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Abstract

A graph G = (V,E) is recursive if every node of G has a finite
number of neighbors, and both V and E are recursive (i.e., decidable).
We examine the complexity of identifying the number of connected
components of an infinite recursive graph, and other related problems,
both when an upper bound to that value is given a priori or not. The
problems that we deal with are unsolvable, but are recursive in some
level of the arithmetic hierarchy. Our measure of the complexity of
these problems is precise in two ways: the Turing degree of the oracle,
and the number of queries to that oracle. Although they are in several
different levels of the arithmetic hierarchy, all problems addressed have
the same upper and lower bounds for the number of queries as the
binary search problem, both in the bounded and in the unbounded
case.

1 Introduction

A graph G = (V,E) is recursive if every node of G has a finite number of
neighbors, and both V and E are recursive (i.e., decidable). We examine the
complexity of identifying the number of connected components of an infinite
recursive graph, and several variations of this problem.

Recursive graph theory can be viewed as part of Anil Nerode’s Recursive
Math Program. He proposes looking at nonconstructive proofs in Recursive
Mathematics and either making them constructive, or proving that it can
not be done. His notion of constructive is recursion-theoretic. Various people
have studied properties of recursive graphs. Bean [Bea76] has studied col-
orings, Manaster and Rosenstein [MR73] have studied matchings, and Harel
[Har91] has studied Hamiltonian paths. See [BG89a] for more references.
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This work follows the lines of [BG89a] and [BG89b], which study the
complexity of finding the chromatic number of a recursive graph both, when
that number is a priori bounded above by a constant, and when it is not. In
the present work we are concerned with the complexity of finding the number
of connected components of a recursive graph in both cases.

The problems that we deal with are unsolvable, but are recursive in some
level of the arithmetic hierarchy. Our measure of the complexity of these
problems is precise in two ways: the Turing degree of the oracle, and the
number of queries to that oracle. We show that:

1. Finding if a recursive graph has at most c connected components, for
a fixed c, requires an oracle of Turing degree 0

′′
(i.e., Σ2 or Π2),

2. The number of components can be found with dlog(c + 1)e queries to
0
′′
, but it cannot be found with dlog(c+ 1)e − 1 queries to any oracle,

even a more powerful one,

3. Determining if a recursive graph has a finite number of components
requires an oracle of Turing degree 0

′′′
,

4. The set of graphs with a finite number of infinite components requires
an oracle of Turing degree 0

′′′′
, and

5. Allowing free queries to weaker oracles almost always does not lower
the number of queries necessary to the more powerful oracle.

We also show that when no bound is set a priori, this problem is related
to unbounded search in two ways:

1. If f is a non-decreasing recursive function, and
∑
i≥0 2−f(i) ≤ 1 is effec-

tively computable, then the number of components of a recursive graph
Ge, nC(Ge), can be found with f(nC(Ge)) queries to 0

′′
, and

2. If G is an infinite recursive graph and there is a set X such that nC(G)
can be computed using f(nC(G)) queries to X, then

∑
0≤i 2

−f(i) ≤ 1.

Part (2) above can be interpreted as a lower bound for finding nC(G).
That result follows from a generalization of Theorem 9 in [BG89b], which
allows us to conclude that part (2) also applies to a wide class of problems,
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including the problems of finding the number of finite components and finding
the number of infinite components of an infinite recursive graph.

The rest of this paper is organized as follows. Section 2 presents defini-
tions, notation, and known results. In Section 3 we show that finding the
number of connected components of a recursive graph when that number is
bounded by a constant requires an oracle of degree 0

′′
, and that a binary

search algorithm uses the minimal number of queries necessary. This result
is tight in two ways: the lower bound on the number of queries holds even if a
more powerful oracle is used, and no matter how many queries are used, the
oracle must be of degree at least 0

′′
. Also in Section 3, we show that the set

of recursive graphs which have a finite number of components is Σ3-complete.
In Sections 4 and 5 we investigate the complexity of finding the number of
finite components and the number of infinite components, respectively. In
Section 6 we study whether or not the number of queries in each case can
be reduced if we allow queries to weaker oracles for free. In Section 7 we
describe the Unbounded Search Problem and some relevant previous results.
We also present the analysis of the complexity of identifying the number of
connected components of a recursive graph when no upper bound to that
number is set a priori. Section 8 is a study of whether or not the lower
bound can be reduced if we allow free queries to weaker oracles. Section 9
contains a brief review of the paper.

2 Notation and Definitions

All logarithms in this paper are base 2. M0,M1, . . . is an enumeration of
all Turing machines, and Me,s denotes machine Me running for at most s
steps (stages). Let We denote the domain of Me, and let We,s be We after
s stages, i.e., We,s = {0, 1, 2, . . . , s} ∩ {x|Me,s(x) ↓}. N represents the set
of natural numbers. K represents the halting set. FIN represents the set of
indices of functions that are only defined finitely often, i.e., {e|We is finite}.
TOT represents the set of indices of functions that are defined everywhere,
i.e., {e|We = N}. COF represents the set of indices of cofinite functions,
i.e., {e | N − We is finite}. It is shown in [Soa87] that K is Π1-complete,
FIN is Σ2-complete, TOT is Π2-complete, COF is Σ3-complete, and COF
is Π3-complete. We will use these results later to prove that other sets are
in the same classes.
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Let MA
0 ,M

A
1 , . . . be an enumeration of all oracle Turing machines that

are recursive in A (i.e., MA
i ≤T A). Then, A

′
= {e|MA

e (e) ↓}. φ
′

=

K = {e|Me(e) ↓}, φ′′ = {e |Mφ
′

e (e) ↓}, φ′′′ = {e |Mφ
′′

e (e) ↓}, . . . , φ(i) =

{e | Mφ(i−1)

e (e) ↓}. We say that an oracle has Turing degree 0(i) if it is
recursive in φ(i).

Recall that a graph G = (V,E) is recursive if every node of G has a
finite number of neighbors and both V ⊆ N, and E ⊆ [N]2 are recursive.
A graph G = (V,E) is highly recursive if G is recursive and the function
that produces all the neighbors of a given node is recursive. Throughout this
paper, all graphs are supposed to be undirected.

We represent recursive and highly recursive graphs by the Turing ma-
chines that determine their vertex and edge sets. An index for a recursive
graph is an ordered pair in which the first and second components are indices
for Turing machines which decide the vertex set and the edge set, respec-
tively. We denote a fixed recursive pairing bijection from N × N onto N
by [e1, e2], so the symbol ‘[x, y]’ is a natural number that corresponds to the
ordered pair (x, y). If Me1 and Me2 are total, then the number e = [e1, e2]
determines the recursive graph Gr

e = (V,E), where: V = {x | Me1(x) = 1},
and E = {[x, y] | x, y ∈ V and Me2([x, y]) = 1}. If Me1 or Me2 is not total,
then e does not determine a recursive graph. A number e = [e1, e2] deter-
mines a highly recursive graph if Me1 and Me2 are total, and when Me2

is interpreted as a mapping from N to finite subsets of N, if Me2(x) = Y
then for all y ∈ Y, x ∈ Me2(y) (i.e., Y is the set of vertices adjacent to
x). If e determines a highly recursive graph, then the highly recursive graph
determined by e is Ghr

e = (V,E), where: V = {x | Me1(x) = 1}, and
E = {[x, y] | x, y ∈ V and x ∈Me2(y)}.

