and let m = (m1, . . . ,mk) be a sequence of integers. A formula φ is in
Σn,m if the prefix of φ is the formula PART (X0, . . . , Xn), followed by k alternating blocks
of first-order quantifiers (starting with either ∃ or ∀). (This is not the standard use of Σ in
logic, but it is close.)

7. L ∈ Σn,m if there is a sentence φ ∈ Σn,m such that

L = {w : w |= φ}.

Note 8.2 For simplicity, our language does not include = or <. With additional first- and second-
order quantifiers, these can both be derived from t1 = t2 + 1 and t ∈ X.

The following is essentially due to Büchi [2] (see also [8])

Theorem 8.3 A language L ⊆ Σ∗ is regular iff L ∈ Σn,(1). The sentence defining L is of the form

(∃X0) · · · (∃Xk)(∀x)[PART (X0, . . . , Xk) ∧ ψ(X0, . . . , Xk, x)].

Example 8.4

1. Σ = {a, b}. Let L = {w : #a(w) ≡ 0 (mod 3)}. If φ is as below then L = {w : w |= φ}.

(∃X0, X1, X2)(∀x) [
Qa(F)→ F + 1 ∈ X1∧ Qb(F)→ F + 1 ∈ X0

((x ∈ X0 ∧Qa(x+ 1))→ x+ 1 ∈ X1)∧ ((x ∈ X0 ∧Qb(x+ 1))→ x+ 1 ∈ X0)∧
((x ∈ X1 ∧Qa(x+ 1))→ x+ 1 ∈ X2)∧ ((x ∈ X1 ∧Qb(x+ 1))→ x+ 1 ∈ X1)∧
((x ∈ X2 ∧Qa(x+ 1))→ x+ 1 ∈ X0)∧ ((x ∈ X2 ∧Qb(x+ 1))→ x+ 1 ∈ X2)]

7

2. Let the alphabet be {a, b}. Consider all B(Σn,(1)) sentences. They have 0 second order
variables and 2 first order variables. Informally, all they can express is the presence or
absence of various combinations of a, b, aa, ab, ba, bb (and in particular, if all a are followed by
an a (or b), and if all b are followed by an a (or b)). Hence if two strings agree on all of those
properties they cannot be distinguished by a Σn,(1) sentence. Therefore the strings

aaabbbaaa, aaabbbbaaa

satisfy the same Σ(0),(1) sentences.

Ehrenfeucht-Fräıssé games are a way to show that a set of structures is not definable by a
particular logical language. We adapt a version of such games, based on work of Ladner [5] and
Thomas [9], to show that a set of strings is not regular.

The intuition behind the game is that there are two strings u 6= v. Spoiler wants to prove to
Duplicator (henceforth Dup) that these strings are different. Spoiler chooses a subset of positions
in u (or v) or a position in u (or v) and in effect challenges Dup to come up with a subset of
positions or a position in the other string that is analogous.

We define two notions of strings being equivalent and later state that these notions are equiva-
lent. One involves truth; one involves games.

Notation 8.5 For u, v ∈ Σ∗, if for all φ ∈ Σn,m, u |= φ iff v |= φ, then write u ≈n,m,T v. (T
stands for Truth.)

Def 8.6 Let Gn,m(u, v) be the following game played by Spoiler and Dup.

1. Set up: There are two strings u, v ∈ Σ∗. n ∈ N and m = (m1, . . . ,mk).

2. Spoiler n-colors the positions in u (or v) which we express as a partition denoted (Su,1, . . . , Su,n)
(denoted (Sv,1, . . . , Sv,n). Dup n-colors the positions in v (or u), denoted (Sv,1, . . . , Sv,n) (de-
noted (Su,1, . . . , Su,n)). (Dup must n-color the string that Spoiler does not.)

3. For 1 ≤ i ≤ k, Spoiler chooses a position in u (or v) denoted iu (denoted iv). Dup chooses a
position in v (or u) denoted iv (denoted iu).

