
Classification Using Information∗

William Gasarch†

University of Maryland

Mark G. Pleszkoch‡

IBM Corporation

Frank Stephan§

University of Heidelberg

Mahendran Velauthapillai¶

Georgetown University

Abstract

Let A be a set of functions. A classifier for A is a way of telling, given
a function f , if f is in A. We will define this notion formally. We will
then modify our definition in three ways: (1) Allow the classifier to
ask questions to an oracle A (thus increasing the classifiers computa-
tional power). (2) Allow the classifier to ask questions about f (thus
increasing the classifiers information access). (3) Restrict the number
of times the classifier can change its mind (thus decreasing the clas-
sifiers information access). By varying these parameters we will gain
a better understanding of the contrast between computational power
and informational access.

We have determined exactly (1) which sets are classifiable (The-
orem 3.6), (2) which sets are classifiable with queries to some oracle

∗The first, second and fourth author presented a preliminary version of this paper on
the Conference on Algorithmic Learning Theory 1994 in Reinhardsbrunn [5].

†Dept. of C.S. and Inst. for Adv. Stud., University of Maryland, College Park,
MD 20742, U.S.A. Supported in part by NSF grants CCR-8803641 and CCR-9020079
(email: gasarch@cs.umd.edu).

‡IBM Corporation, Gaithersburg, MD 20879, U.S.A., (email: markp@vnet.ibm.com).
§Mathematical Institute of the University of Heidelberg, Im Neuenheimer Feld 294,

69121 Heidelberg, Germany, EU, Supported by the Deutsche Forschungsgemeinschaft
(DFG) grants Me 672/4-2 and AM 60/9-1 (email: fstephan@math.uni-Heidelberg.de).

¶Dept. of C.S., Georgetown University, Washington, D.C., 20057, U.S.A., (email:
mahe@cs.georgetown.edu).

1

(Theorem 3.2), (3) which sets are classifiable with queries to some or-
acle and queries about f , (Theorem 5.2), and (4) which sets are clas-
sifiable with queries to some oracle, queries about f , and a bounded
number of mindchanges, (Theorem 5.2). The last two items involve
the Borel hierarchy.

1 Introduction

Let FS = {f | (∃x)(∀y)[y ≥ x ⇒ f(x) = 0]}. (FS stands for ‘finite sup-
port’.) If you were given g(0), g(1), . . . you could never classify g with respect
to FS, even in the limit. Even if you had access to K (or some other oracle)
you could not classify g. The barrier to your classification is not compu-
tational, but is instead informational. By contrast, assume you could ask
existential questions about g. Initially guess NO (g /∈ FS). Then ask the
following questions until you get an answer of YES (this might never happen).

(∀x ≥ 0)[g(x) = 0]?
(∀x ≥ 1)[g(x) = 0]?
(∀x ≥ 2)[g(x) = 0]?
...

If an answer of YES is given then guess YES (g ∈ FS). You have successfully
classified g in the limit. We will see later that FS is dense and co-dense in
the standard topology of the function space and that no dense and co-dense
set is classifiable. Hence you really needed that additional information.

Let UK = {f | (∀x)[f(x) ≤ K(x)]}. (The ‘UK’ stands for ‘Under K’.)
If you were given g(0), g(1), . . . you could never classify g with respect to
UK, even in the limit. However, if you had access to K, then you could
classify g with respect to UK in the limit as follows: Guess YES until an x
is spotted such that g(x) > K(x), at which point change the guess to NO
(and never change your mind thereafter). Hence the barrier to classification
is computational.

When a class of functions cannot be classified it may be for either compu-
tational or information-theoretic reasons. Information-theoretic means that
not enough information is available to classify. This is pinned down by topol-
ogy; for the rest of the paper we will use the mathematically precise word
‘topological’ rather than the intuitive word ‘information-theoretical.’

2

In the next section we define classification formally. We vary the amount
of information the learner can access. To increase the model’s ability to access
information, we give it the ability to ask questions about the function. We
also regulate the type of question by both restricting the query language and
restricting the number of alternations of quantifiers a question can have. To
decrease the models ability to access information, we will bound the number
of mindchanges it may make.

Carl Smith and Rolf Wiehagen [13] introduced a model of classification
that is similar to the Gold model of learning [7]. The classifier M sees longer
and longer initial segments of the graph of a function f . At each segment it
guesses either YES (for f ∈ A) or NO (for f /∈ A). The guesses converge for
each function f to the value M(f) ∈ {YES,NO}. M(f) = YES means that
f ∈ A and M(f) = NO that f /∈ A. In this model the classifier is limited in
both computing power and access to information. In particular the learner
is limited to Turing computability and initial segments of the function to be
classified. Shai Ben-David [1] and Kevin Kelly [8] studied the same topic,
but did not consider limitations of computational power.

2 Definitions and Notations

In this section we formalize our notions. N denotes the set {0, 1, 2, . . .} of
natural numbers, Σ will denote a fixed set of symbols such that {0, 1} ⊆ Σ ⊆
N. Σ∗ denotes the set of all finite sequences of symbols in Σ. Σω denotes
the set of all countably infinite sequences of symbols in Σ. If σ ∈ Σ∗ and
f ∈ Σ∗ ∪ Σω then σ � f means that σ is a prefix of f . If σ, τ ∈ Σ∗ then στ
denotes their concatenation. We may use σ · τ for clarity.

Throughout this section A denotes a subset of Σω and A denotes its
complement; it can’t be confused with the topological closure operation since
the closure operation is not used in this paper. #A denotes the cardinality
of a set A.

Definition 2.1 A classifier is a recursive functionM : Σ∗ → {YES,NO,DK}
(DK stands for DON’T KNOW). Our intention is that M is fed initial seg-
ments of some f and eventually decides if it is in A or not. Let f : N → Σ
be a function. M classifies f with respect to A if (1) when M is given initial
segments of f as input, the resultant sequence of answers converges (after

3

some point there are no more mindchanges) (2) if f ∈ A then the sequence
converges to YES, and (3) if f /∈ A then the sequence converges to NO.

Note 2.2 In the above definition we restrict a classifier to be a recursive
function that only has access to the function via initial segments. We will
later allow classifiers to have access to oracles and/or be able to ask questions
about the function. The type of classifier will be clear from context.

Definition 2.3 M classifies A if, for every function f , M classifies f with
respect to A. The class DE is the collection of all sets A such that there
exists a classifier M that classifies A (DE stands for DEcision). We denote
this by saying “A ∈ DE via M .” Formally M is a function; however, we will
often describe it as a process that continually receives values of f (in order)
and outputs conjectures. Such a description can clearly be restated in terms
of M being a function. The class DE[A] denotes decision relative to an oracle
A and DE[all] is the collection of all classes DE[A]:

A ∈ DE[all] ⇔ A ∈ DE[A] for some set A ⊆ N.

The class DEc is the collection of all sets in DE that have classifiers that
change their mind about each f at most c times. The initial change from
DK to either YES or NO is not counted as a mindchange. We will mostly
be concerned with DE[all] since we wish to study how much information is
needed independent of computational resources.