Let e = [e1, e2] be a number that determines a recursive graph. We define
the approximation to Gr

e by stage s (Gr
e,s) to be the subgraph of Gr

e formed by
taking all nodes in the set {0, 1, 2, . . . , s} that are in the graph and connecting
them as they are connected in the graph. Formally, Gr

e,s = (Vs, Es), where:
Vs = {0, 1, 2, . . . , s}∩{x|Me1(x) = 1}, and Es = [Vs]2 ∩ {[x, y] |Me2([x, y]) =
1}.

The approximation to Ghr
e by stage s (Ghr

e,s) is defined inductively. Ghr
e,0 =

({0}∩V, ∅). For s > 0, Ghr
e,s is defined as the subgraph of Ghr

e formed byGhr
e,s−1

and all of its neighbors (together with the corresponding edges), plus vertex
s, if it is in Ghr

e . Formally, if Ghr
e,s−1 = (Vs−1, Es−1), then Ghr

e,s = (Vs, Es),
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where:
Vs = Vs−1 ∪ {x| x ∈Me2(y), for some y ∈ Vs−1} ∪ ({s} ∩ V ), and
Es = [Vs]

2 ∩ {[x, y] | x ∈Me2(y)}.

We denote the existence of a path between nodes xi and xj in a graph by
xi ./ xj.

Let Ge,s have connected components c(1,s), c(2,s), . . . , c(m,s). Then, let
|c(1,s)|, |c(2,s)|, . . . , |c(m,s)| represent the number of nodes in c(1,s), c(2,s), . . . ,
c(m,s), respectively. For each i, 1 ≤ i ≤ m, and some t ≥ s, c(ci,t) represents
the component of Ge,t which contains all nodes of c(i,s). (Hence, |c(ci,t)| repre-
sents the number of nodes in the component of Ge,t which contains all nodes
of c(i,s).)

Let nC(Ge), fC(Ge), and iC(Ge) denote, respectively, the number of
connected components, the number of finite components, and the number of
infinite components of a recursive graph Ge. For any c ≥ 1, we define three
functions:

nCc(G) =

{
nC(G) if 0 ≤ nC(G) ≤ c
c otherwise

fCc(G) =

{
fC(G) if 0 ≤ fC(G) ≤ c
c otherwise

iCc(G) =

{
iC(G) if 0 ≤ iC(G) ≤ c
c otherwise

Let γ(G) be a function from graphs into the naturals, such as nC, fC,
or iC. Then the partial function γn(G) is defined as follows.

γn(G) =

{
γ(G) if 0 ≤ γ(G) ≤ n
undefined otherwise.

If A and B are sets, then A⊕B is the set {2x | x ∈ A}⋃{2x+1 | x ∈ B}.
An oracle machine using oracle A ⊕ B can ask questions to either A or B.
When an even number is queried, we say that a query to A has been made,
and when an odd number is queried, we say that a query to B has been
made. If f and g are functions, f ≤T g means that f is Turing-reducible to
g. Let g be a total function and n ≥ 0 be a number. A partial function f is
in FQ(n, g) if f ≤T g via an oracle Turing machine which uses oracle g, and
never makes more than n queries. If g is the characteristic function of a set
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A, then we use the notation FQ(n,A). If B is a set, then f is in FQB(n,A)
if f ≤T A⊕B via an oracle Turing machine that, when using oracle A⊕B,
never asks more than n queries to A (although it may ask many queries to
B).

Note 2.1 The definition of FQ(n,A) still makes sense if “n” is replaced by
a function of the input. The statement “nC(G) ∈ FQ(f(nC(G)),X)” will
mean that computing the number of components of graph G can be done
with f(nC(G)) queries to X, assuming nC(G) is defined.

Let A be a set of natural numbers. The function χA, is the characteristic
function of A. We identify a set with its characteristic function.

Let A be any set and n ≥ 1 be a number. We define two functions:

#A
n (x1, x2, . . . , xn) = |{i | xi ∈ A}|.

FA
n (x1, x2, . . . , xn) = [χA(x1), χA(x2), . . . , χA(xn)] .

A real number r is effectively computable if there is a fixed algorithm that
takes a rational number y as input and determines if x < y.

Let D be a set of natural numbers. A binary prefix code for D is a
bijection from D onto a subset of {0, 1}∗ such that for any two strings x and
y in the range of the bijection, x is not a prefix of y.

A function f from N to N satisfies Kraft’s inequality if
∑
i≥0 2−f(i) ≤ 1.

In this paper we are not concerned with the problem of determining if
a number is an index of a recursive graph. We implicitly assume that the
indices are valid. Finding out if e determines either a recursive or a highly
recursive graph is Π2-complete. A promise problem is a set A and a func-
tion f , where domain(f) = A. A solution to a promise problem (A, f) is a
function g such that ∀x ∈ A, g(x) = f(x). A promise problem (A, f) is in
class A if it has a solution g, and g ∈ A. X≤m(A, f) if for all solutions g to
(A, f), X≤mg. Throughout this paper we deal with promise problems with
respect to indices.
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3 Number of Connected Components

In this section we show that finding if a recursive graph has at most c con-
nected components, for a fixed constant c, requires an oracle of Turing degree
0
′′
. We also show that dlog(c + 1)e queries is a tight bound on the number

of queries necessary to solve the problem, even if a more powerful oracle is
used. We finally show that determining whether a recursive graph has a finite
number of components requires an oracle of Turing degree 0′′′. All results in
this section hold for recursive and highly recursive graphs.

Theorem 3.1 For any natural k ≥ 1, NCk = {e | Ge has at most k con-
nected components } is Π2-complete.

Proof: We can rewrite NCk as NCk = {e | ∀x1, x2, . . . , xk+1 ∃s, i, j [xi ./
xj in Ge,s]}.

The function that, given e and s, checks whether xi ./ xj in Ge,s is
recursive, and is defined when Ge is recursive. Hence, NCk is in Π2.

We show that NCk is Π2-hard by showing that TOT ≤m NCk (i.e., given
x, we construct a recursive graph G(x) = G such that G ∈ NCk iff Mx is
total). The idea is to make several infinite components grow simultaneously,
and, at every stage s, to connect the components corresponding to elements
i and i + 1 iff all numbers j ≤ i are in Wx,s. The construction proceeds in
stages. Gs is the graph at the end of stage s. G is the limit graph lims→∞Gs.
The vertices of G are identified by pairs of naturals.

