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Abstract
Erdős proved that for every infinite X ⊆ R

d there is Y ⊆ X with |Y | = |X |, such
that all pairs of points from Y have distinct distances, and he gave partial results for
general a-ary volume. In this paper, we search for the strongest possible canonization
results for a-ary volume, making use of general model-theoretic machinery. The main
difficulty is for singular cardinals; to handle this case we prove the following. Suppose
T is a stable theory, � is a finite set of formulas of T , M |� T , and X is an infinite
subset of M . Then there is Y ⊆ X with |Y | = |X | and an equivalence relation E on Y
with infinitely many classes, each class infinite, such that Y is (�, E)-indiscernible.
We also consider the definable version of these problems, for example we assume
X ⊆ R

d is perfect (in the topological sense) and we find some perfect Y ⊆ X with
all distances distinct. Finally we show that Erdős’s theorem requires some use of the
axiom of choice.
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1 Introduction

In this paper we use the term 1-ary volume for length, 2-ary volume for area, 3-ary
volume for volume. We may use the term volume when the dimension is understood.
Also, the natural number n is identified with the set {0, . . . , n − 1}.
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A set X ⊆ R
d is a-rainbow if all a-sets of points that yield nonzero volumes have

distinct volumes. Let ha,d(n) be the largest integer t such that any set of n points inR
d

contains a rainbow subset of t . This function was studied by Conlon et al. [2] which
also includes references to past work.

In this paper, we are interested in the case where the cardinality of the set of points is
some κ with ℵ0 ≤ κ ≤ 2ℵ0 . Erdős was the first to consider this in [3]. Using different
terminology, he proved the following:

Theorem 1.1 If X ⊆ R
d is infinite then there is a 2-rainbow Y ⊆ X with |Y | = |X |.

The case when |X | is countable can be dealt with quickly using the canonical Ramsey
theorem of Erdős and Rado [4]. Alternatively, it is equivalent to apply Ramsey’s
theorem to a coloring g : ( X

2a

) → c, for c < ω large enough. Namely, given s ∈ ( X
2a

)
,

define g(s) so as to encode the set of all pairs (u, v) from
(s
a

)
having the same volume.

For our purposes, we find this latter approach more natural, although some of what
we do could be phrased in the language of the canonical Ramsey theorem.

Erdős’s proof of Theorem 1.1 is complicated by the possibility that |X | is singular.
He notes the following holds by an easier proof:

Theorem 1.2 If X ⊆ R
d is infinite with |X | regular, and 2 ≤ a ≤ d + 1, then there is

an a-rainbow Y ⊆ X with |Y | = |X |.
Erdős also gives the following example:

Theorem 1.3 If λ ≤ 2ℵ0 is singular then there is X ⊆ R
d of size λ, such that there is

no 3-rainbow Y ⊆ X with |Y | = λ.

Proof Write cof(κ) = λ. Let (�α : α < λ) be λ-many parallel lines in R
2. Let

(κα : α < λ) be a cofinal sequence of regular cardinals in κ . Choose Xα ⊆ �α of
cardinality κα and let X = ⋃

α<λ Xα . Let Y ⊆ X have cardinality κ . We claim that
Y cannot be 3-rainbow. Indeed, write Yα = Y ∩ Xα = Y ∩ �α . Then there must be
cofinally many α < λwith Yα infinite, as otherwise |Y | ≤ κα +λ < λ for some α < λ.
Thus we can find α < β < λ such that Yα and Yβ are both infinite. Let v0, v1 be two
distinct points in Yα , and let w0, w1 be two distinct points in Yβ . Then the triangles
(v0, v1, w0) and (v0, v1, w1) have the same nonzero area. 	


Weare interested in strengthenings and generalizations of Theorem1.2 for uncount-
able sets. We will give stronger canonization results than just a-rainbow. Namely, say
that X is strongly a-rainbow if all a-subsets of X yield distinct, nonzero volumes, and
say that X is strictly a-rainbow if X is strongly a′-rainbow for all a′ ≤ a, and X is
a subset of an a − 1-dimensional hyperplane. (In particular, all a + 1-subsets of X
have volume 0.) As an example, if an,i : n < ω, i < d are algebraically independent
reals, and if we set an = (an,0, . . . , an,d−1) ∈ R

d , then X := {an : n < ω} is strongly
d + 1-rainbow, and thus strictly d + 1-rainbow. Moreover, if ρ : R

d → R
d ′

is any
isometric embedding, then the image of X under ρ is also strictly d + 1-rainbow.

In Sect. 2, we begin by reviewing some model-theoretic results of Shelah (Theo-
rems 2.2, 2.3, 2.4), dealingwith the following situation:we are given T stable,M |� T ,
and X ⊆ M infinite, and we try to find Y ⊆ X with |Y | = |X | and Y indiscernible.
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Distinct volume subsets via indiscernibles 471

These theorems only deal with the casewhere |X | is regular; Theorem 1.3 above shows
that obstacles exist for the singular case. The problem is the presence of an equivalence
relation E on X that divides X into fewer than κ-many classes, each of size less than
κ . Theorems 2.5 and 2.6 together demonstrate that this is the only obstruction, using
a weakened notion of indiscernibility with respect to an equivalence relation E . We
remark that the combinatorial argument for Theorem 2.6 has other applications; we
give a purely finitary analogue in Theorem 2.8.

In Sect. 3, we consider X ⊆ R
d of size κ for some uncountable cardinal κ , and we

try to get Y ⊆ X of size κ which is as nice as possible with respect to a-ary volumes for
a ≤ d +1, using the results of Sect. 2. We prove in Theorem 3.3 that for every regular
cardinal κ ≤ 2ℵ0 , and for every X ⊆ R

d of size κ , there is some X ′ ⊆ X of size κ and
some 2 ≤ a ≤ d + 1 such that X is strictly a-rainbow. We proceed as follows: given
X ⊆ R

d of size κ , we obtain a sufficiently indiscernible Y ⊆ X using Theorem 2.4,
using the stability of (C,+, ·, 0, 1). Then we apply geometric arguments to argue that
Y is strictly a-rainbow for some a. We note that it is possible to prove Theorem 3.3
directly, similarly to Theorem 1.2.