4. At the end we have two tuples (Su,1, . . . , Su,n, 1u, . . . , ku) and (Sv,1, . . . , Sv,n, 1v, . . . , kv). Dup
wins if the following hold

(a) For all 1 ≤ i ≤ k iu = F iff iv = F . iu = L iff iv = L.

(b) For all 1 ≤ i ≤ k, for all σ ∈ Σ, Qσ(iu) = Qσ(iv) and Qσ(iu + 1) = Qσ(iv + 1) (or they
both do not exist).

(c) For all 1 ≤ i, j ≤ k iu = ju + 1 iff iv = jv + 1.

(d) For all 1 ≤ i ≤ k, 1 ≤ j ≤ n iu ∈ Su,j iff iv ∈ Sv,j .
(e) Dup wins Gn,m(u, v) means that Dup has a winning strategy in that game. Similar for

Spoiler.

(f) If Dup wins Gn,m(u, v) then we write u ≈n,m,G v. (G stands for Game.)

8

Here is the important theorem that links the game to the logic.

Theorem 8.7

1. For all n,m ∈ N for all u, v ∈ Σ∗, u ≈n,m,T v iff u ≈n,m,G v.

2. Let L ⊆ Σ∗. Assume that, for all n, there exists u, v with u ∈ L and v /∈ L such that Dup
wins Gn,(1)(u, v). Then L is not regular. This follows from Part 1 and Theorem 8.3.

Example 8.8 Let u = a9 and v = a7. Consider the game Gn,m(u, v), where n = 3,m = (1).
Certainly u 6≈n,m,T v, as the sentence from Example 8.4.2 shows. We use this formula to guide
Spoiler to victory. In the case where Spoiler plays first on u, we examine what Dup can do and
how Spoiler can then counter it.

1. On the first set move, Spoiler colors u via RWBRWBRWB

2. Clearly Dup has to color v beginning RW . Since W is always followed by B, the next color
has to be B. Keep going this way and we have that v must be colored RWBRWBR. But
then the colors of the L’s differ and Spoiler wins.

The example points to the following definition and lemma.

Def 8.9 If COL is a k-coloring of u ∈ Σ∗ then the induced coloring is the coloring COL′(i) =
(COL(i), ui). We will refer to the induced colored strings as u′, v′.

Def 8.10 Let u, v ∈ Σ∗. Assume that u and v have been k-colored. Let u′, v′ be the induced
|Σ|k-colorings. Let u′ ≈2 v

′ if u′ and v′ share a prefix and suffix of length 2, and for every substring
w of one word, if |w| ≤ 2, then w occurs in the other word. (This definition can be applied to any
strings and we can also define ≈3, etc; however, we do not do that so we can cut down on notation.)

Lemma 8.11 For all n > 0, let k = 2n2, l = k + 2, i = (k!)lnl, j = i+ k!. Then, for every word
w1 ∈ Σi, where n = |Σ|, there exists a word w2 ∈ Σj such that w1 ≈2 w2. In particular, there exist
x, v, u, y ∈ Σ∗ such that w2 = xvruy for some r > 0.

Proof: n2 is the number of distinct words of length 2. Let k = 2n2, l = k!, i = (k!)lnl, j = i+k!.
Let |w1| = i. In w1, some subword |u| = 2 must occur more than once, since i > 2n2. I.e.,
w1 = xuzuy, for some x, y, u, z. Let v = uz,w2 = x(uz)ruy = xvruy, for any r > 0. Every
sequence of length 2 in w1 occurs in either x, u, z, or y, or at the boundary of two or more of these.
If it occurs within x, y, u, or z, it also occurs in w2 since x, y, u, z occur in w2. If it occurs at the
boundary of x and u, or of u and y or u and z, it will occur at the same boundary in w2. Similar
reasoning shows that every such sequence in w2 occurs in w1, and that the prefixes and suffixes of
length 2 are identical.