Construction
Stage 0. G0 = ({(0, 0)}, ∅).
Stage s+1. Let Gs = (Vs, Es).
Vs+1 = Vs ∪ {(i, s+ 1) | 0 ≤ i ≤ s} ∪ {(s+ 1, i) | 0 ≤ i ≤ s+ 1}.
Let f be the first natural such that f /∈ Wx,s.
Es+1 = Es ∪ {[(i, s), (i, s+ 1)] | 0 ≤ i ≤ s} ∪

{[(s+ 1, i), (s+ 1, i+ 1)] | 0 ≤ i ≤ s} ∪
{[(i, s+ 1), (i+ 1, s+ 1)] | 0 ≤ i ≤ f}.

End of Construction

Suppose Mx is total. Then, for each element i, there is a stage so when
j ∈ Wx,so ∀j ≤ i. Hence, the components corresponding to the first i elements
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will be interconnected by edges of type [(i, s + 1), (i + 1, s + 1)]. Thus, at
the limit, graph G will have exactly one component. Now, suppose that
Mx is not total, and let io be the first element such that io /∈ Wx. Then,
the components corresponding to elements io + 1, io + 2, . . . will represent
distinct connected components. Thus, at the limit, graph G will have an
infinite number of components.

Theorem 3.1 shows that determining the number of components of a
recursive graph requires an oracle of degree at least 0

′′
. The next theorem

gives an exact bound on how many queries to φ
′′

are required to actually find
nC(Ge), if a bound to that number is given. We use the following results,
which were proved in [BGGO93].

Lemma 3.2 If A and X are sets, A is nonrecursive, and n is any number,
then FA

2n /∈ FQ(n,X). (i.e., membership in A for 2n elements cannot be
decided using n (or less) queries to any oracle.)

Lemma 3.3 For any numbers x1, . . . , xn, given the value of |K∩{x1, . . . , xn}|,
the value of FK

n (x1, . . . , xn) can be computed.

Theorem 3.4 For any c ≥ 1, function nCc is in FQ(dlog(c + 1)e, φ′′), but
for any set X, nCc /∈ FQ(dlog(c+ 1)e − 1,X).

Proof: Using theorem 3.1 and a binary search on [0, c] for the proper
number of components, we obtain that nCc ∈ FQ(dlog(c+ 1)e, φ′′).
Let X be any set. To establish that nCc /∈ FQ(dlog(c + 1)e − 1,X), we
show that otherwise we have FK

2n ∈ FQ(n,X) (where n = dlog(c + 1)e −
1), which contradicts Lemma 3.2. We describe an algorithm to determine
FK

2n(x1, . . . , x2n) that will use only one call to the function nCc; hence, if nCc
is in FQ(n,X), then the function FK

2n is in FQ(n,X).

For i = 1, . . . , 2n, letGi =

{
({t}, ∅) if xi ∈ K, where xi /∈ Wxi,t−1, xi ∈ Wxi,t

(∅, ∅) if xi /∈ K.

Let Ge be the disjoint union (union in a way so that all vertices are distinct)
of G1, G2, . . . , G2n. Then nC(Ge) = |K ∩ {x1, x2, . . . , x2n}| ≤ 2n ≤ c. By
Lemma 3.3, FK

2n can be computed from a single query to nCc.
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We now show that the set of recursive graphs that have a finite number
of components is Σ3-complete.

Theorem 3.5 NCf = {e |Ge has a finite number of components} is Σ3-complete.

Proof: We can rewriteNCf asNCf = {e | ∃k ∀x1, x2, . . . , xk+1 ∃s, i, j [xi ./
xj in Ge,s] }.

We prove that NCf is Σ3-hard by showing that COF ≤m NCf . The
idea is to make several infinite components grow simultaneously, and at ev-
ery stage, if a new element i is added to Wx, we connect the component
corresponding to i to the next (i + 1). As we did before, the construction
proceeds in stages. Gs is the graph at the end of stage s. G is the graph
lims→∞Gs.

Construction
Stage 0. Let G0 = ({(0, 0)}, ∅).
Stage s+1. Let Gs = (Vs, Es).
Vs+1 = Vs ∪ {(i, s+ 1) | 0 ≤ i ≤ s} ∪ {(s+ 1, i) | 0 ≤ i ≤ s+ 1}.
Es+1 = Es∪ {[(i, s), (i, s+ 1)] | 0 ≤ i ≤ s} ∪

{[(s+ 1, i), (s+ 1, i+ 1)] | 0 ≤ i ≤ s} ∪
{[(i, s+ 1), (i+ 1, s+ 1)] | i ∈ Wx,s}.

End of Construction

We can easily show that Wx is cofinite iff G has a finite number of compo-
nents.

4 Number of Finite Components

In this section we show that determining if the number of finite components
of a recursive graph is within a given upper bound requires an oracle of Turing
degree 0

′
if the graph is highly recursive, and requires an oracle of Turing

degree 0
′′

if the graph is recursive. We show that dlog(c + 1)e queries is a
tight bound on the number of queries necessary to solve the problem, even
if a more powerful oracle is used. We finally show that determining whether
a recursive graph has a finite number of finite components requires an oracle
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of Turing degree 0′′, if the graph is highly recursive, and of Turing degree
0′′′, if the graph is recursive.

Theorem 4.1 For any natural number k ≥ 0, the set

NFCk = {e |Ge has at most k finite components}
is Π1-complete for highly recursive graphs, and is Π2-complete for recursive
graphs.

Proof: To show that NFChr
k is in Π1, and that NFCr

k is in Π2, we rewrite
them as:
NFChr

k = {e | ∀s at most k components ci, 1 ≤ i ≤ k, will not have |c(i,s)| <
|c(ci,s+1)|}, and
NFCr

k = {e | ∀s∃t at most k components ci, 1 ≤ i ≤ k, will not have |c(i,s)| <
|c(ci,t)|}.

To prove that NFChr
k is Π1-hard we show that K ≤m NFChr

k . The idea
is to add a new vertex to the graph at each stage s, and to connect it to the
previous graph only if Mx(x) has not halted at stage s.

Construction
Stage 0. Let G0 = ({0}, φ).
Stage s+1. Let Gs = (Vs, Es). Vs+1 = Vs ∪ {s+ 1}.

There are two cases:
1. If x /∈ Wx,s, then Es+1 = Es ∪ {(s, s+ 1)}
2. If x ∈ Wx,s, then Es+1 = Es.

End of Construction

It is easy to see that if x /∈ Wx, then G has no finite components, and if
x ∈ Wx, then G has an infinite number of finite components.

Finally, to prove that NFC r
k is Π2-hard we show that TOT ≤m NFCr

k.
The idea is to always add a new node to the graph, but to connect a node only
when the corresponding element and all of its predecessors are already in Wx.