For singular cardinals, we know from Theorem 2.6 that there is some finite list of
possible configurations, although we cannot identify it explictly. We are at least able
to give some information about what the configurations look like in Theorem 3.4; in
particular, they are all 2-rainbow, and so we recover Erdős’s Theorem 1.1.

In Sect. 4, we consider what happens for X ⊆ R
d which is reasonably definable.

Ourmain result is Theorem4.3: if P ⊆ R
d is perfect, then there is a perfect Q ⊆ P and

some a ≤ d+1 such that Q is strictly a-rainbow. Our main tool is a Ramsey-theoretic
result of Blass [1] concerning colorings of perfect trees.

In Sect. 5, we show it is independent of ZF whether or not every uncountable subset
of R has an uncountable 2-rainbow subset.

In this paper we work in ZFC, with the exception of Sect. 4, which is in ZF + DC.

2 Some remarks on indiscernibles

We first review the notion of local indiscernibility, following Shelah [9]. T will always
be a complete first order theory in a countable language.

Suppose� is a collection of formulas of T ,M |� T and A ⊆ M . Given a finite tuple
b from M , define tp�(b/A) to be the set of all formulas φ(x, a) such that a ∈ A<ω

and φ(x, y) ∈ � and M |� φ(b, a).
Suppose also that I is an index set, and (ai : i ∈ I ) is a sequence from Md for

some d < ω. Then:

• We say that (ai : i ∈ I ) is �-indiscernible over A if: given i0, . . . , in−1 all
distinct elements of I , and given j0, . . . , jn−1 also distinct elements from I , then
tp�(ai0 , . . . , ain−1/A) = tp�(bi0 , . . . , bin−1). In this case the indexing doesn’t
matter and so we also say that {ai : i ∈ I } is indiscernible over A.

• If I is linearly ordered, then we say that (ai : i ∈ I ) is �-order-indiscernible over
A if: for every i0 < · · · < in−1, j0 < · · · < jn−1 from X , tp�(ai0 , . . . , ain−1/A) =
tp�(bi0 , . . . , bin−1).
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472 W. Gasarch, D. Ulrich

When we do not mention A, we mean A = ∅.
The following is an easy application of Ramsey’s theorem (as recorded for instance

in Lemma 2.3 of Chapter I of [9]:

Theorem 2.1 Suppose T is a complete first order theory in a countable language, and
� is a finite collection of formulas of T . Suppose M |� T , and (an : n < ω) is an
infinite sequence from Md. Then there is some infinite subsequence (an : n ∈ I )which
is �-order indiscernible.

Wewill bemainly interested in the case where T is stable. In this case, the following
is part of Theorem 2.13 of Chapter II of [9]:

Theorem 2.2 Suppose T is a stable complete first order theory in a countable lan-
guage, and� is a finite collection of formulas of T . Suppose M |� T , and (an : n < ω)

is an infinite sequence from Md. Then (an : n < ω) is order-indiscernible if and only
if it is indiscernible (in fact this characterizes stability). Hence, if X ⊆ Md is infinite,
then there is an infinite, �-indiscernible Y ⊆ X.

We are interested in generalizations of Theorem 2.2 to the case where X has
uncountable cardinality κ . Shelah has proved several results along these lines for
regular cardinals; we give two versions. The first requires T to be ω-stable, and gets
full indiscernibility. See Remark 2 after Theorem 2.8 from Chapter 1 of [9].

Theorem 2.3 Let T be an ω-stable theory (we can suppose in a countable language).
Let κ be a regular uncountable cardinal and let d < ω. Then whenever M |� T ,
A ⊆ M has size less than κ , and X ⊆ Md has size ≥ κ , we can find some finite
sequence a ∈ M, and we can find some stationary type p(x) ∈ Sd(a), such that there
is some Y ⊆ X of size κ which is a set of independent realizations of p(x)|Aa. In
particular, Y is indiscernible over A.

Proof For the reader’s convenience we provide a proof.
We can suppose T = T eq , and thus that we can code finite tuples as single elements.

Also we can suppose that |X | = κ . Enumerate X = (aα : α < κ). For each α < κ ,
write Xα = acl

(
A ∪ {aβ : β < α}), and choose a formula φα(x) over Xα of the same

Morley rank as tp(aα/Xα), and of Morley degree 1. By Fodor’s lemma, we can find
S ⊆ κ stationary such that φα(x) = φβ(x) = φ(x) for all α, β ∈ S. Choose α∗ large
enough that φ(x) is over Xα∗ . Write φ(x) = φ(x, a) for some a ∈ Xα . Let p(x) be
the unique type over a containing φ(x, a) and of the same Morley rank; then for all
α∗ ≤ α ∈ S, tp(aα/Xα) is the unique non-forking extension of p(x) to Xα . From this
it follows easily that Y := {aα : α ∈ S\α∗} is as desired. 	


The second version applies to any stable theory, but only gives local indiscernibility.
It is Theorem 2.19 of Chapter II of [9], and it strictly generalizes the final claim of
Theorem 2.2.

Theorem 2.4 Let T be a stable theory and let � be a finite set of formulas. Let κ be
a regular cardinal and let d < ω. Then whenever M |� T , A ⊆ M has size less than
κ , and X ⊆ Md has size ≥ κ , then there is some Y ⊆ X of size κ such that Y is
�-indiscernible over A.
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Distinct volume subsets via indiscernibles 473

When κ is singular, the naïve generalization of Theorem 2.3 fails, by Theorem 1.3.
(In fact, one can easily modify this example to work in the theory of equality.) The
problem here is the presence of an equivalence relation on X that has fewer than κ

classes, with each class of size less than κ , and the behavior of elements in distinct
classes differs from the behavior of elements in the same class. In fact, we show this
is the only obstruction.

We wish to formalize the notion of “indiscernible up to an equivalence rela-
tion”. This a special case of generalized indiscernibles, introduced by Shelah in [9]
Sect. VII.2, and further analyzed (with slightly varying definitions) in several sub-
sequent papers, e.g. [5]. (In these works, the focus is on using these generalized
indiscernibles to build Ehrenfeucht-Mostowski models; our interest is different, in
that we want to extract generalized indiscernibles from a given X ).

