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ABSTRACT

We prove a number of structural theorems about the hon-
est polynomial m-degrees, contingent on the assumption
P = NP(or = unary alphabet). The ultimate goal would
be to prove a contradiction from P = NP. We show that
low sets cannot be minimal with respect. We show that
some theorems about honest polynomial reductions do not
relativize, hence techniques in this area may be able to
resolve the P=NP question (more humbly, they are not
automatically ruled out from doing so). Lastly, we exam-
ine an alternative definition of honest m-reduction under
which recursive minimal sets can be constructed.

1) Introduction

Homer {11} has shown connections between P=NP and

the existence of sets that are minimal with respect to hon-
est Turing reductions (henceforth “hT-minimal”). Infor-
mally, these reductions are polynomial Turing reductions
where the strings queried cannot be “short” compared
to the input length. Homer proved that if P=NP then
there exist sach minimal sets. Homer and Long [10,18]
have simplified the original construction, showed that the
P=NP assumption can be omitted if |}3| = 1, and have
proven partial converses by showing that several classes of
sets cannot be minimal. Ambos-Spies [2] Iater simplified
and extended their work. Homer, Long, and Ambos-Spies
have also shown that there exists a set that is minimal
with respect to honest m-reductions.

There are several motivations guiding work in this
area. One motivation is that by deriving consequences
from P=NP we may learn more about the P = NP? prob-
lem (ultimately we would like to derive a contradiction,
though this seems unlikely). A second motivation is that
there may be a converse to the statement “if P=NP then
there exists a minimal set” (or some variation of the state-
ment) that yields a statement about honest degrees that
is equivalent to P = NP.

Throughout this paper, all results that can be ob-
tained with P=NP as a hypothesis are also true in the
context of tally sets (i.e. if |5} = 1). The proofs in the
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|Z] = 1 case are similar to those in the P=NP case
and are omitted. The reader should keep in mind that
even though a theorem needs P==NP as a hypothesis, there
is an analogous result with |Z| = 1 that is absolute.

In this paper we pursue four goals:

1) We push the P=NP hypothesis: Assuming P=NP we
prove many structural theorems about the honest poly-
nomial m-degrees. The proofs use techniques from the
theory of the m-degrees in recursion theory [12,13,21].

2) We exhibit several classes of sets that cannot be mini-
mal. Ambos-Spies [2] showed that every high r.e. Turing
degree (i.c., a degree a such that a’ =7 0'') contains an
r.e. hT-minimal set; and asked if non-high degrees can
contain such. We give a partial negative answer by show-
ing that low sets (i.e. sets A such that A’ =r @') are
nonminimal. (The proof actually shows that semilow sets
are nonminimal.) Our proof is an interesting extension
of Ladner’s proof that there are no recursive hm-minimal
sets. Tt is best described as a finite injury delayed diag-
onalization. Our techniques can be used to prove other
results as well.

3) Most results in structural complexity theory directly
relativize, that is, if a theorem is proved, its proof holds
for computations relative to an arbitrary oracle set. Since
there exists sets A and B such that P4 = NP4 and
PP £ NPP [3), techniques that relativize will not suffice
to resolveP = NP?. Techniques that do not relativize are
of interest since they may be useful in resolving P = NP?
We show that theorems about honest reductions need not
relativize. In particular, we exhibit two statements that
involve honest reductions, which are true relative to the
empty oracle, but false relative to an oracle which we con-
struct.

4) We clarify the distinction between honest m-reductions
and total honest m-reductions. An m-reduction from A
to Bis a function f €P such that z € A iff f(z) € B. A
natural definition of an honest m-reduction would appear
to be to require f is honest; however, Ambos-Spies has



defined honest m-reduction such that f is allowed to map
astring into {Y ES, NO}. We call the former definition a
total honest m-reduction (and denote it <A;*°) and the
latter just an honest m-reduction (and denote it <h).
We show that these two reductions differ in an interesting
way. Ladner showed [14] that there are no recursive sets
that are Am-minimal. We show, by contrast, that there
are recursive sets that are Amto-minimal. Hence Ladner’s
theorem does not hold for total honest m-reductions. This
is also of interest because all minimal degrees constructed
so far have been (necessarily) nonrecursive. The recursive
hmto-minimal set is actually superminimal, i.e. for all
B such that B S',:” A B E',;;“’ A. The existence of su-
perminimal sets is evidence that Ambos-Spies’ definition
of honest m-reduction actually is natural.

