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A recursive graph is a graph whose edge set and vertex set are both recursive. Although the
chromatic number of a recursive group G (denoted x(G)) cannot be determined recursively, it
can be determined if queries to the halting set are allowed. We show that the problem of
determining the chromatic number of a recursive graph with a minimum number of queries to
the halting set, is closely related to the unbounded search problem. In particular if f is a
non-decreasing function such that Lin0277 s effectively computable, then there is an
algorithm to determine y(G) with f(x(G)) queries to K iff L=0279<1 (ie., f satisfies
Kraft’s inequality). We also investigate recursive chromatic numbers (which require queries to
a set much harder than the halting set, namely #"), the effect of allowing queries to a weaker
set, and the effect of being able to ask P queries at a time. Most of our results are also true for
highly recursive graphs (graphs where one can determine the neighbors of a given node
recursively), though there are some interesting differences when queries to K are allowed for

free in the computation of a recursive chromatic number,

1. Introduction

We continue the study of the complexity of graph coloring problems initiated in
: [3]. All the problems we deal with are unsolvable, but are recursive in either K
| (the halting set), §#" (the jump of the halting set, see [10] or [12]) or @ (the jump
: of the jump of the halting set). We measure the complexity of these problems in
two ways: the Turing degree of the oracle and the number of queries to that
? oracle. In most cases we pin down both quantities exactly. Henceforth ‘graph’
means ‘recursive or highly recursive graph,’ terms originally defined in [1]. Most
definitions, notations, and conventions not specified are the same as in [3].
’ References to related work can also be found there.
‘ In [3] we studied several coloring problems where the chromatic number is
bounded a priori by a constant. Here we consider several coloring problems
where we know that the chromatic number exists but we are not given an q priori

’ bound on it.
The following definition is needed to state our results.
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228 R. Beigel, W.I. Gasarch

Definition. Let Q denote the positive rational numbers. A real number r is Bou
effectively computable if there exists a recursive function f:Q— Q such that, for set of
all >0, |[f(e)-r|<e.
Defini
In Section 2 we review the following theorem: if ¥, ,2~/® g effectively compu
computable, then the unbounded search problem can be solved in f(n) queries
(where n is the number being searched for) iff ¥,027®<1. In Section 3 we
show that finding the chromatic number of a graph is similar to the unbounded
search problem in that The
@) if £,20279<1 and is effectively computable, then X(G) can be found
with f(x(G)) queries to K; Definiti
(b) if there exists a set X such that %(G) can be determined from F(x(G))
queries to X, then X,.,2 7O < 1.
In Section 4 we obtain similar results for recursive chromatic number, with where }
queries to ¢ rather than K.
In Section 5 we investigate the effect of allowing queries to a less powerful set The f
Y, (i.,e. K€Y when computing chromatic number, and ¢” ¥r Y when comput-
ing recursive chromatic number) in the hope of cutting down on the number of Lemma
queries to K or #”. The most substantial savings of queries occurs in the problem partial r
of finding the recursive chromatic number of a highly recursive graph. If G is
highly recursive, then | The p
(@) x(G) can be found with an unlimited number of queries to X and
[log x(G)] queries to ¢, ‘ Lemma
(b) if Y ¥+@" and there exists a set X such that x"(G) can be determined from : set of n |
an unlimited number of queries to Y and 8(x(G)) queries to X then for all n, |
g(n) > [log(n)] — 1. | 2. The 1
In Section 6 we investigate the effect of asking p queries in parallel. Unlike the |
serial case there are sets such that if they are queried instead of K or #" then The u;
substantial savings are possible. In Section 7 we investigate the effects of being non-neg:
able to both ask questions to a weaker set, and ask p queries in parallel. than n.
We formally define the class of functions which can be computed by an oracle question
Turing machine, with oracle A, using a bounded number of queries to A. ‘. solve the
Definition. A partial function [ is in FQ(n, A) if f=<rA via an oracle Turing , such tha
machine that, when using oracle A, never makes more than n queries. If B is a l (8], an.d
set, then fis in FQ®(n, A) if F=<1A ® B via an oracle Turing machine, that, when Optim
using oracle A @ B, never makes more than n queries to A4 (though it may make and Kraf
many queries to B). Definitio
bijection

Note. The definition of FQ(n, A) still makes sense if ‘n’ is replaced by a function
of the input. The statement “2(G) e FQ(f (x(G)), X )"’ will mean that computing bijection
the chromatic number of graph G can be computed with f(x(G)) queries to X, |

assuming y(G) is defined. Definitio
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or 7 is Bounded queries are related to the notion of computing a partial function by a
at, for i set of partial functions.

Definition. Let S be a set of partial functions and f be a partial function. fis
ctively g computed by S if for all x such that f(x) is defined,
Jueries
3 ; fx) € {g(x) | g €S and g(x) ).
unded . :

The following function will be useful to us.
found :

; Definition. Let A be any set and k be any number. The function F % is defined by

:X(G)) !" Ff(xly Cee s X)) = <XA(x1)’ o Xa(xe))

where yx, is the characteristic function of set A.