Suppose T is a complete first order theory, and � is a collection of formulas.
Suppose M |� T , and A ⊆ M , and X ⊆ Md for some d. Finally suppose E is
an equivalence relation on X . Then X is (�, E)-indiscernible over A if for every
a0, . . . , an−1, b0, . . . , bn−1 sequences from X with each ai �= a j and each bi �= b j , if
for every i < j < n, ai Ea j if and only if bi Eb j , then tp�(ai : i < n/A) = tp�(bi :
i < n/A). X is E-indiscernible over A if X is (�, E)-indiscernible over A, where �

is the collection of all formulas of T .
So for instance, if X is �-indiscernible, then letting E= be the equivalence relation

of identity on X , we have that X is (�, E=)-indiscernible; and also X is (�, X × X)-
indiscernible.

We have the following adaptations of Theorem 2.3 for singular cardinals κ; again,
we have two versions. In the first version, we need T to be ω-stable and we need κ to
have uncountable cofinality, and for this we get full E-indiscernibility. In the second
version, we just need T to be stable and κ can be arbitrary, but for this we just get
local E-indiscernibility.

Theorem 2.5 Let T be anω-stable theory, and let κ be a singular cardinal of cofinality
λ > ℵ0, and let d < ω. Then whenever M |� T , A ⊆ M has size less than cof(κ), and
X ⊆ Md has size ≥ κ , there is some Y ⊆ X of size κ and some equivalence relation
E on Y , such that E has at most λ-many equivalence classes, with each equivalence
class infinite, and such that Y is E-indiscernible over A.

Proof We can suppose T = T eq , and thus that d = 1.
Write X as the disjoint union of Xα : α < λ, where each |Xα| = κα < κ is

a successor cardinal bigger than |A|, and κα < κβ whenever α < β. By applying
Theorem 2.3 to each Xα and then pruning, we can suppose there is some aα ∈ M and
some stationary p(x) ∈ S1(aα), such that Yα is an independent set of realizations of

p(x)|
(
A ∪ ⋃

β<α Xβ

)
. Define the equivalence relation E on X by: aEb iff a, b are

in the same Xα .
For each α < λ, choose φα(x, a) ∈ pα(x) of the same Morley rank as p(x), and

of Morley degree 1. By further pruning, we can suppose φα(x, y) = φβ(x, y) for all
α, β < λ.

Apply Theorem 2.3 and prune to get some a∗ and some stationary type q(x) ∈
S1(a∗), such that {aα : α < λ} is an independent set of realizations of q(x)|Aa∗.
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474 W. Gasarch, D. Ulrich

We claim now that X is E-indiscernible. To check this, it is convenient to discard all
but countably many elements of each Xα . Thus enumerate each Xα = {bα

n : n < ω}.
Now each (bα

n : n < ω) is a Morley sequence in pα(x)|
(
A, aα,

⋃
β<α Xβ

)
, and

(aα : α < λ) is a Morley sequence in q(x)|Aa∗. It follows by typical nonfork-
ing arguments that for each α, Xα is indiscernible over A ∪ ⋃

β �=α Xβ ; also, for

each permutation σ of λ, the permutation σ∗ of X defined by σ∗(bα
n ) = bσ(α)

n
is partial elementary over A. From these two facts it is easy to check that X is
E-indiscernible. 	


Before the following theorem, we need some notation. Given X a set and r < ω,(X
r

)
denotes the r -element subsets of X . When X is a set of ordinals, each s ∈ (X

r

)
has

a canonical increasing enumeration; thus we can identify
(X
r

) ⊆ Xr .

Theorem 2.6 Let T be a stable theory, and let � be a finite collection of formulas of
T . Let κ be a singular cardinal, and let d < ω. Then whenever M |� T , A ⊆ M
has size less than cof(κ), and X ⊆ Md has size ≥ κ , there is some Y ⊆ X of size κ

and some equivalence relation E on Y , such that E has ℵ0-many classes, with each
equivalence class infinite, and such that Y is (�, E)-indiscernible over A.

Proof Again, we can suppose T = T eq and d = 1. Let r be the maximum of the
arities of formulas of �.

Write λ = cof(κ) and write X as the disjoint union of Xα : α < λ, where each
|Xα| = κα < κ is a successor cardinal bigger than |A|, and κα < κα′ whenever k < k′.

Then bymany applications of Theorem2.3,we canfinddistinctaiα, j : α < λ, i, j <

r such that each aiα, j ∈ Xα , and we can find Y i
α : α < ω, i ≤ r , such that:

• Each Y i+1
α ⊆ Y i

α ⊆ Xα;
• Each Y i

α has size κk ;
• Each aiα, j ∈ Y i

α\Y i+1
α ;

• Each Y i
α is indiscernible over A ∪ ⋃

β<α Y
i
β ∪ {ai ′β, j : β < λ, i ′ < i, j < r}.

For each α < λ, let bα = (aiα, j : i, j < r). By applying Theorem 2.4, we can
suppose that (bα : α < λ) is �-indiscernible over A. Given an injective s : r → λ, let
ps(xi, j : i, j < r) = tp�(ar−1−i

s(i), j : i, j < r). This is a �-type of a finite tuple over
the empty set; in particular it is equivalent to a formula, but it is more convenient to
write it as a type. Note that by �-indiscernibility, for all s, s′, ps(xi, j : i, j < r) =
ps′(xi, j : i, j < r), so we can drop the subscripts and refer to just p(xi, j : i, j < r).

For each α, write Yα = Yr
α and write Y = ⋃

α Yα . We claim that Y is (�, E �Y )-
indiscernible.

Note that for all s ∈ (
ω
r

)
and for all distinct as(i), j : i, j < r , with as(i), j ∈ Ys(i), we

have that M |� p(as(i), j : i, j < r). This is because, starting from (as(r−1), j : j < r)
and moving downwards, we can shift each (as(i), j : j < r) to (ar−1−i

s(i), j : j < r);

when moving (as(i), j : j < r) to (ar−1−i
s(i), j : j < r) we are using the indiscernibility

hypothesis on Yr−1−i
s(i) .

We now need to take care of the fact that we are only looking at the increasing
enumeration of s in the above.
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Distinct volume subsets via indiscernibles 475

Choose distinct (aα, j : α < λ, j < r) with each aα, j ∈ Yk . Write aα = (aα, j :
j < r). By the preceding, we have that (aα : α < λ) is order-�-indiscernible; but
by Theorem 2.2, this implies that (aα : α < λ) is fully indiscernible. In particular,
given any injective sequence s : r → λ, and given distinct as(i), j : i, j < r , with
as(i), j ∈ Ys(i), we have that M |� p(as(i), j : i, j < r) (since we could have chosen
(aα : α < λ) to cover range(s)). From this it follows easily that Y is (�, E �Y )-
indiscernible. 	