We now define classifiers that can make queries. This is analogous to the
query inference machines defined by Gasarch and Smith [6].

Definition 2.4 A query language consists of the usual logical symbols (and
equality), symbols for first order variables, symbols for every element of N,
symbols for some functions and relations on N, and a special symbol f . A
query language is denoted by the symbols for these functions and relations,
A well-formed formula over L is defined in the usual way.

4

Convention 2.5 Small letters are used for first order variables which range
over N. All questions are assumed to be sentences in prenex normal form
(quantifiers followed by a quantifier-free formula, called the matrix of the
formula) and questions containing quantifiers are assumed to begin with an
existential quantifier. This convention entails no loss of generality. The
special symbol f will represent the function we are trying to classify.

Definition 2.6 Let L be a query language. A query over L is a formula
φ(f) such that the following hold.

i. φ(f) uses symbols from L.

ii. f is a free function variable and is the only free variable.

We think of a query φ(f) as asking a question about an as yet unspecified
function f . If f is a function then φ(f) will be either true or false.

Definition 2.7 Let L be a query language. Informally, a classifier over L
(usually just ‘classifier’) is a total Turing machine that can ask questions
about the recursive function f in the language L and by using the answers to
these questions, eventually outputs 0 or 1 in the limit. Formally a classifier
is is a total Turing machine M , which takes as input a string of bits σ (the
empty string is allowed), corresponding to the answers to previous queries
about f , outputs first one value M(σ) ∈ {YES,NO,DK} in order to indicate
whether it at the moment guesses f ∈ A and second a new question φ(σ) in
the language L. Our intention is that M is conjecturing whether f is in A
or not and also generating the next question to ask about f . The definition
of when M classifies f with respect to A is straightforward but tedious (it is
analogous to the definition in [6]).

Definition 2.8 Let L be a query language. The class QDE[L] is the col-
lection of all sets A such that there exists a classifier that classifies A and
only asks queries that use the symbols in L. We denote this by saying
“A ∈ QDE[L] via M .” The class QDEa[L] is the collection of all sets in
QDE[L] that have classifiers that change there mind about each f at most a
times. The initial change from DK to either YES or NO is not counted as a
mindchange. Furthermore QDE[all] is the union of all classes QDE[L] as L
goes over all possible query languages.

5

All the query languages that we will consider allow the use of quantifiers.
Restricting the applications of quantifiers is a technique that we will use
to regulate the expressive power of a language. Of concern to us is the
alternations between blocks of existential and universal quantifiers.

Definition 2.9 Suppose that f ∈ QDE[L](M) for some M and L. If M
only asks quantifier-free questions, then we will say that f ∈ Q0DE[L](M).
If M only asks questions with existential quantifiers, then we will say that
f ∈ Q1DE[L](M). In general, if M ’s questions begin with an existential
quantifier and involve a alternations between blocks of universal and existen-
tial quantifiers, then we say that f ∈ Qa+1DE[L](M). The classes QcDE[L]
and QcDEb[L] are defined analogously.

Note 2.10 We use the notations DE[A] and QDE[L]. In the first case the
A is a set which we ask question to and in the second the language L is a
language we express questions in. Note that in DE[A] we are allowing more
computational power to the inference device and in QDE[L] we are allowing
greater access of information. One of the points of this paper will be to
compare computational to information.

3 Classification with Oracles

The class DE[all] has various topological characterizations. In this section
we present the main ones.

Definition 3.1 The following two topological spaces are useful.

i. F is the set of all functions from N to Σ. We place a topology on it
by letting the basic open sets be Fσ = {f |σ � f} where σ ranges over
Σ∗.

ii. N is the set N. We place a topology on it by letting the basic open
sets be N , ∅, and and all sets of the form {y ∈ N | y ≥ x} with x ∈ N.

Theorem 3.2 A is in DE[all] iff there is a continuous function F : F → N
such that A = {f |F (f) is odd }.

6

Proof: Recall that F is continuous iff the inverse image of every open
subset of N is an open set in F .”

Let M be an classifier which witnesses A ∈ DE[A] for some oracle A.
We can assume that M(∅) = NO. Now let F (σ) denote the number of
mindchanges on input σ; note that F (σ) is even iff M(σ) = NO. Classifying
each function f , M makes only finitely many mindchanges and thus F (f) =
limσ�f F (σ) exists for each function f . Now f ∈ A iff M converges on f to
YES iff M makes an odd number of mindchanges on f iff F (f) is odd. It
remains to show that F is a continuous function from F to N .

Let y ∈ N, Uy = {f |F (f) ≥ y} and f ∈ Uy. There is a σ � f such
that F (σ) ≥ F (f). By the definition of F , F (τ) ≥ F (σ) for all τ � σ and
F (g) ≥ F (σ) ≥ y for all g � σ. Thus the basic open set Fσ is contained
in Uy; so Uy is the union of basic open sets; therefore Uy is open and F is
continuous.

For the other way round, let F : F → N be a continuous function and
A = {f |F (f) is odd}. Now for each σ let F (σ) = min{F (f) |σ � f}. F (σ)
is defined since the natural numbers are well-ordered. Let y = F (f). Since
F is continuous there is a string σ � f such that F (g) ≥ y for all g � σ.
Therefore F (τ) = y for all τ with σ � τ � f and the classifier

M(σ) =
{

YES if F (σ) is odd;
NO if F (σ) is even;

decides A: If F (f) is even then M converges on f to NO and if F (f) is odd
then M converges on f to YES.

Corollary 3.3 Let A ⊆ Σω. Assume A ∈ DE[all]. Then (1) there is a σ
such that either Fσ ⊆ A or Fσ ⊆ A, and (2) the topological boundary ∂A is
nowhere dense. Hence FS = {f | (∀∞x)[f(x) = 0]} /∈ DE[all].

Proof: Assume that A ∈ DE[all] witnessed by a continuous F : F → N .
Again extend F onto the finite strings σ ∈ Σ∗ by F (σ) = min{F (f) |σ � f}.
Let σ0 = λ. As long as possible find an extension σn+1 � σn with F (σn+1) >
F (σn). If this process never terminates, then F (f) ≥ F (σn) ≥ n for the
limit f of all σn; but this contradicts the fact that F (f) ∈ N. Therefore the
process stops for some σn. Now F (τ) = F (σn) for all τ ≥ σn and therefore
F (g) = F (σn) for all g � σn. The basic open set Fσn either belongs to A
or to A.

7

This construction indeed provides such a basic open set above any given
string. Thus each string τ is extended by some σ with either Fσ ⊆ A or
Fσ ⊆ A. Thus f /∈ ∂A for all f � σ and ∂A is nowhere dense.

Since ∂FS = F , FS /∈ A. To see that every f : N → Σ is in ∂FS,
note that for each σ � f , σ0ω ∈ FS and σ1ω /∈ FS, thus f is approximated
by a sequence inside FS and an other sequence outside FS. So f is in the
boundary of FS.