', with
ful set ; The following lemmas are proven in [4].
'mput- f
ber of | Lemma 1. If A is a nonrecursive set, then F; cannot be computed by a set of n
oblem | partial recursive functions.
fGis !

| The proof of the above lemma easily relativizes to yield
 and

j Lemma 2. If A and Y are sets such that A $1Y, then F2 cannot be computed by a
{ from ‘ set of n partial functions that are recursive in Y,
h,

| 2. The unbounded search problem
ke the
' t}?en | The unbounded search problem is the following: Player A chooses an arbitrary
being f non-negative integer n. Player B is allowed to ask whether an integer x is less

than n. Player B stops when she knows what the number is. The number of

oracle questions player B asks depends on r itself. We say that f(n) questions suffice to

solve the unbounded search problem if there is an algorithm that player B can use
Curin : such that she will always stop within f(n) questions. Bentley and Yao [5], Knuth
5 ’ [8], and Beigel [2] have studied the unbounded search problem.

Bi 4
wlllse;1 ! Optimal algorithms for unbounded search are related to binary prefix codes
make | and Kraft’s inequality.

: Definition. Let D be a set of natural numbers. A binary prefix code for D is a
ction | bijection from D onto a subset of {0, 1}* such that no string in the range of the
»uting f bijection is a prefix of a different string in the range of the bijection.
to X,

Definition. A function f from N to N satisfies Krafts inequality if },.,2 /9 < 1.
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Kraft’s Theorem [7]. Let 0y, 0, 0, . .. be an infinite sequence of elements from 3. C

{0, 1}* such that the bijection that maps i to 0; Is a binary prefix code. Then :

Vo2 o<, In
; searc

Note. The unbounded search problem in the literature is the search for a positive recur

integer, not a nonnegative integer. Kraft’s inequality is actually ¥,.,2 7O <1, ; x(G)
We are using a slight modification of the unbounded search problem because we |

allow graphs to have chromatic number 0. The adjustment to the proofs in the ! Lem;
literature is trivial. ‘ num
Theo
We will need the following theorems. 3 and i
|
Theorem 3 (Bentley and Yao [S)). If f (n) questions suffice to solve the | Proof
unbounded search problem, then f(n) satisfies Kraft’s inequality. i query
j probl
Theorem 4 (Beigel [2]). Let f be a non-decreasing recursive function such that ; queric
Yi=0279<1 and is effectively computable. There is an algorithm to solve the
unbounded search problem by asking f (n) questions (where n is the number being N"“"‘
searched for) if and only if f satisfies Kraft’s inequality. | x(G.
! which
We give examples of slow growing functions that satisfy Krafts’s inequality, and ‘ recurs
examples of slow growing funtions that do not. First we need some definitions. | questy
! We
Definitions.
; x ifi=0, f Lemm
log’ x = { -1 :
log, logy ~"(x) otherwise.
log; x = min{t | log’ x < 1}.
. cannot
logsum,x= > logf x.
I<i=log} x Pl‘OOf.
. . . G can
Theorem 5 (Beigel [2]). (a) The function f(n)= [logsum,(n + 1)] + 2 safisfies set of
Kraft's inequality. functio
(b) If € >0, then there exist a constant ¢ such that
f(n) = [logsum,(n + 1) — (log, log,(e — €)) log?(n + D] +c ’Il;ge(‘}'(e
satisfies Kraft’s inequality, where e denotes the base of the natural log.
(c) Let c be any natural number. The function Proof.
and m:
f(n) = [logsum,(n + 1) — (log, log, e) logZ(n + 1)] + ¢ above
does not satisfy Kraft'’s inequality. ’ partial

EEEEEEEEEEEE———— ]
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3. Computing the chromatic number

ts from !
. Then f
; In this section we show that if f(n) queries suffice to solve the unbounded
| search problem, then f(n) queries can be used to find the chromatic number of a
sositive ; recursive graph; and conversely that if f(n) queries suffice to discover that
F <. !z X(G) = n, then the unbounded search problem can be solved in f(n) queries.
f
use
in t:: Lemma 6 (Beigel and Gasarch [3]). Given a recursive graph G and a natural
! number x, one can determine whether x(G) < x by making a single query to K.
|
: Theorem 7. Let f be a non-decreasing, recursive function such that ¥,;.,2~"9 <1
| and is effectively computable. Then x(G) is in FQ(f(x(G)), K).
i
ve the ! Proof. By Lemma 6, a question of the form “x(G)<x?” can be phrased as a
f query to K. Therefore the problem of finding x(G) is an unbounded search
| problem. By Theorem 4 there is an algorithm that solves this problem in f(x(G))
ch that queries. [0
lve the
r being ' Note. The algorithm in Theorem 7 essentially keeps asking questions of the form
| “x(G)=<x?”, with larger and larger values of x, until it receives a YES answer; at
!’ which point it will narrow in on the answer. If the input is not an index for a
ty, and ; recursive graph, then the algorithm either terminates or asks infinitely many
io;ls f questions. It cannot ask finitely many questions and not terminate.
| We prove a converse to Theorem 7.
é Lemma 8. The partial function
‘ 2(G) if 0<x(G)<n,
x:(G) ={ :
undefined otherwise
cannot be computed by a set of n partial recursive functions.
I,‘ Proof. In [3] we showed that F(x,, . . ., x,) can be computed from y,(G) where
i ?' G can be constructed from {x,, ..., x,}. Hence if x,(G) can be computed by a
atisfies | set of n recursive functions, then F5 could be computed by a set of n recursive

functions, which violates Lemma 1. O

Theorem 9. Let X be any set and f be any function. If x(G) is in
FQ(f(x(G)), X), then %,.,277V<1.

| Proof. Let MO be the oracle Turing machine such that M*(G) computes x(G)

and makes at most f(x(G)) queries to X, for some function f. Let y, be as in the

above lemma. We will use the fact that y, cannot be computed by a set of n
partial recursive functions to obtain a contradiction.
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For each sequence o € {0, 1}* we define a function ¢7(G) computed as follows:
simulate MO(G) using the ith bit of ¢ to answer the ith query. If during this
process any of the following three happen, then diverge:

(a) there is an attempt to make a (lol + 1)th query, or

(b) the computation terminates and the output is not between 0 and n, or

(c) the computation terminates and outputs i where |a| > f(i).