The following theorem is an easy consequence of Theorems 2.4 and 2.6.

Theorem 2.7 Suppose T is stable, M |� T , � is a finite set of formulas, d < ω,
and κ is an infinite cardinal. Then there is a finite list (Ci : i < i∗) such that: each
Ci ⊆ Md has size κ , and for every X ⊆ Md of size κ , there is some Y ⊆ X of size κ

and some i < i∗ such that tp�(Ci ) = tp�(Y ) (i.e. there is a bijection f : Ci → Y
that preserves�-formulas). If κ is regular, then each Ci is�-indiscernible; otherwise,
each Ci is (�, Ei )-indiscernible for some equivalence relation Ei on Ci with infinitely
many classes, each class infinite.

We give a purely finitary analogue of Theorem 2.6. First, given n, r , c < ω, an
equivalence relation E on n and a function f : (n

r

) → c, say that X ⊆ n is E-

homogeneous for f if for all s, t ∈ (X
r

)
, if s(i)Es( j) iff t(i)Et( j) for all i, j < r ,

then f (s) = f (t). Also, given A ⊆ Y ⊆ n, say that A is convex in Y if whenever
n0 < n1 < n2 < n, if n0, n2 ∈ A and n1 ∈ Y then n1 ∈ A.

Theorem 2.8 also follows from the Claim (proved below) and the fact that convexly
ordered equivalence relations form a Ramsey class, see [8]. On the other hand, the
given proof of Theorem 2.8 extends easily to handle infinite cardinals, using the Erdős
-Rado theorem in place of Ramsey’s theorem.

Theorem 2.8 Suppose K , L, r , c < ω are given. Then there are K∗, L∗ < ω large
enough so that whenever n ≥ K∗ · L∗, and whenever E is an equivalence relation on
n with at least K∗ many classes, of size at least L∗, and whenever f : (n

r

) → c, there
is some X ⊆ n which is E-homogeneous for f such that E �X has at least K many
classes, each convex in X and of size at least L.

First, we want the following claim.
Claim. Suppose K , L < ω are given. Then there are K∗, L∗ < ω large enough so
that whenever n ≥ K∗ · L∗, and whenever E is an equivalence relation on n with at
least K∗ many classes, each of size at least L∗, there is some X ⊆ n such that E �X
has at least K many classes, each convex in X and of size at least L .

Proof Choose K∗ such that K∗ → (K )22. Choose L∗ such that L∗ → (L2)2
(2K∗)!.

Suppose E is given. We can suppose E is an equivalence relation on n with exactly
K∗-many classes, each of size exactly L∗; so n = K∗L∗. Let (Xk : k < K∗) list the
equivalence classes of E in some order. For each k < K∗, � < L∗, let Xk(�) denote
the �’th element of Xk (listed in increasing order). Define a map f : (L∗

2

) → (2K∗)!,
where f (�0, �1) codes the ordering of the elements (Xk(�i ) : k < K∗, i < 2). Choose
I ⊆ L∗ of size L2 which is homogeneous for f .
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476 W. Gasarch, D. Ulrich

Thenwe have the following: suppose k0, k1 < K∗. Then one of the following holds,
after possibly switching k0 and k1: either Xk0(�0) < Xk1(�1) for all �0, �1 ∈ I ; or else
Xk0(�0) < Xk1(�0) < Xk0(�1) for all �0 < �1 both in I . Define g : (K∗

2

) → 2 so that
g({k0, k1}) says which of these cases {k0, k1} is in (say 0 for the first case, 1 for the
second case). Choose J ⊆ K∗ homogeneous for g of size K . Let X = {Xk(�) : k ∈
J , � ∈ I }.

If J is homogeneous of color 0, then the classes on X �E are already convex in X and
so we are done. Otherwise, given equivalence classes Y ,Y ′ of E �X , say that Y <∗ Y ′
ifY (�) < Y ′(�) for some or any � < L2; let (Yk : k < K ) list the equivalence classes of
E �X in<∗-increasing order. Note that for all �0 < �1 < L2, and for all k0 < k1 < K ,
Yk0(�0) < Yk1(�0) < Yk0(�1) < Yk1(�1). Let Zk = {Yk(Lk), . . . ,Yk(L(k + 1) − 1)}.
Then clearly Z = ⋃

k<K Zk works. 	

Thus, to prove Theorem 2.8, it suffices to restrict to equivalence relations E such

that each class is convex in n. Note then that whenever X ⊆ n, each class of E �X
will be convex in X .

We will need some notation. Given a function f : (n
r

) → c, and given a set of

parameters A ⊆ n, say that X ⊆ n is homogeneous for f over A if for every s ∈ ( A
<r

)
,

the induced function fs : ( n
r−|s|

) → c is constant on X . For the purposes of this

theorem, say that n → (m)rc,p if: whenever f : (n
r

) → c, and whenever A ⊆ n has
size at most p, there is X ⊆ n of size m which is homogeneous for f over A. Easily,
if n → (m)rc′ , where c′ = cp

r2r , then n → (m)rc,p.
We now are ready to prove Theorem 2.8.

Proof We follow the proof of Theorem 2.5. Choose K∗ so that K∗ → (K +r)rc′ , where

c′ = cr
2r
. Choose numbers (Li

k : k < K∗,−1 ≤ i ≤ r) such that:

• For all 0 ≤ i ≤ r and for all k < K∗, Li−1
k → (Li

k)
r
c,c′ , where c′ = i · r · K∗ +

∑
k′<k L

i
k′ .

• Each Lr
k = L .

Set L∗ = L−1
0 (which we can suppose is the maximum of (L−1

k : k < K∗)). Then we
claim this works.