Similarly one can show that B = {σ0ω |σ ∈ {0, 1}∗} ∪ {f | (∃x)[f(x) ≥ 2]}
is not in DE[all] for Σ = {0, 1, 2}. ∂B is nowhere dense since Fσ·2 ⊆ B for
all σ. So the first two statements of the corollary are not “if and only if”.
Another topological characterization is based on the following observation:

Theorem 3.4 If A is open in F then A ∈ DE1[all].

Proof: Since A is open, A =
⋃

σ∈W Fσ for some set W . Without loss
of generality we can assume that W = {σ | Fσ ⊆ A}. Now the classifier M
given by

M(σ) =
{

YES if σ ∈ W ;
NO if σ /∈ W ;

DE1[W] classifies A. If W is r.e., then even A ∈ DE1.
An alternative proof — which only shows A ∈ DE[all] — uses the topo-

logical characterization of Theorem 3.2: Let F be the characteristic function
of A, i.e., F (f) = 1 if f ∈ A and F (f) = 0 if f /∈ A. Then the inverse images
of the open set N is F , of the open set {x |x ≥ 1} is the open set A and of
all other open sets is ∅. Since ∅ and F are also open, F is continuous.

So one might ask, how the class of all sets in DE[all] can be generated from
the open sets. The answer follows from the following definition:

Definition 3.5 Let C be a collection of subsets of Σω. A is a the well-
defined symmetric difference of C (denoted A = WDSD(C)) if A consists of
all f such that (1) f is contained only in finitely many sets B ∈ C, and (2)
{B ∈ C | f ∈ B} has an odd number of elements.

Note that if A is a Boolean combination of open sets, then it is also the
WDSD of a finite collection of open sets. Further if A is a WDSD of a
collection of open sets, then A is also a Borel set. But none of these two

8

implications have a reverse: {f | min(f) is odd} is a WDSD of a collection
of open sets but not the Boolean combination of finitely many open sets;
FS is a Borel-set since FS is countable, but FS is not the WDSD of some
collection of open sets. Now DE[all] has the following characterization:

Theorem 3.6 A ∈ DE[all] iff A is the well-defined symmetric difference of
some collection of open sets.

Proof: Let A ∈ DE[all] be given and F : F → N be the continuous
function from Theorem 3.2 such that f ∈ A ⇔ F (f) is odd. Now let C =
{Uy | y ∈ N} with Uy = {f |F (f) ≥ y} for y ≥ 1. All sets Uy are open and
each f is in the finitely many sets U1,U2, . . . ,UF (f). So A = WDSD(C) and
the “only if” direction holds.

Now let A = WDSD(C) for some collection C of open sets. Further let
F (f) denote the cardinality of the set {B ∈ C | f ∈ B}. By definition, F (f)
is odd iff f ∈ A. It remains to show, that F is continuous. Let Cy be the
collection of all sets which are the intersection of at least y different sets
from C. Then F (f) ≥ y iff there is some B ∈ Cy with f ∈ B. It follows that
Uy = {f |F (f) ≥ y} is just the union of all sets in Cy and so each set Uy is
open. Therefore F is a continuous mapping from F to N .

There is an effective version of this theorem. This version works with basic
open sets instead of open sets. This is needed since open sets can be highly
nonrecursive, whereas basic open sets are recursive.

Theorem 3.7 A ∈ DE iff A = WDSD{Fσ |σ ∈ W} for some r.e. set W ,
i.e., iff A is the well-defined symmetric difference of an r.e. collection of basic
open sets.

Proof: We establish the “only if” direction. If A ∈ DE via some classifier
M then let W = {σa |M(σ) 6= M(σa)}. We can assume, without loss of
generality, that M(λ) = NO (if M(λ) = YES one has to add λ to W). W is
even recursive. Since f ∈ A iff M makes an odd number of mind changes,
f ∈ A iff there is an odd number of strings σ ∈ W with σ � f , i.e., iff
f ∈ WDSD{Fσ |σ ∈ W}.

We now establish the “if” direction. Let A = WDSD{Fσ |σ ∈ W} for an
r.e. set W . First W has to be replaced by a recursive set which is sufficiently
similar to W . Let σ0, σ1, . . . be a recursive 1-1 enumeration of W such that

9

|σn| ≤ n for all n; in order to achieve this condition, σn = # is allowed. Now
the set

V = {τ |σ|τ | 6= # ∧ σ|τ | � τ}

is recursive and for each f the sets {σ ∈ W |σ � f} and {τ ∈ V | τ � f}
have the same finite cardinality. Thus A = WDSD{Fτ | τ ∈ V }. Now N
given by

N(η) =
{

YES if #{τ ∈ V | τ � η} is odd;
NO otherwise (#{τ ∈ V | τ � η} is even);

is a recursive classifier which classifies A.

Shai Ben-David [1] found a further topological characterization based on the
notion of countable unions of closed sets, the so called “Fσ-sets”. The next
theorem is his. We proof it for completeness.

Theorem 3.8 A ∈ DE[all] iff A and A both are countable unions of closed
sets.

Proof: Let A = {f |F (f) is odd} for a continuous function F : F → N .
The sets Uy = {f |F (f) ≥ y} are open and each satisfies Uy =

⋃
σ∈Wy Fσ for

certain sets Wy. The basic open sets are not only open, but also closed. The
sets Fσ − Uy are also closed. From the relation

A =
⋃

y {f |F (f) = 2y + 1} =
⋃

y

⋃
σ∈W2y+1 (Fσ − U2y+2)

follows that A and similarly A are the union of countably many closed sets.
For the other way assume that A = C1∪C3∪C5 . . . and A = C0∪C2∪C4 . . .

are the countable unions of the closed sets C0, C1, . . .; further let F (f) be the
first y such that f ∈ Cy. Since the Cy cover the whole set F , F (f) is defined
and F (f) is odd iff f ∈ A. The function F is continuous since the sets

{f |F (f) ≥ y} = C0 ∪ C1 ∪ . . . ∪ Cy−1

are open: each of them is the complement of a finite union of closed sets.

The next theorem shows that DE[A] and DE[B] have a simple relationship.

Theorem 3.9 DE[A] ⊆ DE[B] iff A ≤T B.

10

Proof: The “if”-direction is clear, for the “only-if”-direction let DE[A] ⊆
DE[B], Σ = {0, 1}, f = χA and A = {f}. Now {f} ∈ DE[B] via some
classifier MB. For all sufficiently long input σ � f the classifier outputs
YES, by a finite modification one can obtain MB(σ) = YES for all σ � f .
A further modification gives, that MB makes at most one mind change: if
MB(σ) = NO, then one can set MB(τ) = NO for all τ � σ since no g � σ
is in {f}. Thus T = {σ ∈ Σ∗ |MB(σ) = YES} is a B-recursive tree with f
being its only infinite branch. Therefore f ≤T B and A ≤T B.

4 Arbitrary Query-Languages

This section looks for relations between the number of quantifiers (allowed in
queries) and bounds on mindchanges. Queries allow one to extract more in-
formation than just looking at initial segments. For example FS ∈ Q2DE0[∅]
−DE[all]. Most results in this section do not depend on a specific query lan-
guage.