If none of these three happen, then continue simulating the computation, and if
it halts, then halt with the same output it gave. Since we can store the values
fQ0), ..., f(n) in a finite table, ¢, is a partial recursive function for every n and
o. By the construction of c?, whenever 0 < X(G) < n there exists some o of length
f(x(G)) or less that represents correct answers to the queries that M(G) makes
to X. That is

X:(G) € {c7(G): o € {0, 1}* and cAG)|}.

Let o be a prefix of o’. If ¢:(G) converges to a value, then ¢ (G) must converge
to the same value. We will use this fact later in order to construct a binary prefix
code for the integers 0 through n. By the construction of c?, if ¢:(G) converges,
then

c(G)e{0,...,n).
Therefore,

(Vm(YG){c(G): o € {0, 1}* and cX(G)|} < (0, . . ., n)].
We claim that

(Vrn)(3G)[{c/(G): o € {0, 1}* and c(G)}=A0,...,n}.
We prove this by contradiction. Suppose that

(An)(VG)[{c(G): o € {0, 1}* and G}y {0,...,n})
Choose such an integer n. Then

(YG)[I{e(G): 0 € {0, 1}* and c(G)|}| <],

For 1<j<n, define a partial recursive function h;(G), computed as follows:
Timeshare c;}(G) for all o until the functions have output j distinct values; output
the jth distinct value. Therefore, for all G such that Xn(G) is defined

%:(G) € {c(G): 0 € {0, 1}* and c(G)} ={h(G):1<j<n).

Thus the partial function y, is computable by a set of n partial recursive
functions. This contradicts Lemma 8. This contradiction establishes the claim.
For every n, there exists a graph G such that for each i in {0, ..., n}, there
exists a sequence o; of oracle answers such that lo)] <f(i) and cZ D =i As
observed above, if | # J, then g; is not a prefix of 0;. Therefore the sequences
Op; - . ., 0, form a binary prefix code for the integers 0 through n. Therefore
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follows: | Kraft’s Theorem [7] implies that
g this 3 peisy,
! O=i=<n ‘
or Since [o;| <f (i),
> 270«
1, and if ‘ O<i<n
> values ‘f Letting n approach infinity, we obtain the inequality
y n and f —fa
f length ; go 270<1. O
) makes 5
4. Recursive chromatic number
nverge The recursive chromatic number X'(G) of a graph G is the minimum number
y prefix f of colors that suffice in order to color G via an effective algorithm. There are
verges, ; recursive graphs with finite chromatic number that cannot be colored recursively

| [1] hence we cannot compute ¥'(G) from x(G).

| Lemma 10 (Beigel and Gasarch [3]). Given recursive graph G and a natural

f number x, one can determine whether x"(G) < x by making a single query 1o @".

,‘ Theorem 11. Let f be a non-decreasing, recursive function such that Yi=027¥ <1

: and is effectively computable. Then X'(G) is in FQ(f(x"(G)), 8").

| Proof. Since x"(G) is a positive integer, and since we may determine whether

X'(G) <n by making a single query to @#”, this follows from Theorem 4. [J
Theorem 12. Let f be a non-decreasing function. If there exists a set X such that

‘ X (G) is in FQ(f(x"(G)), X), then ¥,.,2 " <1.

Proof. Similar to the proof of Theorem 9. The key fact needed is that the
sllows: < function x;, defined analogously to x, in Lemma 8, cannot be computed by a set
Output ; of n partial recursive functions. This is proven in [3]. O

5. Mixed queries
sursive
im. We have seen that if f is such that f(x(G)) (f (x"(G))) queries to K (#") can be
. there ! used to compute x(G) (x"(G)), then f satisfies Kraft’s inequality, which can be

i As interpreted as a lower bound on the number of queries needed. If we allow

; queries to a set Y such that K.Y (8" %, Y), then perhaps the number of

uences
queries to K (#") can be reduced. In this section we will see that for finding x(G),