Indeed, suppose E is an equivalence relation on N with at least K∗ many classes,
each convex of size at least L∗, and suppose f : (n

r

) → c. Let Xk : k < k∗ list in
increasing order the first K∗-many classes of E . By choice of (Li

k : −1 ≤ i ≤ r , k <

K∗), we can find Y i
k : 0 ≤ i ≤ r , k < K∗ and distinct aik, j : 0 ≤ i, j < r , k < K∗

such that:

• For each 0 ≤ i < r and k < K∗, Y i+1
k ⊆ Y i

k ⊆ Xk ;
• For each 0 ≤ i ≤ r and k < K∗, |Y i

k | = Li
k ;

• For each 0 ≤ i < r , k < K∗ and j < r , aik, j ∈ Y i
k\Y i+1

k ;

• Suppose 0 ≤ i ≤ r , k < K∗; set A = ⋃
k′<k Y

i
k′ ∪ {ai ′k′, j ′ : 0 ≤ i ′ < i, k′ <

K∗, j ′ < r}. Then Y i
k is homogeneous for f over A.

Given a = (ai : i ∈ I ) an injective sequence from n, by tp(s)wemean the function(I
r

) → c induced from f : ({ai :i∈I }
r

) → c.
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Write c′ = cr
2r
(as in the definition of K∗) and choose g : (K∗

r

) → c′ so that for

all s ∈ (K∗
r

)
, g(s) codes tp(ar−1−i

s(i), j : i, j < r). By choice of K∗, we can find I ′ ⊆ K∗
of size K + r , which is homogeneous for g. Let I be the first K -many elements of I ′.
Write Y = ⋃

k∈I Y r
k . Then we claim Y is E-homogeneous for f .

Indeed, suppose s, t ∈ (Y
r

)
, such that for all i, j < r , s(i)Es( j) iff t(i)Et( j).

We want to show that f (s) = f (t). Write s as the disjoint union of its equivalence
classes listed in increasing order: s = ⋃

i<i∗ si , and similarly t = ⋃
i<i∗ ti . Note each|si | = |ti | = ri , say. For each i < i∗, let ki ∈ I be such that si ⊆ Yr
ki
, and let k′

i ∈ I
be such that ti ⊆ Yr

k′
i
.

Let s′
i = {ai∗−1−i

ki , j
: j < ri } and let t ′i = {ai∗−1−1

k′
i , j

: j < ri }. Let s′ = ⋃
i<i∗ s

′
i and

let t ′ = ⋃
i<i∗ t

′
i . Note that by choice of I and I ′, we have that f (s′) = f (t ′). (We

can choose u ∈ (I ′
r

)
such that {ki : i < i∗} are the first i∗-many elements of u, and

v ∈ (I ′
r

)
such that {k′

i : i < i∗} are the first i∗-many elements of v. Then apply the
definition of g.) So by symmetry, it suffices to show that f (s) = f (s′).

Starting with i = i∗ −1, shift each si to s′
i ; at each step, we do not change the value

of f by our homogeneity assumption on Y i∗−1−i
ki

. 	


3 Getting large strictly rainbow sets

In this section, we are interested in applying the machinery of the previous section to
analyze a-ary-volumes of subsets of R. Recall that we are interested in the following
kind of problem: given X ⊆ R

d infinite and given a ≤ d + 1, can we find Y ⊆ X
with |Y | = |X |, such that all distinct a-element sets from Y give distinct volumes?

The most natural structure to work in for this would be (R,+, ·, 0, 1), but the
first-order theory of this structure is unstable. Thus we view R ⊆ C and work in the
larger field (C,+, ·, 0, 1) instead; it is well known that its first order theory, ACF0, is
ω-stable. We could alternatively look under the hood of Theorem 2.4 and note that it
applies to Th(R,+, ·, 0, 1) provided � is taken to be a set of quantifier-free formulas,
but this really amounts to the same thing.

First we need to show that the relevant notions of a-ary volumes are definable in C.

Definition 3.1 Let a ≤ d + 1 < ω. Note that for (v0, . . . , va−1) ∈ (Rd)a+1,
the a − 1-ary volume of (v0, . . . , va−1) is 1

C |qa(v0, . . . , va−1)| for some constant
C and some polynomial qa(v0, . . . , va−1) (namely the Cayley–Menger determi-
nant). Thus (v0, . . . , va−1) has a − 1-ary volume 0 iff qa(v0, . . . , va−1) = 0.
Let pa(v0, . . . , va−1, w0, . . . , wa−1) be the polynomial in 2da variables given by
(qa(v0, . . . , va−1)−qa(w0, . . . , wa−1))(qa(v0, . . . , va−1)+qa(w0, . . . , wa−1)). Note
that for (v0, . . . , va−1), (w0, . . . , wa−1) from (Rd)a, we have that their a−1-ary vol-
umes are the same if and only if pa(v0, . . . , va−1, w0, . . . , wa−1) = 0.

Let �d be the finite collection of formulas of ACF0 of the form: qa(v) = 0, or
pa(v,w) = 0, for a ≤ d + 1.

Thus, Theorem 2.7 gives, for each infinite cardinal κ , a finite basis of all possible
�d -configurations, and we wish to understand the ones that can be embedded in R

d .
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In the case where κ is regular, we succeed completely with Theorem 3.3. First we
need the following lemma.

Lemma 3.2 Let d be given. Suppose X ⊆ R
d is infinite, and when viewed as a subset

of C
d , is �d-indiscernible. Then X is strictly a-rainbow for some 2 ≤ a ≤ d + 1.

Proof Let a be largest so that for some or any v0, . . . , va−1 ∈ X , we have that
qa(v0, . . . , va−1) �= 0. Then clearly X is a subset of the a − 1-dimensional hyper-
plane spanned by any a elements from X , and for every 2 ≤ a′ ≤ a, every a′-subset
of X has nondegenerate volume, so it suffices to show that X is a′ rainbow for all
2 ≤ a′ ≤ a. Suppose not; say (v0, . . . , va′−1) and (w0, . . . , wa′−1) are from

(X
a′
)

of the same volume, that is qa′(v0, . . . , va′ − 1) = ±qa′(w0, . . . , wa′−1). We can
suppose there is � < a′ − 1 such that vi = wi for all i < �, and vi �= w j

for any i, j ≥ �. By a′ − �-many applications of indiscernibility of X , we can
suppose � = a′ − 2, or in other words: for all v0, . . . , va′−1, va′ from X distinct,
qa′(v0, . . . , va′−2, va′−1) = ±qa′(v0, . . . , va′−2, va′). Let v0, . . . , va′−2, wn : n < ω

be distinct elements from X . For each n < ω let Vn ⊆ C
d be the set of all v such

that qa′(v0, . . . , va′−2, v) = ±qa′(v0, . . . , va′−2, wn′) for all n′ < n. Clearly this is a
descending sequence of prevarieties, and moreover for each n, wn ∈ An\An+1 so it
is strict. This contradicts Hilbert’s Basis theorem. 	