Lastly, |v| | k! = j − i, since |v| ≤ k. Let r = k!
|v| + 1. Then |w2| = j, and w1 ≈2 w2.

Before proving our main result, we illustrate the mechanism in Lemma 8.11 with an example.

9

Example 8.12 Let Σ = {R,B}. Let n = |Σ| = 2. For this example, we can actually do a little
better than the extremely large values for i and j. Let i = 10, j = 34 = i+ 24. (For all 1 ≤ m ≤ 4,
2m|24.) Let
w1 = xuzu = (BB)(RR)(RBBR)(RR). We can “pump” the substring uzu to obtain
w2 = x(uz)5u = (BB)(RRRBBR)5(RR), which is of length 34.

Note that we could have chosen any |w1| = 10, and we could have found a substring to pump,
of length 2, 4, 6, or 8. These all divide 24, so we would always be able to produce w2 ≈2 w1.

Lemma 8.13 Let n = |Σ|, i, k, l, j be as in Lemma 8.11. Then given w2 ∈ Σj, there exists w1 ∈ Σi

such that w1 ≈2 w2.

Proof: First, note that nl = n2n2+2 is the number of all possible strings of length 2n2 + 2 over
Σ. Thus if a word |w2| = k!lnl + k!, then at least one string of length l = 2n2 + 2 appears at least
(2n2)! times in w2. Let |w1| = i = k!l(nl), and recall that |w2| − |w1| = j − i = (2n2)!. Then recall
that any string s of length ≥ 2n2 + 2, is of the form xuzuy, where |u| = 2 and |z| > 0. Note that
if some s = xuzuy occurs in w2 more than once, we may in every occurrence but one replace s
with t = xuy: in this way, the only substrings of length 2 deleted from w2 occur in z or at the
boundary of u and z. But these certainly appear in the one remaining occurrence of s. Thus, since
a substring s of length 2n2 + 2 must occur at least (2n2)! times in w2, we can replace uzu with u in
any number of occurrences of s from 1 to (2n2)!−1. Since 2 ≤ |zu| ≤ 2n2, there exists some integer
1 ≤ q ≤ (2n2)!/2 < (2n2)! − 1 such that q|zu| = (2n2)!. Therefore, we may cut q occurrences of
|zu|, obtaining w1 ≈2 w2.

Example 8.14 We illustrate the mechanism in Lemma 8.13. To simplify our illustration (and use
smaller words), we take the liberty of choosing a particular w2. Let i = 26, j = 50. Let
w2 = ((BB)(RR)(RBBR)(RR))5.

Cut four occurrences of (RR)(RBBR) to obtain
w2 = ((BB)(RR))4((BB)(RR)(RBBR)(RR)) ≈2 w1.

Lemma 8.15 If u ≈n,m,G v, then for all w, uw ≈n,m,G vw.

Note 8.16 This lemma is known; its proof is simply to combine Dup’s strategy in the E-F games
on u, v and on w,w.

Lemma 8.17 Let w1 ≈2 w2. Dup has a winning strategy in G0,(1)(w1, w2).

Proof: Let Spoiler select position s in either word. Since w1 ≈2 w2, Dup can select t in the
other word s.t. s = L (s = F) iff t = L (t = F), and for all σ ∈ Σ, Qσ(s) = Qσ(t), and, if s 6= L,
then Qσ(s+ 1) = Qσ(t+ 1). I.e., Dup wins.

Theorem 8.18 X1 is not regular.

10

Proof: For all n > 0, let i and j be as in Lemma 8.11. Let Σ = {a, b}, and let w1 = ai, w2 = aj .
Let Gn,(1) be played on w1, w2. Suppose that in the first move, Spoiler n-colors w1, inducing the
colored string w′1 over the induced alphabet Σ′. By Lemma 8.11, we may pump some substring of
w′1, obtaining a string w′2 ≈2 w

′
1, with |w′2| = j = |w2|. Let Dup color w2 so as to induce w′2.