:refore
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queries to such a Y do not help; however for finding X'(G) they do. We also Proof.
exhibit lower bounds on how helpful queries to Y can be. The most substantial where
savings occur when computing x(G) for highly recursive G. compu
We show that for computing x(G), queries to any Y such that K ¥rY do not violate:
help.
The |
Lemma 13. Let Y pe any set such that K <. Y. Let Xn be the partial function in
Lemma 8. Then y, cannot be computed by a set of n partial functions that are | Theore
recursive in Y. set, an
| E i=0 2_)
Proof. The proof of Lemma 8 relativizes, with the help of Lemma 2. [3
, Proof. ]
Theorem 14. Ler Y be any set such that K ¥, Y. Let X be any set and f be any ;’ x(G) ir
Junction. If x(G) is in FQY(f(x(G)), X), then Yi=0279<1, 1 the abox
‘ For e
Proof. Similar to the proof of Theorem 9, using Lemma 13 instead of Lemma ; sively in
8 O i query to
i of the fo
We show that for computing x'(G) for recursive graphs, queries to K help cut (a) th
down on queries to #”. We have matching upper and lower bounds on how ! (b) th
helpful such queries are. j (c) the
The following theorem holds when applied to both the class of recursive J (If x(
graphs, and to the class of highly recursive graphs; however a stronger version is ; number «
true for the class of highly recursive graphs. , ]r If non
' ‘ tion, and
Theorem 15. Let f be a nondecreasing recursive function such that Yi=02 W<, , values f(
and is effectively computable. Then x'(G) is in FQ*(f("(G) - x(G)), 8"). f[ Y, for ev
‘ By the
Proof. By Theorem 7, x(G) can be computed recursively in K. Since x(G)=
X(G) our unbounded search for X(G), using Theorem 4 and Lemma 10 applied i
to f, begins at y(G) (instead of at 0). Hence it locates X(G) in f(x(G) - x(G)) : Let o be
queries to . [J f o the sa
| code for
If the class of graphs being considered are recursive, then the converse of : converge
Theorem 15 is true (Theorem 17). If the class of graphs being considered are '
highly recursive, then the converse of Theorem 15 is false (Theorem 19). To | Therefor
establish the converse for recursive graphs we need a lemma. (
Lemma 16. Let Y be any set such that §" £, Y. The partial function We clain
x(G) f2<y(G)<n+2and x(G)=2, ; (Vn
T e2(G) = | .
undefined otherwise We prov
cannot be computed by a set of n partial functions recursive in Y. f (

H
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/e al.so Proof. In [3] we showed that FY(xy,...,x,) can be computed from yj, ,,(G)
stantial ‘ where G can be constructed from {xi, ..., x,). Hence, if Xi2,n+2)(G) can be
j computed with n functions, then F¥ could be computed with n functions, which

do not j violates Lemma 1. [

The proof of the following theorem is similar to the proof of Theorem 9.

tion in !
1at are _f Theorem 17 (only for recursive graphs). Let Y be such that ¢ $1Y, let X be any
f’ set, and let f be any function. If xX(G) is in FQY(f(x(G) - x(G)), X), then

Li=0270=1.

, Proof. Let M be the oracle Turing machine such that M*®Y(G) computes
be any ‘ X(G) in FQY(f(x"(G) — x(G)), X), for some function f. Let Xi2.n+2)(G) be as in

the above lemma.
For each sequence o€ {0, 1}* we define a function ¢J(G) computed (recur-

sively in Y) as follows: simulate MO(G) using the ith bit of ¢ to answer the ith

emma
, query to X, while answering all queries to Y correctly. If during this process any
g’ of the following happen, then diverge:

Ip cut ’ (a) there is an attempt to make a (lol + 1)th query to X, or

1 how ‘ (b) the computation terminates and the output is not between 2 and n + 2, or

| (c) the computation terminates and the output is { where |o| > f(i - 2).

ursive ‘ (If x(G)=2 and the output is i = x"(G), then these conditions force the
sion is number of queries to be <f(i-2)=f(x"(G) - x(G)).)

| If none of these three things happen, then continue simulating the computa-
tion, and if it halts, then halt with the same output it gave. Since we can store the
values f(0), . .., f(n) in a finite table, C. Is a partial function that is recursive in

i) < 1’ ’
| Y, for every n and o.

‘ By the construction of ¢?, whenever 2 < X(G)<n+2and y(G)=2

3Gp1), z | Xizn+2i(G) € {c2(G): 0 € {0, 1}, c2(G)|, and (G) = 2).

Z(G)) ' Let o be a prefix of o'. If ¢(G) converges to a value, then ¢ (G) must converge
‘ to the same value. We will use this fact later in order to construct a binary prefix
code for the integers 2 through n +2. By the construction of ¢, if ¢J(G)

se of :" converges, then

d are fl c(G)e{2,...,n+2).

) To ‘ Therefore,

(Vn)(VG)[{c(G): o € {0, 1}*, c2(G)|, and x(G) =2} {2,...,n+2}].
We claim that
, (Yn)(3G)[{c(G): 0 € {0, 1}* and cn(G)}={2,...,n+2} and 2(G)=2].
z’ We prove this by contradiction. Suppose that
(An)(VG)[{c(G): o € {0, 1}*, ¢7(G)|, and y(G) = 2}e{2,...,n+2)]
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Choose such an integer n. Then Proof
o . o _ ‘ recurs

(VG)[I{c3(G): o€ {0, 1}, (G, and Y(G) =2}/ <], using

This n.

For 1<j<n, define a partial function hi(G) that is recursive in Y as follows:
Timeshare ¢+(G) for all ¢ until the functions have output j distinct values; output