Theorem 3.3 Suppose κ ≤ 2ℵ0 is a regular cardinal, and X ⊆ R

d has |X | = κ . Then
there is Y ⊆ X of size κ , and some 2 ≤ a ≤ d + 1, such that Y is strictly a-rainbow.

Proof ByTheorem 2.4we can choose Y ⊆ X of size κ such that Y is�d -indiscernible;
then we conclude by Lemma 3.2. 	


For singular cardinals we do not have such an explicit conclusion, although we can
say something about what the configurations look like:

Theorem 3.4 Suppose X ⊆ R
d , and E is an equivalence relation on X with infinitely

many classes, each class infinite. Suppose that considered as a subset of C
d , we have

that X is (�d , E)-indiscernible. Then there is 2 ≤ a∗ ≤ d + 1 such that each E-
equivalence class is strictly a∗-rainbow, and X is strongly a-rainbow for all a ≤ a∗.

Proof There is some 2 ≤ a∗d + 1 such that each E-equivalence class is strictly a∗-
rainbow, by Lemma 3.2 and (�d , E)-indiscernibility, so we just need to show that X
is strongly a-rainbow for all a ≤ a∗.

Suppose not; say a ≤ a∗ and u0, . . . , ua−1, v0, . . . , va−1 are a-tuples from X with
the same volume (possibly 0). We can suppose ua−1 �= vi for any i < a. We claim
we can arrange that ui = vi for all i < a − 1, and that ua−1Eva−1. Indeed, choose
w0, . . . , wa−1 distinct elements of X such that wi = ui for all i < a − 1, and wa−1
is some new element with wa−1Eua−1. By (�, E)-indiscernibility, v has the same
volume as both u and w, so the latter two have the same volume. So replace v by w.

Let I ⊆ a be the set of all i < a with ui Eua . Then clearly for any w0 . . . wa−1, if
wi = ui for all i < a with i /∈ I , and ifwi Eui for all i ∈ I , then u andw have the same
volume. Moreover this holds whenever we replace u0, . . . , ua−1 by u′

0, . . . , u
′
a−1,

where u′
i Eu

′
j iff ui Eu j . By reordering we can suppose I = {k, k + 1, . . . , a − 1},
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for some k < a. Now k > 0, since otherwise u, v are a subset of a single equivalence
class, and so this contradicts the choice of a∗.

For the contradiction, we suppose we have arranged to have {ui/E : i < a} of
minimum size.

Choose elements u�
i : i < a, � < ω as follows: having defined u�

i for each � < �∗,
let u�∗

i : i < k be some new elements such that u�∗
i Eu�∗

j iff ui Eu j , and for i < k, u�∗
i

is not E-related to any previous u�
j or any u j .

For each � < ω let A� ⊆ C
2·d·(a−k) be the pre-variety of all (vk, . . . , va−1, wk,

. . . , wa−1) such that for all �′ < �, pa(u�′
0 , . . . , u�′

k−1, vk, . . . , va−1, u�′
0 , . . . ,

u�′
k−1, wk, . . . , wa−1) = 0 (for tuples in R

d·(a−k) recall this is equivalent to say-

ing that u�′
0 , . . . , u�′

k−1, vk, . . . , va−1 and u�′
0 , . . . , u�′

k−1, wk, . . . , wa−1 have the same
volume).

This is a descending chain of pre-varieties; but it must also be strict: for
let � < ω, and let vk, . . . , va−1, wk, . . . , wa−1 be new elements with each
vi , w j Eu�

0. Since {ui/E : i < a} was chosen of minimal size we must have
that (vk, . . . , va−1, wk, . . . , wa−1) ∈ A�\A�+1. But this contradicts Hilbert’s Basis
theorem. 	


Note that as a special case we have recovered Erdős’s Theorem 1.1: whenever
X ⊆ R

d is infinite, there is a 2-rainbow Y ⊆ X with |Y | = |X |. This is because we
must have a∗ ≥ 2.

4 Perfect subsets of R
d have rainbow perfect subsets

This section is in ZF+DC.
In this section we show that if X ⊆ R

d is perfect, then there is some perfect Y ⊆ X
which is strictly a-rainbow for some a ≤ d + 1. Since Y is perfect we get |Y | = |X |.
Definition 4.1 We make several definitions.

1. Suppose P is a Polish space. A coloring f : P → [c] has the Baire property if,
for all i ∈ [i], f −1(i) has the Baire property.

2. If x, y ∈ 2ω then �(x, y) = min{i : x(i) �= y(i)}.
3. if u ∈ (2ω

a

)
, writing u = {x1, . . . , xa} in lexicographically increasing order (as

always), then say that u is skew if for all 1 ≤ i < j < a, �(xi , xi+1) �=
�(x j , x j+1). Let

(2ω

a

)
skew be the set of all u ∈ (2ω

a

)
which are skew.

4. We define f∗ : (2ω

a

)
skew → LO([a−1]) as follows, where LO([a−1]) is the set

of linear orders of a−1 (of which there are (a−1)!). Namely let f∗(x0, . . . , xa−1)

be the linear ordering < of a − 1 given by: i < j iff �(xi , xi+1) < �(x j , x j+1).
Here we are writing u = {x0, . . . , xa−1} in increasing lexicographic order.

5. A perfect subtree of 2<ω is a subtree T of 2<ω (nonempty and closed under initial
segments) such that for every s ∈ T there are t0, t1 ∈ T with s ⊂ t0, t1 and such
that t0 and t1 are incompatible. Note that the set of branches [T ] through T is
a perfect subset of 2ω, and this characterizes the perfect subsets of 2ω. Perfect
subsets of 2ω are also called Cantor sets. We say that a Cantor set C is skew if for
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all x �= y, x ′ �= y′ elements fromC, if�(x, y) = �(x ′, y′) then {x, y} = {x ′, y′}.
In particular

(C
a

) ⊆ (2ω

a

)
skew for each a.

The following is due to Blass [1].