Now suppose that in the first move, Spoiler n-colors w2, inducing w′2 ∈ Σ′. By Lemma 8.13, we
may cut substrings of w′2 to obtain w′1 ≈2 w

′
2, with |w′1| = i = |w1|. Let Dup induce w′1.

Now the remainder of the game is equivalent to the game G(0),(1)(w
′
1, w

′
2). By Lemma 8.17, Dup

has a winning strategy in this game, so Dup has a winning strategy in Gn,(1)(w1, w2). Therefore
ai ≈n,m,G aj . By Lemma 8.15, aibi ≈n,m,G ajbi. Therefore, by Theorem 8.7, aibi ≈n,m,T ajbi. But
aibi ∈ X1 and ajbi /∈ X1. Therefore X1 /∈ Σn,(1), and by Theorem 8.3, X1 is not regular.

9 Compare and Contrast

We have presented several techniques to prove a language is not regular. How do they compare?
Open Problem:

1. For each technique T above determine if there is a non-regular language that cannot be shown
non-regular using that technique (and reductions).

2. For all ordered pairs of techniques (T1, T2) determine if there is a non-regular language that
can be shown non-regular using T1 but not T2.

3. For each technique T define a notion of length-of-proof-of-non-regularity. Let LENT (L) be
the length of the shortest proof that L is not regular using technique T. For all ordered pairs
of techniques (T1,T2) determine if there is a family of non-regular language {Ln}∞n=1 such
that LENT1(L)� LENT2(L).

A Showing The Ehrenfeucht-Parikh-Rozenberg Language Not Reg-
ular by Closure

Ehrenfeucht, et al [3] exhibit, for all languages Z ⊆ {1, 2}∗ a languages LZ (the mapping Z goes
to LZ is injective) such that LZ cannot be proven not regular by the Pumping Lemma (they show
this for a rather advanced version of the pumping lemma). Since most of these LZ are not regular,
this would seem show there are many non-regular languages that cannot be proven non-regular by
the pumping lemma. In this note we show that, using closure properties and a simple form of the
pumping lemma, the languages LZ that are non-regular can be proven to be non-regular.

Notation A.1

Σ is the 16-letter alphabet {(i, j) : 0 ≤ i, j ≤ 3}.
f1 : Σ→ Σ is defined by

f1((i, j)) = (i+ 1(mod 4), j)

f2 : Σ→ Σ be defined by

f2((i, j)) = (i, j + 1(mod 4))

11

Note that f1(f2(σ)) 6= f2(f1(σ)).

Def A.2 A string x is legal if

1. x = (σ1)n1(σ2)n2 · · · (σm)nm where n1, n2, . . . ,m ≥ 1.

2. σ1 = (0, 0).

3. For all 2 ≤ i ≤ m, either σi = f1(σi−1) or σi = f2(σi−1).

Example:

(0, 0)(1, 0)(1, 0)(1, 0)(2, 0)(2, 1)(3, 1)(0, 1)

We associate to every legal string the sequence of transitions that cause σi to go to σi+1, called
the code string. Note that above:

f1(0, 0) = (1, 0)
f1(1, 0) = (2, 0)
f2(2, 0) = (2, 1)
f1(2, 1) = (3, 1)
f1(3, 1) = (0, 1).
So we associate code string 11211.
Lets go in the other direction: We give legal strings with code string 11211:

(0, 0){(1, 0)}≥1{(2, 0)}≥1{(2, 1)}≥1{(3, 1)}≥1{(0, 1)}≥1

Def A.3 Let x ∈ Σ∗. The parity of x is the parity of the sum of all of the components of x.

Example: The parity of

(0, 0)(1, 0)(1, 0)(1, 0)(2, 0)(2, 1)(3, 1)(0, 1)

is

0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 2 + 0 + 2 + 1 + 3 + 1 + 0 + 1 (mod 2) = 1.