Construction
Stage 0. Let G0 = ({0}, φ). Set z := 0.
Stage s+1. Let Gs = (Vs, Es). Vs+1 = Vs ∪ {s+ 1}.
Let z be the highest numbered vertex such that ∀ i ≤ z, i is connected to
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vertex 0 in Gs, and let w be the highest numbered element such that ∀j ≤ w,
j ∈ Wx,s. There are two cases:

1. If w + 1 /∈ Wx,s+1, then Es+1 = Es
2. If w + 1 ∈ Wx,s+1, then Es+1 = Es ∪ {(z, s+ 1), (s+ 1, z + 1)}).

End of Construction

We can easily show that if Mx is total, then G has exactly 1 (infinite)
component, and if Mx is not total, then G has an infinite number of finite
components.

Theorem 4.2 Let c ≥ 0 be any number.
• fCc(Gr

e) ∈ FQ(dlog(c + 1)e, φ′′), and fCc(Ghr
e ) ∈ FQ(dlog(c +

1)e, φ′).
• For any set X, fCc /∈ FQ(dlog(c+ 1)e − 1,X).

Proof: Theorem 4.1 and binary search can easily give us the upper
bounds. The same proof that we used for the lower bound in Theorem 3.4
applies here.

The following theorem shows that determining whether or not a recursive
graph has a finite number of finite components requires an oracle of Turing
degree 0

′′
or 0

′′′
, depending on the kind of recursive graph at hand.

Theorem 4.3 NFCf = {e|Ge has a finite number of finite components } is
Σ2-complete for highly recursive graphs, and is Σ3-complete for recursive
graphs.

Proof: We can rewrite NFChr
f and NFCr

f as:
NFChr

f = {e | ∃k∀s at most k components ci, 1 ≤ i ≤ k, will not have |c(i,s)| <
|c(ci,s+1)|}, and
NFCr

f = {e|∃k∀s∃t at most k components ci, 1 ≤ i ≤ k, will not have |c(i,s)| <
|c(ci,t)|}.

To show that NFChr
f is Σ2-hard we show that FIN ≤m NFChr

f . The
idea is to make several infinite components grow simultaneously, and if at
stage s element i is added to Wx, then stop augmenting the component which
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corresponds to i.

Construction
Stage 0. Let G0 = ({(0, 0)}, ∅).
Stage s+1. Let Gs = (Vs, Es).
Vs+1 = Vs∪{(i, s+1),∀i, 0 ≤ i ≤ s, i /∈ Wx,s}∪{(s+1, i),∀i, 0 ≤ i ≤ s+1}.
Es+1 = Es ∪ {[(i, s), (i, s+ 1)], such that 0 ≤ i ≤ s, i /∈ Wx,s} ∪

{[(s+ 1, i), (s+ 1, i+ 1)] ∀i, 0 ≤ i ≤ s }.
End of Construction

It is easy to see that Wx is finite iff G has a finite number of finite
components.

To show that NFCr
f is Σ3-hard we show that COF ≤m NFCr

f . The idea
is to create new components, but to keep each component i finite until stage
s when i ∈ Wx,s. Then, let component i grow forever.

Construction
Stage 0. Let G0 = ({(0, 0)}, ∅).
Stage s+1. Let Gs = (Vs, Es).
Vs+1 = Vs ∪ {(s+ 1, 0)} ∪ {(i, s+ 1),∀ 0 ≤ i ≤ s+ 1, i ∈ Wx,s+1}.
Es+1 = Es ∪ {[(i, s), (i, s+ 1)], such that i ∈ Wx,s} ∪

{[(i, 0), (i, s+ 1)], such that i ∈ Wx,s+1 but i /∈ Wx,s }.
End of Construction

It is easy to see that Wx is cofinite iff G has a finite number of finite compo-
nents.

5 Number of Infinite Components

We now look into the problem of determining the number of infinite com-
ponents of a recursive graph. We first show that determining if the number
of infinite components of a recursive graph is within a given upper bound
requires an oracle of Turing degree 0

′′
if the graph is highly recursive, and

requires an oracle of Turing degree 0
′′′

if the graph is recursive. We show
that dlog(c+ 1)e queries is a tight bound on the number of queries necessary
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to solve the problem, even if a more powerful oracle is used. We finally show
that determining whether a recursive graph has a finite number of infinite
components requires an oracle of Turing degree 0

′′′
if the graph is highly

recursive, and of Turing degree 0
′′′′

if the graph is recursive.

Theorem 5.1 For any natural number k ≥ 0, the set

NICk = {e|Ge has at most k infinite components}
is Π2-complete for highly recursive graphs, and is Π3-complete for recursive
graphs.

Proof: We can rewrite NIChr
k and NICr

k as:
NIChr

k = {e | ∀s ∃t [t > s, and at most k of the
components ci, 1 ≤ i ≤ k, of Ge,s will have |c(ci,t+1)| > |c(ci,t)|]},

and
NICr

k = {e | ∀s ∃t1 ∀t2[t2 > t1 ⇒ at most k of the
components ci, 1 ≤ i ≤ k, of Ge,s will have |c(ci,t2)| > |c(ci,t1)|]}.

The proof used in Theorem 3.1 to show that TOT ≤m NCk can also be
used here to show that TOT ≤m NIChr

k , and hence that NIChr
k is Π2-hard.

To show that NICr
k is Π3-hard, we show that COF ≤m NICr

k. The idea is
to create one finite component for each element i. In time, component i will
have added to it as many vertices as the number of consecutive subsequent
elements that are in Wx.

Construction
Stage 0. Let G0 = ({(0, 0)}, ∅).
Stage s+1. Let Gs = (Vs, Es).
Vs+1 = Vs ∪ {(i, s+ 1),∀i, 0 ≤ i ≤ s} ∪ {(s+ 1, i),∀i, 0 ≤ i ≤ s+ 1 }.
Es+1 = {[(k, i), (k, i+ 1)], such that 0 ≤ i, k ≤ s, i ∈ Wx,s}.
End of Construction

If x ∈ COF , then for each element i there is an element j > i such that
j /∈ Wx . Hence, the component corresponding to i will be finite. Overall
there will be no infinite components in the graph. If x /∈ COF , then there is
an element i0 such that for all j > i0, j ∈ Wx. Hence, all components which
correspond to elements greater than i0 will be infinite.
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Theorem 5.2 Let c ≥ 0 be any number.
• iCc(Gr

e) ∈ FQ(dlog(c + 1)e, φ′′′), and iCc(Ghr
e ) ∈ FQ(dlog(c +

1)e, φ′′).
• For any set X, iCc /∈ FQ(dlog(c+ 1)e − 1,X).

Proof: Again, binary search with the help of Theorem 5.1 will give us the
upper bound. The proof of the lower bound is similar to the one in Theo-
rem 3.4. The algorithm here is as follows.

For i = 1, 2, . . . , 2n, let

Gi =

{
({j|j ≥ t}, {(j, j + 1)|j ≥ t}) if xi /∈ Wxi,t−1 but xi ∈ Wxi,t

(∅, ∅) if xi /∈ Wxi.