Theorem 4.1 Q1DE0[<,+,×] ⊆ DE.

Proof: Let M be a classifier which Q1DE0[<,+,×] infers a family A.
Classifying any function f the new DE classifier N simulates M but replaces
every query of the form (∃x1, . . . , xn)[φ(x1, . . . , xn)] by the query (∃x1, . . . , xn <
m) [φ(x1, . . . , xn)] which can be recursively decided using the initial segment
f(0), f(1), . . . , f(m−1) of f . Since

(∃x1, . . . , xn)[φ(x1, . . . , xn)] ⇔ (∀∞m)(∃x1, . . . , xn < m)[φ(x1, . . . , xn)]

and since M makes only finitely many queries until M makes its first and
only guess c(f) ∈ {YES,NO}, the guess cm(f) of the emulation equals c(f)
for almost all m.

The above theorem can be generalized and strengthened.

Theorem 4.2 Qa+1DE0[L] ⊆ QaDE[L] for all a ∈ N and all languages L.

11

Proof: Let A ∈ Qa+1DE0[L] via M . It is possible to find out the value
of a query (∃x1, . . . , xn)[φ(x1, . . . , xn)] with φ(x1, . . . , xn) having only a al-
ternations of the quantifiers by inserting each n-tuple (x1, . . . , xn) one af-
ter an other. As long as none of this n-tuples (x1, . . . , xn) has evaluated
φ(x1, . . . , xn) to YES the classifier assumes that the answer of (∃x1, . . . , xn)[φ(x1, . . . , xn)]
is NO and emulates M on the queries following this NO. It is easy to see
that the algorithm converges to the correct index.

One might look for an inverse of Theorem 4.2, i.e., whether QaDE[L] ⊆
Qa+1DE0[H] for some sufficiently powerful language H depending on L. This
reverse holds for a ≥ 1:

Theorem 4.3 QaDE[all] = Qa+1DE0[all] for all a ≥ 1.

Proof: Let A ∈ QaDE[L] via classifier M . W.l.o.g. L contains the ability
to unpack tuples, therefore all queries are of the form (∃x)[φ(x)] where φ con-
tains a− 1 alternating quantifiers starting with ∀. The formula φ depends of
the previous answers, M received. We make those previous answers a param-
eter by letting (∃x)[φ(σ, k, x)] denote the query which would be asked after
receiving the answers σ(0), σ(1), . . . , σ(k−1), k ≤ |σ|. Using this parametriza-
tion one can define a Qa+2DE0[H] classifier N which searches for a number
n such that one of the following conditions hold:

(1) (∀m ≥ n)(∀σ ∈ {NO,YES}m)(∃k<m)(∀x)(∃y)
[M(σ) = YES ∨ (σ(k) = YES ∧ ¬φ(σ, k, x))

∨ (σ(k) = NO ∧ φ(σ, k, y))];

(2) (∀m ≥ n)(∀σ ∈ {NO,YES}m)(∃k<m)(∀x)(∃y)
[M(σ) = NO ∨ (σ(k) = YES ∧ ¬φ(σ, k, x))

∨ (σ(k) = NO ∧ φ(σ, k, y))].

Formula (1) says that eitherM(σ) outputs YES or σ is not a string of answers
obtained by M ’s sequent queries to f . Since M converges there must be some
n such that either (1) or (2) holds. In the first case N outputs YES and in
the second case N outputs NO.

The only problem is that the queries have too many alternations of quan-
tifiers. It is necessary to swap the (∃k < m) and (∀x). This can be done
by first replacing x by a finite function — coded as a string — with domain
{0, 1, . . . ,m−1}. After swapping the quantifiers x depends from k and is
replaced by τ(k). The new queries (1) and (2) of N are:

12

(1) (∀m ≥ n)(∀σ ∈ {NO,YES}m)(∀τ ∈ Σm)(∃k<m)(∃y)
[M(σ) = YES ∨ (σ(k) = YES ∧ ¬φ(σ, k, τ(k)))

∨ (σ(k) = NO ∧ φ(σ, k, y))];

(2) (∀m ≥ n)(∀σ ∈ {NO,YES}m)(∀τ ∈ Σm)(∃k<m)(∃y)
[M(σ) = NO ∨ (σ(k) = YES ∧ ¬φ(σ, k, τ(k)))

∨ (σ(k) = NO ∧ φ(σ, k, y))].

Now N witnesses A ∈ Qa+1DE0[all].

This proof does not work for a = 0 since the first existential quantifier of the
formula is used to cover the bounded quantifier (∃k < m). The next result
shows that it is impossible to overcome this gap:

Theorem 4.4 DE1 6⊆ Q1DE0[all].

Proof: There are several variants of this proof, they all look for properties
which can be discovered by examing larger and larger parts of the graph but
not by finitely many ∃-queries. One such property is that f has a “loop”
[4, 5]. Easier is the following:

A = {f | (∃x)[x /∈ {f(2x), f(2x+1), . . . , f(2x+1−1)}] }.

Such functions are said to have a gap at x. A finite string σ has a gap iff
there is an x with 2x+1 ≤ |σ| and x /∈ {σ(2x), σ(2x +1), . . . , σ(2x+1−1)}.
Otherwise σ is said to have no gap; note that a string σ can be extended to
a function without a gap iff σ does not have a gap itself. Since

A =
⋃

σ has a gap Fσ,

A is open and in DE1[all]. Since the set of all strings σ having a gap is
recursive, A ∈ DE1.

So it remains to show that A /∈ Q1DE0[all]. Assume, by way of contra-
diction, that there exists a classifier M such that A ∈ Q1DE0[all] via M . We
assume, without loss of generality, that M asks queries φ0, φ1, φ2, . . ., inde-
pendent of the answers given. A string σ is said to satisfy a formula ψ iff all
f � σ satisfy ψ. Now a sequence σn of strings is constructed as follows

σ0 = λ;

13

bn =

1 if there is some ηn � σn such that

ηn has no gap and ηn satisfies φn;
0 otherwise, i.e., there is no such ηn;

σn+1 =
{
ηn for the ηn from above if bn = 1;
σn otherwise, i.e., if bn = 0.

We envision running M and answering φi by bi. After finitely many queries,
say after the m queries φ0, φ1, . . . , φm−1, M outputs its only guess. Since
there is a function extending σm which has no gap, this guess is YES.

Let k be greater than the number of occurrences of f in all formulae
φ0, φ1, . . . , φm−1. Furthermore, without loss of generality, we can assume
2k = |σm|. Assume now f � σm has a gap. Then f satisfies some φi, i < m,
which σm does not satisfy, since otherwise the classifier would also classify f
by YES. So there is a set X of k elements such that g satisfies φi whenever
(∀x ∈ X)[g(x) = f(x)]. Now let

ηi(x) =

f(x) if x ∈ X or x < |σm|;
y if 2y ≤ x < 2y+1 and x /∈ X

and x ≥ |σm| and y ≤ max(X);
↑ otherwise (21+max(X) ≤ x).