the jth distinct value Therefore, for all G such that 2<y(G)<n+2 and The
x(G)=2 Theore
Xi2.n+2(G) € {c(G): o € {0, 1)*, ¢:(G)l, and x(G)=2} = {h(G):1sj<n). compul
then fo
Thus the partial function X[2,n+2] 18 computable by a set of partial functions ‘
recursive in Y. This contradicts Lemma 16. This contradiction establishes the Proof.
claim. 5 defined
For every n, there exists a graph G such that for each i in {2,...,n+2)}, there
exists a sequence 0; of oracle answers such that c(G) = . By condition ¢ above
we know that [g;| < f(i—2). As observed above, if i #j, then 0; is not a prefix of
0;. Therefore the Séquences o,, ..., 0,,, form a binary prefix code for the : In [3] w
integers 2 through n + 2. Therefore Kraft’s Theorem [7] implies that K A;SU]
‘ graphs
D> 27leisg, | queries
2=isn42
Since |o;| < i—2), |
I=<1( 6. Para
> 2 G- 1, |
2<sisn+2 J" We n
which implies | set of
“ number
Z 270 <, ! number
O=i=n | queries
Letting n approach infinity, we obtain the inequality ’ section.
: : Optin
~f()
;) 270<1. O | o (p +
In highly recursive graphs there is a relationship between chromatic number f Dz‘.i.mt:.‘
and recursive chromatic number which will enable us to cut down on queries to " a Ue(;;
substantially, if we allow unbounded queries to K. range
‘ : Definitio
Theorem 18 (Carstens and Pappinghaus [6], and Schmer] (11]). If G is a highly | trees if
recursive graph, then "
X(G)=<x(G)=2x(G)-1.
Both bounds are optimal [11]. Kraft’s
sequenc
Theorem 19. x*(G) is in FQX[[ log(x(G))], o). (p+1)-
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Proof. Given G, use the algorithm suggested by Theorem 7 to find x(G)
recursively in K. Since X(G)<x(G)< 2x(G)-1a binary search of this interval,
using questions to §” to determine comparisons, can be used to determine x(G).
This needs at most [log((2x(G) — D-x(G)+1)] = [log(x(G))] queries. []

: follows:

'$; output . . .

+gu aﬁl L; Theorem 19 is optimal with respect to queries to @,
Theorem 20. Let Y be a set such that 0" 4. Y. Let X be any set. If x'(G) can be

<js<n). computed with an unlimited numbper of queries to Y and 8(x(G)) queries to X,
then for all n =2, g(n) > [logn] - 1.

functions j

ishes the Proof. Let b be a fixed constant and Y be as in the hypothesis. Let x[',,,z,,_” be

‘ defined by
2}, there x(G) if b<x(G)<2b-1and y(G)=»b,

r -G ={
| ¢ above Xiv.26-1)(G) undefined otherwise.

prefix of i '
. for the ' In [3] we showed that the function X[5,25~1) is not in FQ"([logb] -1, X).

Assume that y"(G) is in FQY(g(x(G)), X). It this algorithm is restricted to
graphs G such that b < x(G)<2b-1 and X(G) = b, then it will only use g(b)
queries to X. Hence g(b) > [log b] — 1. Hence, for all n,gn)>[logn]-1. 0O

6. Parallel queries

number and the recursive chromatic number of a graph. Formally, a round of P
queries to X is one query to F ;,". The number p is a fixed constant throughout this

section.
Optimal algorithms for unbounded search using rounds of p queries are related

to (p + 1)-ary prefix codes and Kraft’s inequality for (p + 1)-ary-trees.

‘ Definition. Let D be a set of natural numbers. A (p + 1)-ary prefix code for D is
number ; _— N .
ies to " ‘ a bijection from D onto a subset of {0,1,2,..., p}* such that no string in the
| range of the bijection is a prefix of a different string in the range of the bijection.

_ : Definition. A function f from N to N satisfies Krafts inequality for (p + 1)-ary-
a highly .- trees if

S (p+1)To0<y,

i=0

Kraft’s Theorem for (p + 1)-ary-trees [7). Let 0o, 0, 0,,... be an infinite
sequence of elements from {0, 1}* such that the bijection that maps i to o; is a

(P +1)-ary prefix code. Then ¥, (p + 1)1 <1,
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Theorem 21 (Beigel [2]). If f(n) rounds of P queries suffice to solve the each
unbounded search problem, then f(n) satisfies Kraft’s inequality for (p + 1)-ary- follo
trees. , quest
o(1)
Theorem 22 (Beigel [2]). Let f be a non-decreasing recursive function such thas Conti
+ 1) SO o(1) ¢
,; (p+1) that t
is effectively computable. There is an algorithm that solves the unbounded seqrch comp
problem by asking f (n) rounds of P questions (where n is the number being on'ly '
searched for) if and only if f satisfies Kraft’s inequality for (p + 1)-ary-trees. ; thl(s ;) :
a
We give examples of slow growing functions that satisfy Krafts’ inequality for (b)
(p + 1)-ary-trees, and examples of slow growing functions that do not. f;))
nc
Theorem 23 (Beigel [2D). (1) The function fn)=1] logsum,(n + 1) + 2] satisfies ; it halts
Kraft’s inequality for (p + 1)-ary-trees. v £(0), ..
(2) If €>0, then there exists a constant ¢ such that | 0. By t
f(n) = [logsum,(n + 1) — (log, log,(e - ¢€)) logy(n+1)] +¢ J
satisfies Kraft’s inequality for (p + 1)-ary-trees, where ¢ denotes the base of the | Let ob
natural log. ! to the s
(3) Let c be any natural number. The function | prefix ¢
_ | converg
f(n) = [logsum,(n + 1) - (log, log, €) log?(n + 1)] + ¢ ’;
does not satisfy Kraft's inequality for (p + 1)-ary-trees.
j Therefo
Theorem 24. Let f be 4 non-decreasing, recursive function such that ¥ i=o(p + ‘
)79 <1 and is effectively computable. x(G) is in FQ(f(x(G)), F ). ,
We pro
Proof. This can be obtained by combining Theorem 22 with Lemma 6. O ,f
We prove a converse to Theorem 24, in a manner similar to the proof of ; Choose
Theorem 9. ‘
Theorem 25. If x(G) is in FQ(f(x(G)), F}), then ¥,o (p +1) 70 < 1, | For 1<
Timeshsz
Proof. Let MO be the oracle Turing machine such that M*(G) computes 2(G) the jth ¢
and makes at most f (x(G)) queries to F ., for some function f. ‘
Let x, be the partial function defined in Lemma 8. By Lemma 8, y, cannot be
computed by a set of n partial recursive functions. We use this to force [ to satisfy : Thus th
Kraft’s inequality for (p + 1)-ary-trees. function
Let {0,1,2,..., pP}* denote all finite Sequences of numbers from the set For e
{0,1, ... ,p}. Ifoe {0,1,2,..., P}*, then let o(i) be the ith element of 0. For ‘ exists a
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olve the | each sequence 0€{0,1,2,. .. ,P}*, define a function ¢:(G) computed as
+1)-ary- follows: Simulate MO(G) until the first round of p queries is reached. Let the

