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Abstract

We demonstrate the use of Kolmogorov complexity in average case analysis of algorithms
through a classical example: adding two n-bit numbers in dlog2 ne + 2 steps on average. We
simplify the analysis of Burks, Goldstine, and von Neumann in 1946 [2] and (in more complete
forms) Briley[1] and Schay[6].

1 Introduction

Fifty years ago, Burks, Goldstine, and von Neumann [2] obtained an upper bound of log2 n on the
expected carry sequence length (that is, the longest sequence of consecutive nonzero carries when
adding two n-bit binary numbers by the trivial ripple-carry algorithm). They did not propose
an algorithm for addition based on it. In computer architecture design, efficient design of adders
directly affects the length of the CPU clock cycle. The following algorithm (and its analysis using
[2]) for adding two n-bit binary numbers x and y is known to computer designers and can be
found in standard computer arithmetic design books such as [4] (in the algorithm, lsh stands for
left-shift.):1

begin no-carry adder

(sum, carry) := (x, y);
while carry 6= ~0 do

(sum, carry) := (sum⊕ carry, (sum ∧ carry) lsh 1)
end no-carry adder

The algorithm terminates when there is no carry, hence the name. In our analysis, we assume
that loop overhead and the time for an assignment statement or comparison to ~0 are negligible, and
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that (sum⊕ carry, (sum ∧ carry) lsh 1) can be calculated in a single time unit. Thus the running
time of this algorithm is the number of executions of the body of the while loop. It is well known
(and not hard to see) that this number is one greater than the length of the carry sequence for the
pair of inputs.

Thus the expected log2 n carry sequence length upper bound of [2, 1] implies that the no-
carry adder runs in expected time at most log2 n + 1.2 Schay [6] proves matching upper and lower
bounds on the carry sequence length of approximately log2 n−0.65, which implies that the no-carry
adder runs in expected time approximately log2 n + 0.35. But the proofs in [2, 1, 6] involve fairly
complicated probabilistic analysis. In this note, we will give a very simple proof of a log2 n + O(1)
upper bound using Kolmogorov complexity. (Kolmogorov complexity has already proved quite
useful in the average-case analysis of algorithms, e.g., in Ian Munro’s calculation of the expected
number of comparisons made by Heapsort [5, pp. 334–338].)

We briefly review the definition of Kolmogorov complexity and some of its basic properties.
For a more complete treatment of this subject, see [5]. Fix a universal Turing machine U with
binary input alphabet. The machine U takes two inputs p and y. U interprets p as a program and
simulates p on input y. The Kolmogorov complexity of a binary string x, given y, is defined as

C(x|y) = min{|p| : U(p, y) = x}.

Thus C(x|y) is the minimum number of bits from which x can be effectively reconstructed given y.
Let C(x) = C(x|λ), where λ denotes the null string.

It is often useful to allow the reconstruction of x to have |x| to work with. Formally we define,
for binary strings x, y and n ∈ N,

C(x|n, y) = min{|p| : U(p, 1n0y) = x}.

We will use this only in the case where n = |x|.
Clearly C(x|n, z) ≥ 0. For any universal program U , there is a constant δ (essentially the

overhead for a PRINT statement), such that C(x|n, z) ≤ n + δ. Because there are at most 2n−i

programs of length n− i, there are at most 2n−i strings satisfying C(x|n, z) = n− i, so for random
x of length n the probability that C(x|n, z) = n− i is at most 2−i. The key to using Kolmogorov
theory for average case analysis is to fix some parameter z, analyze the algorithm for inputs x

satisfying C(x|n, z) = n− i, and then take the weighted average over all i between −δ and n.

2 The Average Case Analysis

Theorem 1 For sufficiently large n, the no-carry adder runs in time at most dlog2 ne + 2 on
average.

2Although it runs in n steps in the worst case, the no-carry adder is the most efficient addition algorithm currently

known for the average case. On average, the no-carry adder is exponentially faster than the ripple-carry adder and

two times faster than the well-known carry-lookahead adder, which uses divide and conquer to add two n-bit numbers

in 2 log2 n + 1 steps. The carry-lookahead adder is used in nearly all modern computers. Both of those algorithms

can be found in almost any standard textbook, such as [4, 3].

2



Proof: Let n ≥ 2δ+1, so we have −δ ≥ 1 − dlog2 ne. Let s denote the bitwise complement of a
string s. For any x and y such that |x| = |y| = n, if the algorithm runs in exactly t + 1 steps on
input x, y, where t ≥ 1, then x and y can be written either as

• (x, y) = (x′bu1x′′, y′bu1y′′)

• or as (x, y) = (bu1x′′, bu1y′′)

where |x′| = |y′| ≥ 1, b ∈ {0, 1}, |u| = t − 1, and |x′′| = |y′′|. Then x can be described using y, n,
and a fixed program q that reconstructs x from the concatenation of the following binary strings:

• the position of u in y, encoded in binary with exactly dlog2 ne bits (padding with 0s if neces-
sary)

• x′x′′

Since the concatenation of the two strings above has length n − (t + 1) + dlog2 ne, it together
with n determines t. Thus C(x|n, y, q) ≤ n− t− 1 + dlog2 ne. Therefore, for any string x of length
n with C(x|n, y, q) = n− i where i ≥ 1−dlog2 ne, the algorithm must finish in at most dlog2 ne+ i

steps on input x, y.
Let pi denote the probability that C(x|n, y, q) = n − i where x is a uniform random string of

length n. Then pi ≤ 2−i and
∑

pi = 1. Summing over all possible values of i, we find that the
average running time for each y is bounded above by

n∑
i=−δ

pi(dlog2 ne+ i) =
n∑

i=−δ

pi dlog2 ne +
n∑

i=−δ

pii

≤ dlog2 ne +
∞∑
i=0

2−ii

= dlog2 ne + 2.

Since this holds for every y, dlog2 ne+2 is an upper bound on the average-case running time of the
algorithm.
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