Obviously ηi satisfies φi, ηi extends σi and ηi has no gaps since for each
y ≥ k, some value x ∈ {2y, 2y+1, . . . , 2y+1−1} satisfies ηi(x) = y because of
cardinality-reasons. This contradicts the construction which demands that
bi = 1 and that φi has to be satisfied, e.g. via ηi, whenever this is possible.
So A /∈ Q1DE0[all].

The inclusion Q1DE0 ⊆ DE[all] is proper. But it cannot be extended to an
inclusion Q1DE0 ⊆ DEa[all] for any bound a on the number of mindchanges:

Theorem 4.5 Q1DE0[∅] 6⊆ DEa[all] for all a ∈ N.

Proof: Let A = {f |min(f) is odd}. A is in Q1DE0[∅] as follows. To
classify A ask the queries (∃x)[f(x) = y] for y = 0, 1, 2, . . . until the answer
is YES. Let z denote the first y with positive answer. z is obviously the min-
imum of f and since every function has a minimum, the search terminates.
Output YES if z is odd and NO otherwise.

Let M be a classifier which DE classifies A. Let a ∈ N. We show
that there are functions that M takes more than a mindchanges to classify.

14

Consider the following decreasing function f which is defined inductively:

f(x) =

a+1 if x = 0;
f(x−1) if x > 0 and [f(x−1) = 0 or

(M(f(0) · · · f(x−1)) 6= YES ∧ f(x−1) is odd) or
(M(f(0) · · · f(x−1)) 6= NO ∧ f(x−1) is even)];

f(x−1)−1 otherwise.

In other words f begins constantly with a+1 and whenever M classifies that
f has an odd minimum, then f takes an new even value below all its previous
values, and whenever M classifies f to have an even minimum, then f takes
an odd value below all its previous values. This is iterated a+1 times until
f reaches the level 0. Therefore M needs a+1 mindchanges to classify f .

Kevin Kelly pointed out to us that there is an affirmative answer to the
following question, originally posed in [5]: Is Q2DE0[∅] 6⊆ DE[all]? (This
would extend our previous result Q2DE0[Succ] 6⊆ DE[all] [5, Theorem 5]
where “Succ” denotes the successor-function Succ(x) = x+1.) We present
his proof.

Theorem 4.6 Q2DE0[∅] 6⊆ DE[all] and Q1DE1[∅] 6⊆ DE[all].

Proof: The class A = {f | f is surjective} can be identified via a single
query: (∀y)(∃x)[f(x) = y]. Further A is Q1DE1[∅] classifiable by first sug-
gesting YES, i.e., that f ∈ A, and then asking whether (∃x)[f(x) = y] for
all constants y = 0, 1, 2, . . .; if once such a query receives an negative answer,
the classifier makes a mindchange to NO.

So it remains to show that A /∈ DE[A] for any oracle A. Assume, by way
of contradiction, that MA classifies A. f is inductively defined by

f(x) =

0 if x = 0;
f(x−1) if x > 0 and MA(f(0) · · · f(x−1)) 6= NO;
f(x−1)+1 otherwise (x > 0 ∧MA(f(0) · · · f(x−1)) = NO).

So if MA converges on f to YES then f(x) = f(x−1) for almost all x and f
has finite range, i.e., f is not surjective. If MA converges to NO on f then
f(x) = f(x−1) + 1 for almost all x; thus f has infinite range and is even
surjective. Therefore MA does not classify f correctly and A /∈ DE[all].

15

5 The Query and Borel Hierarchies

DE[all] had a topological characterization. It is possible to extend this char-
acterization to QDE0[all] and QDE[all] using the notion of Σa Borel sets
where a is an ordinal:

Definition 5.1 The Σ1 Borel sets are just the open sets.
A set is Πa Borel iff it is the complement of a Σa Borel set.
If a > 1 is any ordinal, then a set A is Σa Borel iff A is the union of countably
many sets An where each An is a Πbn Borel set for some bn < a.

The next theorem shows the connections between the query- and Borel hier-
archy; in addition it shows that the query hierarchy does not collapse.

Theorem 5.2 Query and Borel Hierarchy:
(a) A ∈ QaDE[all] ⇒ A is Σa+2 Borel and Πa+2 Borel.
(b) A ∈ QDE0[all] ⇔ A is Σω Borel and Πω Borel.
(c) A ∈ QDE[all] ⇔ A is Σω+1 Borel and Πω+1 Borel.
(d) There is some Borel set A /∈ QDE[all].
(e) Q0DE[all] ⊂ Q1DE[all] ⊂ Q2DE[all] ⊂ . . . ⊂ QDE0[all] ⊂ QDE[all],

i.e. no two levels of this hierarchy collapse.

Proof: (a): The first statement is shown via induction on a ∈ N. Since
Q0DE[all] = DE[all], Shai Ben-David’s result covers the case a = 0. Assume
that A ∈ QaDE[all] via M , 0 < a < N and that the statement (a) holds for
a− 1. Now let

An = {f | the n-th guess of M is YES}.

Since An ∈ QaDE0[all] ⊆ Qa−1DE[all] for all n, each set An is Πa+1 Borel
by induction hypothesis. Now the sets Bn =

⋂
m≥nAm are Πa+1 Borel and

therefore their union is Σa+2 Borel. Each f ∈ A is in some Bn since M
converges on f to YES at some stage n and then f ∈ Am for all m ≥ n. On
the other hand, if f /∈ A, then f /∈ Am for all arbitrary large m and therefore
f /∈ Bn for all n. Thus A =

⋃
n Bn and A is a Σa+2 Borel set. In the same

way it follows that A is a Σa+2 Borel set and A is also a Πa+2 Borel set.

(b): First the direction “⇒” is shown. Now let A ∈ QDE0[all] via M . On
each input f , M asks only the first n(f) questions φ0, φ1, . . . , φn(f)−1 for some

16

n(f) depending on f . We can assume, without loss of generality, that (1) the
queries do not depend on f and (2) each query φi has at most i quantifiers.
For each f let

Af = {g | (∀i < n(f))[φi(f) ⇔ φi(g)]}.

Each such set Af is uniquely determined by the answers bf,0, bf,1, . . . , bf,n(f)−1

given to the n(f) queries of the classifier, therefore the sets Af are indexable
via strings in {YES,NO}∗ and there are only countably many different sets
Af . If f ∈ A then Af ⊆ A; if f /∈ A then Af ⊆ A. Af is a Σn(f) Borel and
a Πn(f) Borel set. Now A =

⋃
f∈AAf and A =

⋃
f /∈AAf ; both unions are

countable and therefore A is Σω Borel and Πω Borel.
The direction “⇐” needs also some claim on the cases a ∈ N, it would

be sufficient to show that every Σa Borel set is in QbDE[all] for some b ∈ N,
but it is even possible to give an upper bound for this b:

Claim: If a ∈ N− {0} then every Σa Borel set is in Qa+1DE0[all].