questions be x,, . . ., X,. Run all the machines {x1}, {x2}, ..., {x,} until exactly
o(1) halt (this may never happen in which case the machine will diverge).
ch that Continue the computation with the oracle query answered by saying YES to all
o(1) elements of x,, . . ., xp that halt, and NO to all those that did not. Assuming
that the elements of X1, ..., X, that did not halt are not in K, continue the
d search | computation. When the second round of P queries is reached do the same thing
er being f only waiting until (2) of the machines halt. Continue in this manner. If during
es this process any of the following three things happen, then diverge:
' ‘ (a) there is an attempt to make a (Jo| + 1)th query, or
wlity for (b) the computation terminates and the output is not between 0 and n, or
(c) the computation terminates and outputs i where |o] > £(i).
If none of these three happen, then continue simulating the computation, and if
satisfies it halts, then halt with the same output it gave. Since we can store the values
’ f(0), ..., f(n) in a finite table, 7 is a partial recursive function for every n and
if o. By the construction of ¢, whenever 0< y, (G)<n
X (G) e {c)(G):0€{0,1,. .. »P}* and cJ(G)]}.
|
e of the t‘ Let o be a prefix of ¢'. If ¢.(G) converges to a value, then ¢ (G) must converge
! to the same value. We will use this fact later in order to construct a (p + 1)-ary
g prefix code for the integers 0 through n. By the construction of ¢y if ¢(G)
converges, then
| cAG)e{0, ..., n).
; Therefore,
=o(p+ | ((VO{ex(G): 0 € {0, 1, p)* and cA(G)|} £ (0, . . ., n)].
We prove this by contradiction. Suppose that
H | @)(VO){e(G): 0 (0.1,2,...., p}* and cHG)} (0, . . . n)].
yroof of ; Choose such an integer n. Then '
| (VO){cAG): 0€{0,1,2, ..., p}* and ¢(G)|}| <n].
| For 1<j<n, define a partial recursive function hi(G), computed as follows:
Timeshare ¢2(G) for all o until the functions have output J distinct values; output
s x(G) the jth distinct value. Therefore, for all G such that 2-(G) is defined
not be 1(G) € {cl(G): 0€{0,1,2,...., p)* and ¢X(G)L} = ((G): 1< <n).
3 satisfy ! Thus the partial function X» 18 computable by a set of n partial recursive
‘ functions. This contradicts Lemma 8. This contradiction establishes the claim.
the set ! For every n, there exists a graph G such that for each i in {0,...,n}, there

f 0. For ; exists a sequence g, e {0,1,2,..., p}* such that loil <f(i) and c(G)=i. As
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observed above, if j % J» then o, is not a prefix of o,. Therefore the sequences f Theqr
O, - - ., 0, form a (p + 1)-ary prefix code for the integers 1 through n. Therefore ! 7o
Kraft’s Theorem [7] implies that f
| Proof.
2 (p+1)osy, |
. 0<1Sn. I We
Since |o;| <f(i), I differe
2 (p+1)70<y,
Osisn v‘ Theore
Letting n approach infinity, we obtain the inequality then ¥,
2;) (P+1)7¥<1. g J'l Proof.
If an oracle other than X js used, then we can decrease the number of queries Theore:
substantially. ; then for
j
Theorem 26. Let fbeanon ~decreasing, recursive function such that ¥ =027 P < f
1 and is effectively computable. There exists a set A, A=K, such that x(G) is in f
FQ(f(x(G)), F3). ,: Proof. 1
|
Proof. Note that the function p x f(n) satisfies the conditions of Theorem 7 ‘ Theorem
Hence there is an algorithm that computes x(G) using p x f(x(G)) queries to K J landis
Let MO be the machine that computes that algorithm. By the note following } FQ(f (x"
Theorem 7 the algorithm in Theorem 7 only diverges by asking infinitely many
questions. Hence the following set A is Turing equivalent to K- Proof. S
— ; e - K . !
A={(e i) | the ith query made in the M*(e) computation answers YES}. | Theoren
To compute x(G), first query ‘ FQ(f (3"
F:(<e’ 1)) <e) 2)) (e; 3),..., (e,p)) j p . .
: roof.
and then do the computation MO(e) knowing the first P answers to queries that | Theorem
will be asked. If the computation does not terminate, then query ‘
Fj({e,p+1), (e,p+2), (e, p +3),..., (e, 2p))
and continue the computation. Keep up this process until the computation ends. 7. Parall
A .
In the worst case the last query to F; is | In this
F7({e, Fa@GH-p+1),..., (e, f(x(G)) x p)) f Most of t
and the number of queries to F}is (f(x(G)) Xp)lp=f(x(G)). O | hence wi
Theorem 27. Let X be any set and f be any function. If x(G) is in | Th‘iorem
FQ(f(x(G)), FY), then ¥,_, 27 <1 | FQ"(f(x
Proof. If x(G) is in FQ(f(x(G)), FY), then x(G) is in FQ(pf(x(G)), x). By ! Proof. Si
Theorem 9, ¥,.,2 70 <1 [ | Lemma &
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Theorem 28, [ ¢; f be a non-decreasing, recursive function such thar Li=o(p +
1)79<1 and is effectively computable. Then X(G) is in FQ(f (x"(G)), F?.