LetGe be the disjoint union ofG1, . . . , G2n . Then iC(Ge) = |K∩{x1, . . . , x2n}|
≤ 2n ≤ c. Again by Lemma 3.3, FK

2n can be computed from a single query
to iCc.

The following theorem shows that determining whether or not a recursive
graph has a finite number of infinite components requires an oracle of Turing
degree 0

′′′
or 0

′′′′
, depending on the kind of recursive graph at hand.

Theorem 5.3 NICf = {e | Ge has a finite number of infinite components}
is Σ3-complete for highly recursive graphs, and is Σ4-complete for recursive
graphs.

Proof: We can rewrite NIChr
f and NICr

f as:
NIChr

f = {e | ∃k ∀s ∃t [t > s, and at most k
components ci, 1 ≤ i ≤ k, of Ge,s will have |c(i,t)| < |c(ci,t+1)| ] },

and
NICr

f = {e | ∃k ∀s ∃t1 ∀t2 [t2 > t1 ⇒ at most k of the
components ci, 1 ≤ i ≤ k, of Ge,s will have |c(i,t1)| < |c(ci,t2)| ] }.

The proof of the lower bound in Theorem 3.5 can be used to show that
COF ≤m NIChr

f , hence NIChr
f is Σ3-hard. To prove that NICr

f is Σ4-hard
we use the following claim.
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Claim. S = {e |We 6⊆ COF} is Σ4-hard.

Proof of Claim. Let A be any set in Σ4. Assume that A = {a | ∃b,RΠ3(a, b)},
for some property RΠ3(a, b) in Π3. Since COF is Π3-complete, there is a
recursive function fR such that RΠ3(a, b) holds iff fR(a, b) ∈ COF . We use
fR to construct an algorithm for A.

Algorithm for A
1. Input (a);
2. Create a Turing machine to do the following:

1. Input (x);
2. For b = 1, 2, 3, . . . do:

If fR(a, b) = x then HALT;
3. Let e be an index for the machine constructed in step (2). Return

(MS(e)).
End of Algorithm

The Turing machineMe created in step (2) of the algorithm halts precisely
on inputs x for which there is a b such that x = fR(a, b).

a ∈ A ⇒ ∃b,RΠ3(a, b) holds ⇒ ∃b, fR(a, b) ∈ COF . Since fR(a, b) ∈
We, e ∈ S.

a /∈ A ⇒ ∀b,RΠ3(a, b) does not hold ⇒ ∀b, fR(a, b) ∈ COF ⇒ We ⊆
COF ⇒ e /∈ S.
End of Proof of Claim

The last thing we need to show is that S ≤m NICr
f . Given an input e, we

construct a graph G such that G ∈ NIC r
f iff e ∈ S. The idea is to grow one

infinite component for each element until some element is accepted in We. (If
We is empty, the process continues forever, and in the limit G will have an
infinite number of infinite components.) Then, for each element z accepted
in We and each stage s, we create a new set of vertices and edges (which
we call subgraph G(z, s)), in which vertices representing stages i = 1, . . . , s,
(z, s, i), are connected to the next neighbor, (z, s, i+ 1), iff i ∈ Wz′,s for all
z′ ∈ We,s, with z′ < z. The formal construction follows.

Construction
Stage 0. Let G0 = ({(0, 0)}, ∅).
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Stage s+1. Let Gs = (Vs, Es).
If We,s+1 is empty, then

Vs+1 = Vs ∪ {(i, s+ 1),∀i, 0 ≤ i ≤ s} ∪ {(s+ 1, i),∀i, 0 ≤ i ≤ s+ 1 } ;
Es+1 = {[(k, i), (k, i+ 1)], such that 0 ≤ i, k ≤ s}

else
Vs+1 = Vs ∪ {(z, s+ 1, i),∀i, 0 ≤ i ≤ s+ 1, z ∈ We,s+1, and z ≤ s } ;
Es+1 = {[(z, s+1, i), (z, s+1, i+1)], such that z ∈ We,s+1, i ∈

⋂
z′∈We,s
z′<z

Wz′,s} .

End of Construction

If We is empty, then (e /∈ S) the “then” part of the construction will
always be followed, generating one infinite component for each natural num-
ber.

If We is not empty, then eventually the construction will start following
the “else” part. If there is some x ∈ We with x /∈ COF , then let t be such
that x ∈ We,t. For all z′ > z, and all stages s > t, the subgraphs G(z ′, s) of G
will have no infinite components. Hence, the number of infinite components
of G is finite. On the other hand, if for all x ∈ We, x ∈ COF , then for all x
there is an element ix such that i > ix ⇒ i ∈ Wx. Hence, for every z ∈ We,s

and all i ≥ Iz, where Iz is the maximum over all iz for z ∈ (We ∩{1, . . . , z}),
edge [(z, s, i), (z, s, i+1)] ∈ G. Hence, every z ∈ We will in the limit generate
an infinite number of subgraphs G(z, s) each of which containing an infinite
component.

6 Lower Bounds on Mixed Queries

We have seen that dlog(c+1)e queries are required to compute nCc, fCc, and
iCc. One could ask if perhaps that number could be reduced if we allowed
some help from weaker oracles. In this section we show that in most cases
free queries to weaker oracles do not help, and when they do help the gain
is very small.

Throughout this section we will use the following lemma, proven in [Kum92].
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Lemma 6.1 (([Kum92])) For any sets A, Y , #A
c−1 ∈ FQY (dlog ce−1,X)⇒

A ≤T Y .

6.1 Number of Components

We have shown before (Thm. 3.4) that finding the value of nCc(Ge) requires
exactly dlog(c+ 1)e queries to φ

′′
. Next we show that if queries to a weaker

oracle are allowed for free, then the number of queries to φ
′′

can be slightly
reduced.

Theorem 6.2 For any c ≥ 0, nCc ∈ FQK(dlog ce, φ′′).
For any sets X, Y , nCc /∈ FQY (dlog ce−1,X), unless φ

′′ ≤T Y .

Proof: Consider a Turing machine Me that inputs G = (V,E), then asks
for v = 1, 2, 3, . . . whether or not v is in V , and halts when it gets a positive
answer. Since G is recursive, with one query to K, asking whether e is in
K, we eliminate the case of an empty graph (0 components). Binary search
between [1, c] using Theorem 3.1 will find the proper value for nCc in dlog ce
queries to φ

′′
.