For a = 1 this follows already from Shai Ben-David’s result and from DE[all]
⊆ Q2DE0[all]. We show the claim just at the example of Σ3 Borel sets, but
the proof easily generalizes to all a ∈ N. Any Σ3 Borel set A is of the form⋃

i

⋂
j

⋃
k Fσi,j,k

where the Fσi,j,k
are the basic open sets generated by a — not necessarily

recursive — family σi,j,k of strings. Now the formula

f ∈ A ⇔ (∃i)(∀j)(∃k)(∀h)[h < |σi,j,k| ⇒ f(h) = σi,j,k(h)]

witnesses that A ∈ Q4DE0[all]. This finishes the proof of the claim.

If A is Σω Borel and Πω Borel, then A = A0 ∪ A2 ∪ A4 ∪ . . . and A =
A1 ∪A3 ∪A5 ∪ . . . for some Σi Borel sets Ai. Now a classifier for A searches
via queries for the first i such that f ∈ Ai and then outputs YES if i is even
and NO if i is odd.

(c): The proof that all sets in QDE[all] are Σω+1 Borel and Πω+1 Borel is
similar to that for the induction hypothesis in (a); therefore we leave it to
the reader and deal only with the other direction.

The idea to show that every set which is Σω+1 Borel and Πω+1 Borel is
in QDE[all] is also similar to that of (b), but a bit more complicated: There
are Σj Borel sets Ai,j such that A = A0 ∪A2 ∪A4 . . ., A = A1 ∪A3 ∪A5 . . .

17

and Ai =
⋂

j Ai,j. The sets Ai,j are in Qj+1DE0[Li,j] via one query φi,j in
the language Li,j; let L denote the union of all these languages Li,j. Now the
classifier N to witness A ∈ QDE[L] works as follows:

Initialization: Let i = 0 and goto Stage 0.

Stage i: Let j = 0 and Goto Substage 0.

Stage i, Substage j: If i is even then output YES else output NO.
Find out if f ∈ Ai,j, i.e., ask whether φi,j(f) holds.
If f ∈ Ai,j then goto substage j+1 of stage i else goto stage i+1.

Assume that the algorithm is in stage i. If f ∈ Ai then the algorithm remains
for ever in stage i since f ∈ Ai,j for all j. If f /∈ Ai then the algorithm finds
some j with f /∈ Ai,j and goes to stage i+1 after finite time. Since each f
is in some Ai, the algorithm reaches after finite time some stage i which it
does not leave again and from now on it outputs the correct guess.

(d): Engelking, Holsztyński and Sikorski [2] showed that there is a Σω+2

Borel set which is not Σω+1 Borel. In particular this Borel set is not in
QDE[all] by part (c).

(e): The inclusions of the hierarchy Q0DE[all] ⊂ Q1DE[all] ⊂ Q2DE[all] ⊂
. . . ⊂ QDE0[all] ⊂ QDE[all] are clear; the only difficult one QaDE[all] ⊆
QDE0[all] follows from QaDE[all] ⊆ Qa+1DE0[all] for all a with 1 ≤ a < N.

There is a set A which is Σω Borel but not Πω Borel — otherwise every
Πω+1 Borel set would be the countable intersection of Πω Borel sets and the
hierarchy of Borel sets would collapse in contradiction to the results in [2].
Thus A is QDE[all] classifiable but not QDE0[all] classifiable.

Further if Qa+1DE[all] = QaDE[all] for some a < N, then a > 0 since
FS ∈ Q1DE[all] − Q0DE[all]. Now Qa+1DE0[all] = Qa+2DE0[all] follows
and Qa+1DE[all] = Qa+2DE[all]: Let A ∈ Qa+2DE[L]. The n-th guess of
a Qa+2DE[L] classifier M can be obtained via a Qa+2DE0[L

′] classifier for
some query language L′. Thus An = {f | the n-th guess of M is YES} is
in Qa+1DE0[H] for some H and A ∈ Qa+1DE[H] ⊆ QaDE[all]. It follows
that the whole hierarchy would collapse to QDEa[all]. Thus QaDE[all] =
Qa+3DE[all]. By the claim, every Σa+3 Borel set is Qa+4DE0[all] classifiable
and therefore Qa+3DE[all] classifiable. But since every QaDE[all] classifiable
set is Σa+2 Borel, the assumption Qa+1DE[all] = QaDE[all] contradicts the
fact that there is a Σa+3 Borel set which is not Σa+2 Borel.

18

6 Fixed Languages and Arbitrary Oracles

The inclusion QaDE[all] ⊆ Qa+1DE[all] from Theorem 4.3 inherently needs
to increase the power of the query language. This section now looks at the
case where this is prohibited — on the other hand the classifier still should
have access to nonrecursive information. Therefore it now may either ask
a query in L about the function to be learned or a membership query to
an oracle A. QDE[L;A] denotes this new class and QDE[L; all] denotes the
union of all these classes with fixed language L but A running over all possible
oracles. Indeed Theorem 4.3 does not hold in this context:

Theorem 6.1 DE1[all] 6⊆ QDE0[L; all] for every language L.

Proof: The main idea of this theorem is that given a fixed language L
it is not possible to identify each singleton languages A = {g} with finitely
many queries: If A ∈ QDE0[L; all] then there must be finitely many queries
φ0, φ1, . . . , φn−1 in the language L to a function f such that f = g iff all
these queries receive the answer YES. Since there are only countably many
such queries, there are also only countably many finite combination of such
queries and there are only countably many singletons {g} ∈ QDE0[L; all]. In
particular there is some singleton {g} /∈ QDE0[L; all].

On the other hand it is possible to DE1[A] classify each singleton {g}
with A being the graph of g: First the classifier conjectures YES, i.e., that
f = g. If it then discovers at some point a difference between f and g, i.e., if
it discovers (x, f(x)) /∈ A for some x, then the classifier makes a mind change
to NO.

To generalize this theorem, the following result is necessary, which is a non-
recursive variant of the Tree Method [9, Section V.5].

Theorem 6.2 For every language L there is a tree T such that the following
holds:

• T : Σ∗ → Σ∗ is total and (∀σ, τ ∈ Σ∗)[T (σ) � T (τ) ⇔ σ � τ].

• φn(T (f)) ≡ φn(T (g)) for the n-th formula φn ∈ L, σ ∈ Σn and all
functions f, g � σ.

19

Proof: This function T can be produced by a transfinite computer pro-
gram with a variable k ranging over all ordinals below ω2. Since T is not
required to be recursive, termination of the program in the “ordinary” sense
is not necessary. Let φ0, φ1, . . . be a listing of all formulae in L; they are
normed in the way that they all start with an existential quantifies - since it
is equivalent if an algorithm asks φn or ¬φn. Further the function variable g
is the only free variable of a formula φn and all bound variables in φn range
over N. Now the algorithm runs as follows:

(1) Initialization: T (σ) = σ for all σ ∈ Σ∗.
(2) For all k < ω2, k = mω + n with m,n ∈ N:
(3) If φn has m bound variables then do for all σ ∈ Σn:
(4) If m = 0 then find η ∈ Σ∗ with

(∀f � ση)[ψ(c, T (ση0ω)) = ψ(c, T (f))]
And replace T (στ) by T (σητ) for all τ ∈ Σ∗.