Proof. This can be obtained by combining Theorem 22 with Lemma 10.

We have not been able to obtain a converse for Theorem 28. There are
different partial converses for recursive and highly recursive graphs.

Theorem 29 (only for recursive graphs). If x(G) is in FQ(f(x"(G) - x(G)), F¥),
then Lo (p +1) 10 <.

Proof. This is the Y = @ case of Theorem 35. [

Theorem 30 (only for highly recursive graphs). If x(G) is in FQ(g(x(G)), @),
then for all n,

log(n)
8(n)> [log(p n 1)] B

Proof. This is the Y = ¢ case of Theorem 39. [

Theorem 31. Let f be 4 non-decreasing, recursive function such that },.,2 77 <
1 and is effectively computable. There exists an oracle A =¢@" such that x(G)is in

FQ(f(x"(G)), F}).
Proof. Similar to the proof of Theorem 26. [

Theorem 32, Ler X pe any set and f be any function. If ¥(G) is in
FQ(f(x"(G)), FY) then ¥,y 277 <1,

Proof. If »(G)e FQ(f(x"(G)), F)), then x'(G) e FQ(pf (x'(G)), X). By
Theorem 12, .., 2 7™ <1

7. Parallel and mixed queries

In this section we explore the questions raised in Section 5 in a parallel setting.
Most of the proofs use a combination of techniques from the last two sections and

hence will be omitted.

Theorem 33. Let Y be any set such that k ¥rY. Let X be any ser. If x(G) is in
FQ"(f(x(G)), F}), then %o (p + 7O <1,

Proof. Similar to the proof of Theorem 25, except that Lemma 13 is used instead of
Lemma 8. O
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Theorem 34. Let f be a nondecreasing recursive function such that Yi=o(p+ Proo
1)7D<1, and is effectively computable. Then % (G) is in FQ*(f(x(G) - S
x(G)), FY).

Proof. Combine the techniques used in the proofs of Theorems 15 and 28. [J

This 1
The above theorem is optimal if recursive graphs are considered.
If v
Theorem 35 (only for recursive graphs). Let Y be any set such that §"$.Y. If j cut dc
x'(G) is in FQ"(f(x'(G) = x(G)), F¥'), then L,u0 (p + 1) 7O < 1.
Theor
Proof. Combine the techniques used in the proofs of Theorems 17 and 25. O ‘ recurs
| exists
Theorem 36. Let f be a nondecreasing recursive function such that Yi=02 P9« |
and is effectively computable. There exists an oracle A =10" such that x*(G) is in
FQ™(f(x'(G) — x(G)), F}).
Proof. Combine the techniques used in the proofs of Theorem 15 and 26, [] } Proof.
;
The above theorem is optimal if recursive graphs are considered. ] The
powertf
Theorem 37 (only for recursive graphs). Let Y be any set such that 8" 41 Y. Let X
be any set. If x"(G) is in FQY(f(x(G)), FY), then %,.,27™ < 1. Theore
; functio,
Proof. If x'(G) is in FQY(f(x(G)), FX), then ¥(G) is in FQY(pf(x(G)), X). By (
Theorem 14, },.,27 7™ < 1. I ?
!
If only highly recursive graphs are considered, then we can cut down on the
. : i Proof.
number of queries substantially. |
‘ Theore
Theorem 38 (only for highly recursive graphs). x"(G) is in |
FQX ( [ M] W") . 8. Sum
loglp+1)I""*
) ) . ; We si
Proof. Combine the technique used in the proof of Theorem 19 with (p + 1)-ary ! number
search [9]. O j X" retun
. . . . o a result
The above theorem is optimal in terms of queries to F . ! stateme
. . used in
Theorem 39 (only for highly recursive graphs). Let Y be any set such that statemer
" " r to g Y vrr
0" 41 Y @ . If x(G) is in FQ¥(g(x(G)), # ), then for all n, | recursive
log(n) ! Y such t
>l—]-1.
g(n) [log(p +1) | case the

L —
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im0 (P + Proof. Similar to the proof of Thereom 20. The key fact needed is that if
% (G) — #" % Y @, then xj, ,,_, is not in

| log(b .
FQ*’([_L() -1, F,?').
8. O log(p +1)
This is proven in [3]. O
If we allow unlimited access to K and use an oracle other than @, then we can
Y. If J cut down on the number of queries to that oracle.