Def A.4 Let Z ⊆ {1, 2}∗. Let

LZ = {x : x is legal and (∃z ∈ Z)[x has code strings z]} ∪ {x : x is not legal and parity(x)=0}

We leave the following easy theorem to the reader.

Theorem A.5 If Z is regular than LZ is regular.

Ehrenfeucht, et al [3] prove that, for all Z, LZ cannot be proven non-regular using the pumping
lemma. Since there are an uncountable number of Z, and each Z gives a different LZ , there are an
uncountable number of non-regular languages that cannot be proven not-regular by the pumping
lemma.

We use closure properties to show that if LZ is regular than Z is regular.

12

Def A.6 Let Σ1 and Σ2 be finite alphabets. Let F : Σ1 × Σ1 → Σ2. We extend F , first to Σ∗1,
second to all subsets of Σ∗1.

1. Let F : Σ∗1 → Σ∗2 be defined by

F (σ1σ2σ3σ4 · · ·σn) = f(σ1σ2)f(σ2σ3) · · · f(σn−2σn−1)f(σn−1σn).

2. Let F : 2Σ∗
1 → 2Σ∗

2 be defined by

F (L) = {f(x) : x ∈ L}.

Lemma A.7 Let Σ1 and Σ2 be finite alphabets. Let f : Σ1×Σ1 → Σ2. Let F be as in definition A.6.
Let L ⊂ Σ∗1 such that If L is regular then F (L) is regular.

Theorem A.8 Let Z ⊆ {0, 1}∗. If LZ is regular then Z is regular.

Proof: Assume L = LZ is regular. Note that

PAR1 = {x : x has parity 1 }

is regular. Hence

L′ = L ∩ PAR1 = {x : x is legal and x has parity 1 and (∃z ∈ Z)[x has code strings z]}

is regular.
Let

NOD = {x = σ1 · · ·σn : (∀i ≤ n− 1)[σi 6= σi+1}

(NOD stands for NO Doubles.)
Note that NOD is regular. Hence
L′ ∩NOD is regular. If x ∈ L′ ∩NOD then the following hold:

1. x = σ1σ2 · · ·σm where, for all 1 ≤ i ≤ m− 1, σi 6= σi+1.

2. σ1 = (0, 0).

3. For all 2 ≤ i ≤ m, either σi = f1(σi−1) or σi = f2(σi−1).

4. x has parity 1.

5. x codes z.

One can easily construct a DFA for Z from a DFA for L′ ∩NOD. Hence Z is regular.

13

References

[1] J.-C. Birget. Intersection and union of regular languages and state complexity. Information
Processing Letters, 28, 1992.

[2] J. R. Büchi. Weak second order arithmetic and finite automata. Zeitschrift fuer Mathematik
und Physik, 6:66–92, 1960.

[3] A. Ehrenfeucht, R. Parikh, and G. Rozenberg. Pumping lemmas for regular sets. SIAM J.
Comput., 10(3):536–541, 1981.

[4] I. Glaister and J. Shallit. A lower bound technique for the size of nondterministic finite au-
tomata. Information Processing Letters, 52, 1996.

[5] R. Ladner. Application of model-theoretic games to discrete linear orderings and finite au-
tomata. Information and Control, 33:281–303, 1977.

[6] M. Li and P. Vitanyi. A new approach to formal language theory by Kolmogorove complexity.
SIAM J. Comput., 24(2):398–410, 1995.

[7] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity. Springer-Verlag, 2008.

[8] H. Straubing. Finite Automata, formal Logic, and Circuit Complexity. Progress in Computer
Science and Applied Logic. Birkhäuser, Boston, 1994.

[9] W. Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory. Mem-
oires de la Societe Mathematique de France, 16:11–12, 1984. http://eudml.org/doc/94847.

14