(5) If m > 0, φn(g) = (∃x)[ψ(x, g)] and there are c ∈ N, η ∈ Σ∗ with
(∀f � ση)[ψ(c, T (f))]

Then replace T (στ) by T (σητ) for all τ ∈ Σ∗.

First one has to verify that each time the search in (4) terminates. But since
a statement without quantifiers only looks at each function T (f) at finitely
many places, the equivalence always holds if T (σ) is sufficiently long, i.e.,
φn(g) takes the same value for all functions g � T (σ) if |T (σ)| > c for any
numerical constant c appearing in φn. Further for all k ≥ ω, the basis case
of the following inductive hypothesis holds:

If k ≥ mω, φn has m bound variables and σ ∈ Σn then

(∗) φn(T (f)) = φn(T (σ0ω)) for all f � σ.

It remains to show, that also (5) goes through and preserves the inductive
hypothesis. Assume that m > 0 and φn(g) = (∃x)[ψ(x, g)]. Either for all
f � σ and all c, ψ(c, T (f)) does not hold. Then there is nothing to do and
(∗) is satisfied. Or there is some f � σ and some c such that ψ(c, T (f))
holds. Now ψ(c, g) ∈ {φl(g),¬ψl(g)} for some l and φl has m−1 bound
variables. Let η = (f(n), f(n+1), . . . , f(l)) if l > n and η = λ otherwise. By
the inductive hypothesis, φl(T (f ′)) ≡ φl(T (f)) for all f ′ � ση and therefore
φn(T (f)) holds for all f � ση. After replacing all values T (στ) by T (σητ),
(∗) is also satisfied for φn and σ.

20

Each step only replaces the set {T (f) | f : N → Σ} by a proper subset.
Therefore if (∗) once hold for some n, it will never be destroyed again. Thus
at the end, (∗) holds for every formula. Further only the stages k = mω + n
with m + n ≤ |σ| can change the value of T (σ). Therefore T (σ) is always
defined and converges “transfinitely” to a fixed value. The resulting tree T
has the desired properties.

Theorem 6.3 DEa+1[all] 6⊆ QDEa[L; all] for every language L and a ∈ N.

Proof: Let Σ = {0, 1, . . . , a+1}, T be the mapping from Theorem 6.2 and
φ0, φ1, . . . the enumeration of all formula in L. Now define the oracle A as
follows:

χA(σ) =

{
1 if φ|σ|(T (f)) holds for all f � σ;
0 if φ|σ|(T (f)) holds for no f � σ.

By the definition of T always one of these two cases holds, thus χA is never
undefined. Further let

A = {T (f) | f ∈ B} where

B = {f : N → Σ | min(f) is odd}.

By Theorem 6.1 B /∈ DEa[all]. Assume that A ∈ QDEa[L;B]. Now it is easy
to translate any QDEa[L;B] into a DEa[A⊕B] algorithm for B by replacing
every query φn to T (f) by the query whether σ = (f(0), f(1), . . . , f(n−1)) ∈
A. Now the classifier classifies B only by membership-queries to the oracles
A and B. Thus if A ∈ QDEa[L;B] then B ∈ DEa[A⊕B] which is known to
be wrong. So A /∈ QDEa[L;B].

The other direction needs only the oracle T . Let T−1(τ) be the unique
string σ ∈ Σ∗ such that T (σ) � τ ≺ T (σc) for some c ∈ Σ and T−1(τ) ↑ iff
there is no such σ. Now let

NT (τ) =

YES if T−1(τ)↓= σ and min({σ(x) |x < |σ|}) is odd;
NO if T−1(τ)↓= σ and min({σ(x) |x < |σ|}) is even

or T−1(τ)↑ .

If T−1(τ) ↑ then also T−1(η) ↑ for all η � τ . NT makes at most a + 1
mindchanges: At every mindchange it computes a new minimum for T−1(τ)
or changes from T−1(τ)↓ to T−1(τc)↑ . The latter causes only a mindchange
if NT (τ) has been on the value YES and therefore at most a mindchanges
have occurred before. Thus A ∈ DEa+1[all].

21

The proof of Theorem 3.1 in [12] shows, that for the language with the extra
symbols “<” and “+” it is possible to choose T and A recursive. This gives
the following corollary:

Corollary 6.4 DEa+1 6⊆ QDEa[+, <; all] for all a ∈ N.

7 Classification with Anomalies

In this section we establish exactly when DEb
a ⊆ DEd

c . We will show that if
d 6= ∗ then DEb

a ⊆ DEd
c . iff a ≤ c and b ≤ d. The class DE∗

0 is surprisingly
powerful: we will show DE[all] ⊆ DE∗

0.

Definition 7.1 Let f and g be functions. If #{x | g(x) 6= f(x)} ≤ a, then we
say that g is an a-variant of f and denote this by f =a g. If {x | g(x) 6= f(x)}
has finite cardinality then we say g is a finite variant or ∗-variant of f and
denote this by f =∗ g.

Definition 7.2 Let A be a set of functions, M a classifier, a ∈ N∪ {∗} and
f be any function. We say A ∈ DEa via M iff for every function f the
following holds:

• M converges on f to some value M(f) ∈ {NO,YES};
• M(f) = YES ⇒ some a-variant of f is in A;

• M(f) = NO ⇒ some a-variant of f is in A.

Note that for a function having a-variants in both, A and A, M can converge
to YES or to NO as it wants.

A set A is called closed under =∗ iff f ∈ A ⇔ g ∈ A for all f, g with f =∗ g.
If A is closed under =∗ then A ∈ QDE∗[all] iff A ∈ QDE[all]. In particular
every set A ∈ QDE∗[all] which is closed under =∗ is a Borel set.

Theorem 7.3 There is a set A /∈ QDE∗[all].

22

Proof: Let B be not a Borel set. Then also

A = {f | (∃g ∈ B)(∀∞〈x, y〉)[f(〈x, y〉) = g(x)]}

is not a Borel set, but closed under =∗. Thus A /∈ QDE∗[all].

Using this result, it is easy to establish the hierarchy:

Theorem 7.4 There is a set A ∈ DEn+1
0 −QDEn[all].

Proof: Let B /∈ QDE∗[all] be =∗-closed and

A = {f ∈ B | (∃x ≤ n)[f(x) = 0]}.

A is QDEn+1
0 classifiable via always guessing NO since for each function f

the n+1-variant f1 is not in A where

fb(x) =
{
b if x ≤ n;
f(x) otherwise (x > n);

for b = 0, 1. On the other hand, assume that M QDEn[L;B] classifies A. f0

is an n+1-variant of f . Every n-variant g of f0 takes a 0 on one of the first
n+1 places. Therefore g ∈ A iff g ∈ B iff f ∈ B. So the relation

f ∈ B ⇔M(f0) = YES

holds and B ∈ QDE∗[L;B] in contrary to the assumption to B.

On the other hand a direct corollary from Corollary 3.3 is that there is some
σ with Fσ ⊆ A or Fσ ⊆ A. Since every function f is a ∗-variant of some
function extending σ, either every function f is a ∗-variant of a function
inside A, or every function is a ∗-variant of a function outside A. So the
following theorem follows:

Theorem 7.5 DE[all] ⊂ DE∗
0.