Theorem 40 (only for highly recursive graphs). Let f be a nondecreasing
5.0 recursive function such that §..,27" " <1 and is effectively computable. There
exists an oracle A =1@" such that x"(G) is in

PO <, |
(G) is in FQK([MG_))]’ p;;t).
: p
5. O | Proof. Combine the techniques used in the proofs of Theorems 19 and 26. [
The above theorem is optimal in terms of the number of queries to be more
powerful oracle A.
Y. Let X
Theorem 41. Let Y be any set such that ¢" ¥rY, X be any set, and g be any
function. If x'(G) is in FQY(g(x(G)), F%), then for all n,
,» X). By
1
g(n)> [og—(n)“ -1
p
1 on the

Proof. If »(G) e FQ"(f(x(G)), F}), then x'(G)e FQ"(pg(x'(G)), X). By
Theorem 20, for all n, pg(n) > [logn] — 1, from which the theorem follows. O

8. Summary and open problems

; We summarize our results in the following table. Let p =1 be a fixed natural

+1)-ary number. The function y returns the chromatic number of a graph. The function
X" returns the recursive chromatic number of a graph. Unless otherwise specified,

a result holds for both recursive and highly recursive graphs. If X is used in a

’ statement of a result, then that result holds when X is replaced by any set. If Y is

used in a statement about chromatic number, then the intention is that the

h that ; statement holds for any Y such that K . Y. If Y is used in a statement about
recursive chromatic number, then the intention is that the statement holds for any

Y such that #” ¢, Y; unless it is a statement about parallel queries to #” in which

case the intention is that the statement holds for all Y such that @” $ DY . IfA
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is used in a statement about chromatic number, then we are saying that a set A,
A=rK, exists; if A is used in a statement about recursive chromatic number,

then we are saying that a set A, A=r0", exists.

Throughout this section
(1) f represents any function such that %,.,27®<1 apd js effectively

computable,
(2) g represents any function such that ¥,_,2-5® > 1,
(3) f, represents any function such that Zi=o (P + 1) <1 and is effectively

computable,

(4) g, represents any function such that Yizo(p +1) 8O >1.

In some cases our lower bounds do not (numerically) match our upper bounds.
These lower bounds are marked with * *. We conjecture that the lower bounds
can be improved to match the upper bounds. In some cases we have the condition
@41 Y @9 instead of ¢" ¥1Y. These cases are marked with *. We conjecture
that the lower bound with the condition #” %1 Y can be obtained. The following
conjecture would imply that ¢ £ ¥ would suffice: “If #7" € FQ¥(1, F*",), then

ﬂm *T Y 1]

I. Serial queries without help

x € FQ(f(x(G)), k)
X ¢ FQ(g(x(G)), Xx)
X € FQ(f(x"(G)), ¢
X" ¢ FQ(g(x"(G)), x)

II. Serial queries with help
(a) Recursive graphs
x € FQ(f(x(G)), K)
X ¢FQ¥(g(x(G)), X)
X € FQ*(f(x"(G) - x(G)), )
x"¢FQ"(g(x(G) - x(G)), x)
(b) Highly recursive graphs
X € FQ(f(x(G)), K)
X ¢FQ"(e(x(G)), X)
x" € FQ"([log(x(G))1, #”)
x ¢ FQ"([log(x(G))] - 1, x)

(b) Us

IV. Pai

(a) Usi:
to @

() R

(ii) £

,
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III. Parallel queries without help
(a) Using queries to F (Fyy') to compute y (x")
x € FQ(£,(x(G)), F5)
x ¢ FQ(g,(x(G)), FY)
x" € FQ(f,(x(G)), F})
x" ¢ FQ(g,(x(G)), F}") (for recursive graphs)
x"¢ FQ([log(x(G))] — 1, FJ) * * (for highly recursive graphs

(b) Using queries to F;, where A is any oracle, to compute y (x")

X € FQ<M, Fﬁ)
: ve F0<g(x(G)) )
| ye FQ(f ’(G)) )

e FQ<g(x'(G)) )

IV. Parallel queries with help

(a) Using queries to F; (F?') to compute y (x*), but allowing unlimited queries
to a set Y where K SFT Y (8" %1 Y or " £ Y @ @ when noted)

(i) Recursive graphs,

x €FQ(f(x(G)), F)

1 ¢FQ (g(x(G)), Fy)

x" € FQ"(f(x"(G) - x(G)), FY)

X' ¢FQ'@((G)—x(G), F)) + (0" Y ©F)
(ii) Highly recursive graphs,

x € FQ(f(x(G)), F;)

X ¢FQ"(g(x(G)), Fy)

re FQK( [ %], F‘”")

xe FQY( [ 12%%] -1, Fg") 5 @ L Y D P)
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Nort
(b) For this subsection (IV.b) we look at computing y (x) with a limited number
of calls to F; (where A is any oracle) and an unlimited number of calls to
some Y such that K . Y (0" &, T).
(i) Recursive graphs
f(x(G6)) \
xeFQ(BLL) pa |
p |
g(x(G)) ‘
rerr (82D o
4
(G)—x(G ’
7 erQr([ENO 50D )
p :
|
8('(G) - x(G)) ‘
¥ e FQ(  FX
p f
(i) Highly recursive graphs ;
G |
p :
|
G :
’ |
log(x(G)) In
r K A
e FO( 18O f
X Q <[ p ]’ Y4 f [w]“’:
|
log(x(G)) b, ant
X' ¢ FQY([ - ] -1, F,’f) ‘ sets A
Our o
| The r
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