2) Motivations, Definitions, and Notation

Many concepts and techniques of complexity theory
are based on similar notions in recursion theory. Often
these concepts are later seen to be of interest for reasons
independent of their original motivation (e.g. Schoning’s
definition of high and low sets in NP [24] ). The defini-
tion of an honest reduction is partially motivated by an
attempt to examine an analog of minimal degrees; though
it is of independent interest in complexity theory because
of the connections to P=NP, discovered by Homer {11].
We review the recursion-theoretic motivation.

A nonrecursive set is <p-minimal if for any set B
such that B <g A, either B =7 A or B is recursive.
Spector [27) constructed a <r-minimal set recursive in
§"; later Sacks [23] constructed one recursive in §'. Here
is a naive first attempt to define a minimal set in the
context of complexity theory.

Attempted Definition: A set Ais <F.-minimal if for any
set B such that B 57"- A, either B Eg‘ Aor B€EP.

There is one big problem with this definition: there
are no <5.-minimal sets. If A is recursive and A ¢Pp
then, by Ladner [14), there exists a set B ¢P such that
B <% A. If Ajis nonrecursive, then Homer [11] has shown
that the set B = {zOzl'I : 2z € A} is not in P (in fact,
it is nonrecursive) and B <% A. The set B is contrived
as the 0’s are there only for padding. Note that in the
B <1 Areduction, on input z weaska question of A that
is very short compared to lzl This motivates us to study
reductions where the questions asked are not allowed to
be too short. We will need two preliminary definitions
before defining a useful notion of minimal.

Definition : For a nondecreasing function g, a polyno-
mia) oracle Turing machine M is called g-honestif for all
sets S and all z, if M () queries oracle S about y, then
q(lvl) 2 |=|.

Definition : Let A and B be sets. The set B is honest
Turing reducible to A (written B <h A) if there is a

polynomial ¢ and a g-honest oracle Turing machine MO
such that B Sg. A via MU, The set B is honest Tur-
ing equivalent to A (written B = A)if B <h Aand
A _<_’7'~ B. Note that E',‘- is an equivalence relation, and
the equivalence classes are called honest Turing degrees
(hT-degrees).

Note: Similar concepts have been studied by Machtey
[19], Meyer and Ritchie [20}, and Young [28).

Definition : A set A ¢P is hT-minimalif for any set B
such that B <B A, either B .'—:'7'- Aor BeP.

In Ladner’s proof, the reduction of B to A is honest,
while in Homer’s proof it is not. Hence there cannot be
a recursive set that is AT-minimal. As mentioned in the
introduction, if either P=NP or |E| = 1 then there is a
(necessarily nonrecursive) AT-minimal set [11,18].

In both Ladner’s and Homer’s reductions of B to 4,
on every input at most one query to A is made. In the
cases when no query is made, the machine just says YES
or NO. This motivates the next definition.

Definition : Let A and B be sets. The set B is hon-
est m-reducible to A (written B <P, A) if there ex-
ists a polynomial g and a function f €P, f : &* —
z* U {YES, NO}, such that for all z :

1) if f(z) = YES then z € 4,

2) if f(z) = NO then z ¢ A,

3) if f(z) € £* then (z € B iff f(3) € A),

1) if f(z) € £* then q(|f(2}]) 2 |2l

Definition : The definitions of =N | hm-degree, and
hm-minimal are analogous to the definitions of .—":g}, hT-
degree, and hT-minimal, respectively.