Theorem 4.2 Suppose a, c are natural numbers and f : (2ω

a

) → [c] has the Baire

property. Then there exists a skew Cantor set C ⊆ 2ω so that for all u, v ∈ (C
a

)
, if

f∗(u) = f∗(v) then f (u) = f (v). Thus f �(Ca) takes on only (a − 1)! values, and in

fact there are only c(a−1)! possibilities for f �(Ca).

Aset X ⊆ R
d has the perfect set property if X is either countable or else has a perfect

subset. This is a regularity property of subsets of R
d , and so holds for all reasonably

definable subsets. For instance, every analytic set has the perfect set property: see
Theorem 12.2 of [7]. Also, assuming sufficient large cardinals (for instance, infinitely
many Woodin cardinals with a measurable cardinal above), all projective subsets of
R
d have this property; see Theorem 32.14 of [7].
Moreover, if we let PSP denote the assertion that every subset ofR

d has the perfect
set property, then ZF + DC + PSP is consistent relative to an inaccessible cardinal
(this is part of Solovay’s theorem, see Theorem 11.11 of [7]).

Theorem 4.3 Suppose P ⊆ R
d is perfect. Then there is a perfect set Q ⊆ X and some

2 ≤ a ≤ d + 1 such that Q is strictly a-rainbow.

Proof It is not hard to find a continuous injection ρ : 2ω → P , such that the image of
ρ is closed. Note that if C ⊆ 2ω is a Cantor set then ρ[C] is perfect.

Define f : (2ω

2a

) → [c] (for c large) so that f (u) codes the following information:

for each a′ ≤ a, and for each I , J ∈ (2a
a′

)
, whether or not the volume of ρ[uI ] is equal

to 0, and whether or not the volume of ρ[uI ] is equal to the volume of ρ[uJ ]. Clearly
we can choose f to have the Baire property (in fact, its graph will be Borel).

Let C ⊆ 2ω be a skew Cantor set as in Theorem 4.2. It suffices to show that there
some a ≤ d + 1 such that ρ[C] is strictly a-rainbow.

Suppose for some a ≤ d + 1 and for some x0 <lex · · · <lex xa−1 from C , the
volume of (ρ(x0), . . . , ρ(xa−1)) is equal to 0. Choose n large enough so that n >

�(xi , xi+1) for all i < a − 1. Then whenever x �n= ρ(x0) �n , we get that the volume
of (ρ(x), ρ(x1), . . . , ρ(xa−1)) is equal to 0. Hence {ρ(x) : x ∈ C, x �n= x0 �n} is
contained in an a−2-dimensional hyperplane; hencewhenever u = {yi : i ≤ a} ∈ (C

a

)

is such that each yi �n= ρ(x0) �n , we get that ρ[u] has volume 0. Since every element
of

(C
a

)
has the same type as some such u, we get that for all u ∈ (C

a

)
, ρ[u] has volume

0, and so ρ[C] is contained in an a − 2-dimensional hyperplane.
Let a be largest so that this fails; thus ρ[C] is a subset of an a − 1-dimensional

hyperplane, but for each a′ ≤ a and for each u ∈ (C
a

)
, ρ[u] has nonzero volume. We

claim that for each a′ ≤ a, ρ[C] is a′-rainbow (and hence strongly a’-rainbow).
Suppose not, say a′ ≤ a and x0 <lex · · · <lex xa′−1 and y0 <lex · · · <lex ya′−1

witness this, so {xi : i < a′} �= {yi : i < a′} and yet their images under ρ have
the same a′ − 1-ary volume. Let N be large enough such that N > �(xi , x j ) and
N > �(yi , y j ) for all i < j < a′, and whenever xi �= y j then N > �(xi , y j ). Now
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choose i∗ < a′ such that xi∗ /∈ {yi : i < a′}; then for any x with x �N= xi∗ �N we
have that the a′-ary volume of ρ[x0, . . . , xi∗−1, xi∗ , xi∗+1, . . . , xa′−1] is equal to the
a′ − 1-ary volume of ρ[x0, . . . , xi∗−1, x, xi∗+1, . . . , xa′−1], both being equal to the
a′ − 1-ary volume of y0, . . . , ya′−1.

Given z with f∗(z) = f∗(x), let Nz be the maximum of �(zi , z j )+1 : i < j < a′.
Let the cone above z, Cz , be all z such that z �Nz= zi∗ �Nz . Then for any z ∈ Cz , ρ[z]
has the same a′-ary volume as ρ[z\{zi∗} ∪ {z}].

Recall thatqa′(v0, . . . , va′−1, w0, . . . , wa′−1) is a polynomial (each vi , w j is a tuple
of d-variables) such that given α0, . . . , αa′−1, β0, . . . , βa′−1 from R

d , α and β have
the same a′ − 1-ary volume iff qa′(α, β) = 0; given tuples α, β from C

d , then we
define them to have the same a′ − 1-ary volume if qa′(α, β) = 0.

Inductively choose xn : n < ω so that each xn = xn0 <lex . . . <lex xna′−1 has

f∗(xn) = f∗(x), and each xn+1 ⊆ Cxn . For each n, let Vn be the set of all α ∈ C
d

such that for each m ≤ n, the a′ − 1-ary volume of ρ[xm] is equal to the a′ − 1-ary
volume of ρ[xm\{xmi∗ }] ∪ {α}. This is a descending chain of prevarieties, so to get a

contradiction it suffices to show that Vn+1 � Vn . But choose i �= i∗; then xn+1
i ∈ Vn ,

but ρ[xn+1\{xn+1
i∗ }] ∪ {ρ(xn+1

i )} is a degenerate simplex, so has a′ − 1-ary volume

zero, so ρ(xn+1
i ) /∈ Vn+1. 	


From Theorem 4.3 and the comments proceeding it we obtain the following:

Corollary 4.4

1. Suppose X ⊆ R
d is analytic and uncountable. Then there is a perfect set Q ⊆ X

and some 2 ≤ a ≤ d + 1 such that Q is strictly a-rainbow.
2. Assume sufficient large cardinals. Suppose X ⊆ R

d is projective anduncountable.
Then there is a perfect set Q ⊆ X and some 2 ≤ a ≤ d +1 such that Q is strictly
a-rainbow.

3. Assume PSP. Suppose X ⊆ R
d is uncountable. Then there is a perfect set Q ⊆ X

and some 2 ≤ a ≤ d + 1 such that Q is strictly a-rainbow.