But it is impossible to improve this result to QDE. FS is closed under =∗,
therefore a classifier M DE∗ classifies FS iff M DE classifies FS. Since
FS /∈ DE[all], FS /∈ DE∗[all] and Q1DE 6⊆ DE∗[all].

Theorem 7.6 DEm
a ⊆ DEn

b iff a ≤ b and m ≤ n.

23

Proof: Let DEm
a ⊆ DEn

b . The condition m ≤ n directly follows from
Theorem 7.4. Let a be odd and consider the set

A = {f | (∃c < a)[c is even and 4nc ≤ #{x | f(x) > 0} < 4nc+ 4n]}

If c ≤ a and #{x | f(x) > 0} = 4nc+n then there is some g =n f with g ∈ A
iff c is even and there is some g =n f with g /∈ A iff c is odd.

Assume that the classifier M classifies A under the requirement DEn. M
first has to guess YES and then M has to make a mindchange each time
after reading 4n new arguments x with f(x) > 0 until 4na arguments x with
f(x) > 0 are found. So a mindchanges are necessary to classify A. It is easy
to see that they are also sufficient; even for m = 0.

8 Classification with Teams

Team inference was introduced by Smith [11]. Next we define team classifiers
similar to team inference defined by Smith.

Definition 8.1 For m,n ∈ N such that 1 ≤ m ≤ n, a ∈ N and for any f ,
[m,n]DEa denotes a team of n classifiers out of which at least m of them
correctly classify f after at most a mindchanges.

Every set is [1, 2]DE0 classifiable since one classifier always guesses NO while
the other always guesses YES. Thus only [a, b]DEc teams with a

b
< 1

2
are

interesting. While [a, b]DE = DE the connection is more complicated if
c < ∗:

Theorem 8.2 [b+ 1, 2b+ 1]DEc = DE(2b+1)c for all b, c ∈ N.

Proof: Let M1, . . . ,M2b+1 be a team which [b+1, 2b+1]DEc classifies A;
without loss of generality we can assume that no of them makes more than c
mindchanges. Now a single classifier M0 emulates the team and waits always
until at least b members of the team either output YES or output NO. Then
M0 makes its first guess. Now M0 always outputs the guess of the majority
of the team — since each mindchange of the team means that at least one
of its members changes the mind from YES to NO or vice versa, M0 makes
at most (2b+ 1)c mindchanges.

24

For the other way around assume let M0 be a given classifier which makes
at most (2b+1)cmindchanges. The teamM1, . . . ,M2b+1 waits untilM0 makes
its first guess, say YES. Then M1, . . . ,Mb+1 guess YES and Mb+2, . . . ,M2b+1

guess NO. Further two markers ODD and EVEN are placed on b + 1 and
2b+1. If M0 makes an odd mindchange from YES to NO, then MODD makes
also a mindchange from YES to NO and the marker moves from position
ODD to ODD−1 if ODD> 1 or to 2b+ 1 if ODD = 1. Similar if M0 makes
an even mindchange from NO to YES then MEVEN makes a mindchange from
NO to YES and the marker moves either to EVEN−1 or to 2b+1 depending
whether the old value of EVEN is greater than or equal to 1. The following
example illustrates this for b = 5 and c = 2:

M0 ODD EVEN M1 M2 M3 M4 M5

YES 3 5 YES YES YES NO NO
NO 2 5 YES YES NO NO NO
YES 2 4 YES YES NO NO YES
NO 1 4 YES NO NO NO YES
YES 1 3 YES NO NO YES YES
NO 5 3 NO NO NO YES YES
YES 5 2 NO NO YES YES YES
NO 4 2 NO NO YES YES NO
YES 4 1 NO YES YES YES NO
NO 3 1 NO YES YES NO NO
YES 3 5 YES YES YES NO NO

So while M0 makes 10 mindchanges, each member of the team makes only
two but nevertheless the majority of the team always agrees with M0.

This result can be generalized to 2a− b > 1. Then the same algorithm works
by moving the markers always 2a − b positions and making always 2a − b
classifiers to change their mind. So the outcome is:

Corollary 8.3 [a, b]DEc = DEd iff 1
2
< a

b
≤ 1 and d ≤ bc

2a−b
< d+ 1.

9 Acknowledgments

We would like to thank Shai Ben-David, Kevin Kelly and Oliver Schulte, for
helpful discussions. We would also like to thank two anonymous referees for
helpful comments.

25

References

[1] Shai Ben-David. Can Finite Samples Detect Singularities of Read-
Valued Functions? Proceedings of the 24th Annual ACM Symposium
on the Theory of Computer Science, Victoria, B.C., 1992, pages 390–
399.

[2] R. Engelking, W. Holsztyński and R. Sikorski. Some examples of Borel
sets. Colloquium Mathematicum, 15:271–274, 1966.

[3] William Gasarch, Efim Kinber, Mark Pleszkoch, Carl Smith, and
Thomas Zeugmann. Learning via queries, teams, and anomalies. Fun-
damenta Informaticae, 23(1):67–89, May, 1995. Shorter version in Third
Annual Conference on Computational Learning Theory, 1990, pages 327-
337, published by Morgan Kaufman.

[4] William Gasarch, Mark Pleszkoch and Robert Solovay. Learning via
queries to [+, <]. Journal of Symbolic Logic, 57(1):53–81, Mar. 1992.

[5] William Gasarch, Mark Pleszkoch and Mahendran Velauthapillai. Clas-
sification Using Information. Proceedings of the Fifth International
Workshop on Algorithmic Learning Theory, Reinhardsbrunn, 1994,
pages 290-300, published as Notes in Artificial Intelligence 872 by
Springer Verlag.

[6] William Gasarch and Carl Smith. Learning via queries. Journal of the
ACM, 39(3):649–675, July 1992. A shorter version is in 29th FOCS
conference, 1988, pp. 130-137.

[7] Mark Gold. Language identification in the limit. Information and Con-
trol, 10(10):447–474, 1967.

[8] Kevin Kelly. The Logic of Reliable Inquiry. Oxford University Press,
Oxford. Forthcoming.

[9] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Am-
sterdam 1989.

[10] Daniel Osherson, Micheal Stob, and Scott Weinstein. Aggregating in-
ductive expertise. Information and Computation, 70:69–95, 1986.

26

[11] Carl Smith. The power of pluralism for automatic program synthesis.
Journal of the ACM, 29(4):1144–1165, October 1982.

[12] Frank Stephan. Learning via queries and oracles. In Proc. 8th Annu.
Conf. on Comput. Learning Theory, pages 162–169. ACM Press, New
York, NY, 1995.

[13] Rolf Wiehagen and Carl Smith. Generalization versus classification.
Journal of Experimental and Theoretical Artificial Intelligence, 7, 1995.
Shorter version in Fifth Annual Conference on Computational Learning
Theory, 1992, pages 224-230, Published by Morgan Kaufman.

27