Assume that nCc ∈ FQY (dlog ce − 1,X), for some set X. We show that

we also have #φ
′′

c−1 ∈ FQ(1, nCc). (Hence, #φ
′′

c−1 ∈ FQY (dlog ce − 1,X), and
by Lemma 6.1 we have that φ

′′ ≤T Y .) Since φ
′′ ≤T TOT , for this lower

bound we use TOT instead of φ
′′
. We describe an algorithm for #TOT

c−1 that
asks only one query to nCc. The idea is to construct one highly recursive
graph Gi, 1 ≤ i ≤ c − 1, corresponding to each of the c − 1 input machines
in a way such that graph Gi will have 1 component if Mxi ∈ TOT , and
2 components if Mxi /∈ TOT . This can be done by keeping in each graph
Gi two components which will be connected only when the next consecutive
element is accepted by Mxi . In the limit, Gi will have only one component
iff Mxi is in TOT . Let graph Ge be obtained from the disjoint union of all
Gi’s. Notice that Ge has c− 1 ≤ nC(Ge) ≤ 2(c− 1) components. Let Ge′ be
obtained from Ge by connecting a new vertex v to one vertex in each of the
old graphs Gi. Now we have 1 ≤ nC(Ge′) ≤ c, and by construction of Ge′ ,
#TOT
c−1 = c− nC(Ge′).

We now formalize the above intuitive description. In the formal construc-
tion, the vertices of the graphs Gi are represented by triplets, where the first
coordinate identifies the corresponding graph. The only use for that is to
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allow for an easy identification of vertices in distinct components of Ge. For-
mally, the algorithm is as follows.

Algorithm for #TOT
c−1

1. Input (x1, x2, . . . , xc−1);
2. For i = 1, 2, . . . , c− 1, let Gi be constructed in stages:
Stage 0. Let Gi,0 := ({(i, 0, 0), (i, 1, 0)}, ∅); j := 0;
Stage s+ 1. Let Gi,s = (Vi,s, Ei,s).
If j ∈ Wxi,s+1 then begin

Vi,s+1 = Vi,s ∪ {(i, j + 1, s+ 1), (i, j + 2, s+ 1)};
Ei,s+1 = Ei,s ∪ {[(i, j, s), (i, j + 1, s)], [(i, j + 1, s), (i, j + 1, s+ 1)]};
j := j + 1
end

else begin
Vi,s+1 = Vi,s ∪ {(i, j, s+ 1), (i, j + 1, s + 1)};
Ei,s+1 = Ei,s ∪ {[(i, j, s), (i, j, s+ 1)], [(i, j + 1, s), (i, j + 1, s+ 1)]}
end;

3. Let Ge be constructed by the union over all the Gi’s plus one extra vertex
(0, 0, 0), and c− 1 new edges [(0, 0, 0)(i, 0, 0)], 1 ≤ i ≤ c− 1;
4. Return (c− nCc(Ge)).
End of Algorithm

Notice that graph Ge is highly recursive, hence the proof also applies to
recursive graphs.

6.2 Number of Finite Components

We have shown before (Thm. 4.2) that fCc(Ge) can be found with dlog(c+1)e
queries to φ′′ if Ge is recursive, or with dlog(c+1)e queries to φ′ if Ge is highly
recursive. Next we show that even if queries to weaker oracles are allowed for
free, we still need the same number of queries to φ

′′
(φ
′
) to find the number

of finite components in a recursive graph.

Theorem 6.3 Let c ≥ 0 be any number. For any sets X, Y ,
• fCc(Gr

e) ∈ FQY (dlog(c+ 1)e − 1,X) ⇒ φ
′′ ≤T Y .

• fCc(Ghr
e ) ∈ FQY (dlog(c+ 1)e − 1,X)⇒ φ

′ ≤T Y .
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Proof: Let X be any set. Since φ
′′ ≤T TOT and φ

′ ≤T K, we use TOT
instead of φ

′′
, and K instead of φ

′
to prove the lower bounds. To establish

that fCc(Gr
e) /∈ FQY (dlog(c + 1)e − 1,X), unless φ

′′ ≤T Y , we show that
#TOT
c ∈ FQ(1, fCc). Then by the hypothesis, #TOT

c ∈ FQY (dlog(c+ 1)e −
1,X), and by Lemma 6.1 we have TOT ≤T Y .

We describe an algorithm for #TOT
c that will use only one query to func-

tion fCc(Gr
e). The idea is to construct a graph Gi corresponding to each

input xi, in a way such that Gi has 0 finite components if xi ∈ TOT , and has
1 finite component otherwise. To obtain this, we add a new vertex to graph
Gi subject to the next consecutive element being accepted by Mxi. Let Ge

be the graph obtained from the disjoint union of the Gi’s. Ge clearly has
c− fCc(Ge) finite connected components.

Algorithm for #TOT
c

1. Input (x1, x2, . . . , xc);
2. For i = 1, 2, . . . , c, let Gi be constructed in stages:
Stage 0. Let Gi,0 := ({0}, ∅); j := 0; z := 0;
Stage s+ 1. Let Gi,s = (Vi,s, Ei,s).
If j ∈ Wxi,s+1 then begin

Vi,s+1 = Vi,s ∪ {s+ 1};
Ei,s+1 = Ei,s ∪ {[z, s+ 1]};
j := j + 1; z := s+ 1
end;

3. Take the disjoint union of G1, G2, . . . , Gc, generating Gr
e;

4. Return (c− fCc(Gr
e)).

End of Algorithm

Now, to establish that fCc(Ghr
e ) /∈ FQY (dlog(c+1)e−1,X), unless φ

′ ≤T Y ,

we show that #K
c ∈ FQ(1, fCc). Then by the hypothesis, #K

c ∈ FQY (dlog(c+
1)e − 1,X), and by Lemma 6.1 we have K ≤T Y . Since φ

′ ≤T K, we also

have φ
′ ≤T Y . We describe an algorithm for #K

c that uses only one query to
function fCc(Ghr

e ).

Algorithm for #K
c

1. For i = 1, 2, . . . , c, let Gi be as follows:
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Gi =

{
({t}, ∅) if Mxi,t−1(xi) ↑ and Mxi,t(xi) ↓
(∅, ∅) if Mxi /∈ K.

2. Take the disjoint union of the Gi’s, generating Ghr
e .

3. Return (c− fCc(Ghr
e )).

End of Algorithm

It is easy to see that if xi ∈ K then Gi will have 0 finite components, and if
xi /∈ K thenGi will have 1 finite component. Let j be the number of machines
among Mx1,Mx2 , . . . ,Mxc that are in K. Consider Ghr

e , the disjoint union of
G1, G2, . . . , Gc. Then fCc(Ghr

e ) = c− j.

6.3 Number of Infinite Components

We have shown before (Thm. 5.2) that iCc(Ge) can be found with dlog(c+1)e
queries to φ

′′′
if the graph is recursive, and with dlog(c+ 1)e queries to φ

′′
if

the graph is highly recursive. Next we show that even if queries to weaker
oracles are allowed for free, we still need the same number of queries to φ

′′′

(φ
′′
) to find the number of infinite components in a recursive graph.

Theorem 6.4 Let c ≥ 0 be any number. For any sets X, Y ,
• iCc(Gr

e) ∈ FQY (dlog(c+ 1)e − 1,X)⇒ φ
′′′ ≤T Y .