5 Amodel of set theory where an uncountable set of reals has no
uncountable 2-rainbow subset

In this section we prove it is consistent with ZF that there is an uncountable set of reals
without an uncountable 2-rainbow subset. Thus some amount of choice is necessary.
The proof is a standard symmetric models argument; for a source on this, see [6],
Chapter 15.

We attempted to prove consistency over ZF + DC , but could not, so we leave the
following as an open question:
Question. Is it consistent with ZF + DC that there is an uncountable set of reals
without an uncountable 2-rainbow subset?

Theorem 5.1 SupposeV |� ZFC. Then there is a symmetric submodel M of a forcing
extension V[G] of V, such that M |� ZF+ there is an uncountable set of reals with
no uncountable 2-rainbow subset.
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Proof We identify x ∈ 2ω with the element of [0, 1] with binary expansion given by
x . (The collisions do not matter.)

Let P be the forcing notion of all finite partial functions from ω × ω → 2. Then
forcing by P adds a Cohen-generic ḟ ∈ (2ω×ω).

For each n < ω, let ȧn be a P-name for {m < ω : ḟ (n,m) = 1}, so each
0P � ȧn ⊆ ω. For each s ⊂ ω finite let ȧn,s be a P-name for ȧn�s (the symmetric
difference). Let Ȧ be a P-name for {ȧn,s : n < ω, s ⊂ ω finite}.

LetG be the group of all permutationsσ ofω×ω×2 such that: there is a permutation
σ0 of ω, such that for all (n,m, i), σ(n,m, i) = (σ0(n),m, j) for some j (thus we
have a map σ �→ σ0). Each σ ∈ G induces an automorphism of P and hence of its
Boolean completion B, which we identify with σ . Let F be the filter of subgroups on
G, generated by Fix(ȧn) for each n < ω, along with Fix( Ȧ). Note that σ ∈ Fix(ȧn) iff
σ �{n}×ω×2 is the identity, and σ ∈ Fix( Ȧ) iff for each n < ω, there are only finitely
many m with σ(n,m, 0) �= (σ0(n),m, 0).

Let V[G] be a forcing extension by P , and let M be the symmetric submodel
determined by F ,G, that is M is the set of all ȧV[G], for ȧ a P-name such that
Fix(ȧ) ∈ F (as computed in V), and moreover this holds hereditarily. M is a model of
ZF ; see Chapter 15 of [6]. Now ȦV[G] ∈ M since Fix( Ȧ) ∈ F by construction and
this also holds for each ȧ ∈ Ȧ. We claim that M, ȦV[G] works.

It is well known that ȦV[G] is uncountable in V[G]: if we look at the larger model
N := V({ȧV[G]

n : n ∈ ω) then this is the standard example, due to Cohen, of a model
of ZF where choice fails; {ȧV[G]

n : n ∈ ω} is an uncountable set and in fact it has no
countable subset. See Chapter 14 of [6]. So the larger set Ȧ must still be uncountable
in the smaller model M .

Suppose towards a contradiction that in M , ȦV[G] had an uncountable 2-rainbow
subset. Then we can choose some hereditarily F-symmetric P-name Ḃ and some
p ∈ P such that p forces: Ḃ is an uncountable 2-rainbow subset of Ȧ. We can choose
N large enough so that dom(p) ⊂ N × ω and, for every σ ∈ G, if σ �N×ω×2 is the
identity and if σ ∈ Fix( Ȧ), then σ(Ḃ) = Ḃ.

For each n < ω and s ⊂ ω finite let Qn be the set of all q ≤ p such that q forces:
Ḃ ∩ {ȧn,s : s ⊂ ω finite} �= ∅.

Weclaim that eachQn is nonempty, i.e. p does not force that Ḃ∩{ȧn,s : s ⊂ ω finite}
is empty. For suppose it did; then for every n′ ≥ N , p forces that Ḃ ∩ {ȧn′,s : s ⊂
ω finite} is empty (by considering σ ∈ G that fix the second and third coordinates and
interchange n, n′). But then p would force that Ḃ ⊆ {ȧn,s : n < N , s ⊂ ω finite}, a
countable set.

We claim that for each n ≥ N , and for each q ∈ Qn , we have that q �N×ω×2∈ Qn .
Indeed, given some q ′ such that q ′ �N×ω×2= q �N×ω×2 it is not hard to find some
σ ∈ Fix( Ȧ) with σ0 the identity and with σ �N×ω×2 the identity, and with σ(q)

compatible with q ′. Since σ fixes Ḃ ∩ {ȧn,s : s ⊂ ω finite}, and since q forces this set
to be nonempty, σ(q) does as well; hence so does σ(q) ∪ q ′. We have shown that Qn

is dense below q �N×ω; hence q �N×ω∈ Qn .
Thus we can choose q ∈ QN with support contained in N × ω. (By symmetry

again, we see that actually q ∈ Qn for all n ≥ N , from which it follows that p ∈ Qn

for all n, but we won’t need this.) For each s ⊂ ω finite let RN ,s be the set of
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all r ≤ q such that r forces ȧN ,s ∈ Ḃ. For each s ⊂ ω finite let σ s ∈ G be the
permutation defined by: σ s(n′,m, i) = (n′,m, i) unless n′ = n and m ∈ s, in which
case σ s(n′,m, i) = (n′,m, 1 − i). Note that if r ∈ RN ,s then for all t ⊂ ω finite,
σ t (r) ∈ RN ,t�s (because σ t (ȧN ,s) = ȧN ,t�s).

Thus, since some RN ,s must be nonempty, we get that they all must be nonempty.
Choose r ∈ RN ,∅. Write r = r0 
 r1 where r1 = r �{N }×ω×2. Choose N ′ large enough
so that dom(r1) ⊆ {N } × N ′ × 2. Then for every s ⊂ ω finite with s ∩ N ′ = ∅, we
have that σ s(r) = r ∈ RN ,s . Thus for every s ⊂ ω finite with s∩N ′ = ∅, we have that
r � ȧN ,s ∈ Ḃ. But this is a contradiction: let s0 = ∅, let s1 = {N ′}, let t0 = {N ′ + 1},
let t1 = {N ′, N ′ + 1}. r forces that each si , t j ∈ Ḃ, but 0P forces that the distance
from ȧN ,s0 to ȧN ,s1 is

1
2N ′+1 , as is the distance from ȧN ,t0 to ȧN ,t1 . 	
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