• iCc(Ghr
e ) ∈ FQY (dlog(c+ 1)e − 1,X) ⇒ φ

′′ ≤T Y .

Proof: Let X be any set. To establish that help from a weaker oracle
does not allow a smaller number of queries to φ

′′′
, we use COF instead of

φ
′′′

and show that #COF
c ∈ FQ(1, iCc). Then by the hypothesis, #COF

c ∈
FQY (dlog(c+1)e−1,X), so by Lemma 6.1 we have COF ≤T Y . We describe
an algorithm for #COF

c that will use only one query to function iCc. The
idea is to create graphs with components representing sequences of consec-
utive elements in the corresponding Wxi. If Mxi ∈ COF , then iC(Gr

e) = 1,
otherwise, iC(Gr

e) = 0.

Algorithm for #COF
c

1. Input (x1, x2, . . . , xc);
2. For i = 1, 2, . . . , c, let Gi be constructed in stages:
Stage 0. Let Gi,0 := ({0}, ∅);
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Stage s+ 1. Vi,s+1 = Vi,s ∪ {s+ 1}; Ei,s+1 = {[j, j + 1] | j ∈ Wxi ,s+1};
3. Take the disjoint union of G1, G2, . . . , Gc, generating Gr

e;
4. Return (iCc(G

r
e)).

End of Algorithm

It is easy to show that if xi ∈ COF then Gi has 1 infinite component,
and if xi /∈ COF then Gi has no infinite components. Let j be the number
of machines among Mx1 ,Mx2, . . . ,Mxc that are in COF . Consider Gr

e, the
disjoint union of G1, G2, . . . , Gc. Then iCc(Gr

e) = j.
A slight modification in the size of the input in the proof of Theorem 6.2

will show the second part of Theorem 6.4.

7 Unbounded Recursive Graph Problems

We now turn our attention to the case when no bound is set a priori. We
show that the problem of finding the number of connected components of
an infinite recursive graph in this case is related to unbounded search in two
ways:

1. If f is a non-decreasing recursive function, and
∑
i≥0 2−f(i) ≤ 1 is effec-

tively computable, then the number of components of a recursive graph
Ge, nC(Ge), can be found with f(nC(Ge)) queries to φ

′′
, and

2. If G is an infinite recursive graph and there is a set X such that nC(G)
can be computed using f(nC(G)) queries to X, then

∑
0≤i 2

−f(i) ≤ 1.

Part (2) above can be interpreted as a lower bound for finding nC(G).
That result follows from a generalization of Theorem 9 in [BG89b], which
allows us to conclude that part (2) also applies to a wide class of problems,
including the problems of finding the number of finite components and finding
the number of infinite components of an infinite recursive graph.

In this section we introduce the Unbounded search problem, and we study
the complexity of finding the number of components of a recursive graph
when it is known that the number of components is finite but no bound to
it is given. We also study the problems of determining the number of finite
and the number of infinite components.
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7.1 The Unbounded Search Problem

In this subsection we introduce the Unbounded Search Problem and some
relevant results.

The Unbounded Search Problem is the following: The first player chooses
an arbitrary number n ≥ 0. The second player is allowed to ask queries of
the type: “x ≤ n?”. The latter player stops when she knows what number n
is. The number of questions the second player can ask depends on n itself.
We say that f(n) questions suffice to solve the unbounded search problem if
there is an algorithm that the second player can use to guarantee that she
knows the number n within f(n) questions.

Optimal algorithms for unbounded search are related to binary prefix
codes and Kraft’s inequality ([Bei90], [BY76], [Knu81]).

The following are relevant previous results.

Lemma 7.1 (([BGGO93])) If A is a nonrecursive set, then F A
n cannot be

computed by a set of n partial recursive functions.

Lemma 7.2 (([BGGO93])) If A and Y are sets such that A 6≤T Y , then
FA
n cannot be computed by a set of n partial functions that are recursive in

Y .

Theorem 7.3 (([BY76])) If f(n) questions suffice to solve the unbounded
search problem, then f satisfies Kraft’s inequality.

Theorem 7.4 (([Bei90])) Let f be a non-decreasing recursive function such
that

∑
i≥0 2−f(i) ≤ 1 and is effectively computable. There is an algorithm that

solves the unbounded search problem by asking f(n) questions (where n is the
number being searched for) if and only if f satisfies Kraft’s inequality.

Theorem 7.5 ((Kraft’s Theorem - [Gal68])) Let σ0, σ1, σ2, . . . be an in-
finite sequence of elements from {0, 1}∗ such that the bijection that maps i to
σi is a binary prefix code. Then

∑
i≥0 2−|σi | ≤ 1.
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Note 7.6 In the literature, the Unbounded Search Problem is the search
for a positive integer (not a nonnegative integer as we need), and Kraft’s in-
equality is actually

∑
i≥1 2−|σi| ≤ 1. Since we can have empty graphs (with no

components), we need a slight modification of what is found in the literature,
but the modifications that are required in the proofs involved are trivial.

7.2 Computing the Number of Connected Compo-
nents

In this subsection we relate the complexity of finding the number of compo-
nents, finite components, and infinite components of a recursive graph with
the Unbounded Search Problem in two ways:

1. If f be a non-decreasing recursive function, and
∑
i≥0 2−f(i) ≤ 1 is

effectively computable, then nC(Ge), fC(Ge), and iC(Ge) can be found
with f(nC(Ge)), f(fC(Ge)), and f(iC(Ge)) queries to φ

′′
, respectively,

and

2. If G is an infinite recursive graph and there is a set X such that nC(G)
can be computed using f(nC(G)) queries to X, then f satisfies Kraft’s
inequality.

The second part above can be interpreted as a lower bound for the prob-
lem, and is obtained through a more general result, which can also be used
to derive similar lower bounds for fC(Ge), and iC(Ge).

Theorem 7.7 Let f be a non-decreasing recursive function. If
∑
i≥0 2−f(i) ≤

1 and is effectively computable, then nC(Ge) ∈ FQ(f(nC(Ge)), φ
′′
).

Proof: The proof of Theorem 3.1 shows that we can ask one single query
to φ

′′
to get the answer to: “nC(Ge) ≤ k?”. Hence, we can find nC(Ge) by

asking that type of query to φ
′′

as in an unbounded search algorithm.

Theorem 7.7 together with Theorem 7.4 imply the existence of an algo-
rithm that finds nC(Ge) with f(nC(Ge)) queries to φ

′′
, thus establishing an

upper bound for that problem. By similar reasoning, one can show that we
can find fC(Ge) (iC(Ge)) by asking that type of query to φ

′
(φ
′′
) or to φ

′′

(φ
′′′

), depending on whether the graph is highly recursive or not.
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Next we prove a theorem that implies lower bounds to those problems.
Recall that γn(G) is a partial function (presented in Section 2) which is
undefined if γ(G) > n.

Lemma 7.8 Let γ(G) be any of nC(G), fC(G), or iC(G). For any n ≥ 1,
the partial function γn(G) cannot be computed by a set of n partial recursive
functions.

Proof: In the proof of Theorem 3.4 (respectively, 4.2 and 5.2), we showed
that for all n, FK

n (x1, x2, . . . , xn) can be computed from one single use of
γn(Ge), where Ge can be constructed from {x1, . . . , xn}. Hence, if γn(G)
could be computed by a set of n partial recursive functions, then so could
FK
n , which violates Lemma 7.1.

The following theorem is a generalization of Theorem 9 in [BG89b].

Theorem 7.9 Let X be any set and f be any function. If a function γ(G)
is in FQ(f(γ(G)),X), and γn(G) cannot be computed by a set of n partial
recursive functions, then f satisfies Kraft’s inequality.

Proof: Let M ( ) be the oracle Turing machine such that MX(G) computes
γ(G) with at most f(γ(G)) queries to X, for some function f . We use the
fact that γn cannot be computed by a set of n partial recursive functions to
obtain a contradiction.

For every natural n and sequence σ ∈ {0, 1}∗, we define a partial recursive
function cσn(G), constructed by simulating M ( )(G) using the i-th bit of σ to
answer the i-th query, in a way such that the machine either diverges or does
the following:

a) It makes at most |σ| queries, and
b) The output x is between 0 and n, and |σ| ≤ f(|x|).
Notice that if σ is a prefix of σ′ and cσn(G) converges to a value, then

cσ
′
n (G) converges to the same value.

By construction of cσn(G), we have that:

∀n ∀G [{cσn(G) | σ ∈ {0, 1}∗ and cσn(G) ↓} ⊆ {0, . . . , n}].

We proceed to show by contradiction that

∀n ∃G [{cσn(G) | σ ∈ {0, 1}∗ and cσn(G) ↓} = {0, . . . , n}].

24



To prove that the ⊇ part also holds, we assume otherwise, and choose
some integer n for which ∀G [{cσn(G) | σ ∈ {0, 1}∗ and cσn(G) ↓} 6⊇ {0, . . . , n}].

Then, ∀G [ |{cσn(G) : σ ∈ {0, 1}∗ and cσn(G) ↓} | ≤ n ].
For each j, 1 ≤ j ≤ n, we define partial recursive functions hj(G), which

are computed by timesharing cσn(G) for all σ until the functions have output
j distinct values, and outputting the j-th distinct value. Therefore, for all G
such that γn is defined,

γn(G) ∈ {cσn(G) : σ ∈ {0, 1}∗ and cσn(G) ↓} = {hj(G) : 1 ≤ j ≤ n}.

We conclude that the partial function γn is computable by a set of n
partial recursive functions, which contradicts the hypothesis.

Hence we have that: for every n, there exists a graph G such that for
each i ∈ {0, . . . , n}, there exists a sequence σi of oracle answers such that
|σi| ≤ f(i) and cσin (G) = i. Moreover, if i 6= j, then σi is not a prefix of σj.
Therefore the sequences σ0, . . . , σn form a binary prefix code for the integers
0 through n, and by Kraft’s Theorem (Theorem 7.5) we have:

∑
0≤i≤n 2−|σi | ≤

1. Since |σi| ≤ f(i),
∑

0≤i≤n 2−f(i) ≤ 1. Letting n approach infinity, we obtain∑
0≤i 2

−f(i) ≤ 1.

Theorem 7.9 can be used to derive relationships of several problems in
recursive graphs to Kraft’s inequality, thereby establishing lower bounds for
those problems. The next corollary illustrates some of them.

Corollary 7.10 For any set X and function f , if
a) nC(G) ∈ FQ(f(nC(G)),X), or
b) fC(G) ∈ FQ(f(fC(G)),X), or
c) iC(G) ∈ FQ(f(iC(G)),X),

then f satisfies Kraft’s inequality.

Proof: Lemma 7.8 shows that nC(G), fC(G), and iC(G) satisfy the
condition to apply Theorem 7.9.

8 Mixed Queries in the Unbounded Case

In the previous section we have shown that if f is such that nC(G) is in
FQ(f(nC(G)),X), then f satisfies Kraft’s inequality, which can be inter-
preted as the number of queries needed to solve the problem. But it may
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be the case that if we allow queries to an oracle Y such that φ
′′ 6≤T Y the

number of queries to φ
′′

can be reduced.
It turns out that the lower bound in the previous section is optimal with

respect to queries to φ
′′
, as we will show next.

Lemma 8.1 Let Y be a set such that φ
′′ 6≤T Y , and let γ(G) represent any

of nC(G), fC(G), or iC(G). Then γn(G) cannot be computed by a set of n
partial functions that are recursive in Y .

Proof: The proof of Lemma 7.8 relativizes, using Lemma 7.2 instead of
Lemma 7.1 to accomplish the contradiction.

Theorem 8.2 Let Y be a set such that φ
′′ 6≤T Y . Let X be any set and f be

any function. If function nC(G) is in FQY (f(nC(G)),X), then f satisfies
Kraft’s inequality.

Proof: This proof is similar to the proofs of Theorem 7.9 and Corol-
lary 7.10, only using Lemma 8.1 instead of Lemma 7.8 where appropriate.

9 Final Comments

We have classified the difficulty of determining the number of components,
finite components, and infinite components of a recursive (highly recursive)
graph, given a fixed upper bound. These results are tight in two ways: the
lower bound on the number of queries holds even if a more powerful oracle
is used, and no matter how many queries are used, the oracle must be of the
degree established.

We have also studied the complexity of deciding if a recursive (highly
recursive) graph has a finite number of components, finite components, and
infinite components, and have shown that if we allow queries to weaker oracles
for free, it may help just slightly, but in most cases it is of no use.

In the case when no bound is given a priori, we have shown that the prob-
lem of finding the number of connected components of an infinite recursive
graph is related to unbounded search in two ways:
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1. If f is a non-decreasing recursive function, and
∑
i≥0 2−f(i) ≤ 1 is effec-

tively computable, then the number of components of a recursive graph
Ge, nC(Ge), can be found with f(nC(Ge)) queries to φ

′′
;

2. If G is an infinite recursive graph and there is a set X such that nC(G)
can be computed using f(nC(G)) queries to X, then

∑
0≤i 2

−f(i) ≤ 1.

Part (2) above (which can be interpreted as a lower bound for finding
nC(G)) also applies to a wide class of problems, including the problems of
finding the number of finite components and finding the number of infinite
components of an infinite recursive graph. That lower bound is optimal, even
if we allow free queries to weaker oracles.

It is interesting to observe that, regardless of the Turing degree of the
oracle involved, the optimal number of queries to solve each of the problems
addressed is the same as the one for the binary search problem in both cases.

The authors would like to thank Steven Lempp for helpful discussions,
and the anonymous referees for useful observations.
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