This definition of honest m-reduction is not a di-
rect analog of either m-reductions in recursion theory [22]
or polynomial m-reductions {15]. This definition is used
by Ambos-Spies [2] because by allowing YES and NO as
outputs all sets in P are S',‘n-equivalent, We present a
definition that appears more natural, but will turn out
not to be.

Definition : Let A and B be two sets. The set Bis
honest total m-reducible to A (written B Shte A) if
B <h A via a reduction f that cannot map to an el-
ement of {YES, NO}. The definitions of =hte hmto-
degree, and hmto-minimal are similar to those of 5'7‘-, hT-
degree, and hT-minimal respectively. A set A is hmto-
superminimal if for all sets B such that B ghito 4,
B=hktoa
Note: In section 5 we will see that there exist supermini-
mal sets A ¢P. This is somewhat unnatural since even for
sets B €P, have B g t°A,

We need a way to effectively represent the set of all
55‘,‘ reductions.

Notation: Let My, Ma, Ms,... be a list of all Turing
machines, modified such that M, runs in time p,(n) =
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n®+e; and on an input of length n either outputs a string
of length m where g.(m) > n, or outputs an element of
{YES,NO}. For every e, let f be the function com-
puted by M, and let V, =range(f.). If A C L then
@2 is the set that is S:‘n-reduced to A by M., namely
z € ®2 & (f.(z) € A or f(z) = YES).

For all e, M, represents an S:‘n reduction; and every
_<_£',, reduction is represented by some M..

Notation: Let Pl(),Pz(), Ps(): ... be an effective enumer-
ation of clocked oracle Turing machines, where n®+e
bounds the runtime of Pe’. H no oracle is written then
the empty set is assumed to be the oracle. If we restrict
some P, to be 0-1 valued then L{P) represents the set
recognized by Fe.

Notation: Let @1, 02,93, . . . be an acceptable program-
ming system (e.g. an effective enumeration of Turing ma-
chines). Let W, be the domain of ., and W, , be the
enumeration of the first s elements of W (some may be
repeated).

Convention: The term ‘least string’ means the least
string in the lexicographic ordering on strings.

3) Honest Polynomial Partitions

In this section we define honest polynomial partitions
and prove several lemmas about them. These lemmas
will be the key to obtaining initial segments of the honest
polynomial m-degrees.

Notation: If IT is a partition then IT(z) is the set of el-
ements in the same part as z, and plI{z) is the least
element of II(z).

Definition : Let B C L” be asetin P. Il is an honest
polynomial partition of B (henceforth ‘hp partition’) if
a) there exists a polynomial p such that for all z €
B the elements of TI{z) can be determined in time
p(i=))-
b) there exists a polynomial g such that for all z € B,
q(|uM1(z)]) = |=| (this is the polynomial honesty).

Note: pand g are called the polynomials associated with
1I.

Definition : If IL is & partition of B and A is a set, then
A respects I1 if for every z € B either Mi(z) € Aor
N(z) CT* - A

Lemma 1: (P =NP)LetZ* = BUCUD be a partition
of £* such that B,C, and D arein P. Let A be aset such
that C € Aand D C Z¥ - A Let ¢ € N. If there
exists an hp partition Il of B that A respects such that,
for every z € B, TI{z) "W, # ¢, then A =h @2

Proof: Let I be the partition and let p and g be the poly-
nomials associated to IL. By definition fe runs in p, steps
and is g.-honest.

The following algorithm computes an S',:“’ reduc-
tion g of A to 2.
ALGORITHM

1) Input(z).

2) If z € C, then output(Y ES) and halt. If 2 € D,
then output{(NO) and halt.

3) Compute IT(z).

4) Using P=NP find a string y such that fely) € H(=).
(We later show that y with Jy| < ge(p(|z])) exists,
so P=NP can be used.)

5) Output(y).

END OF ALGORITHM
Since I respects A, for all z € B

z€ A& f(y) € A
Since 4 <k A via fe
y€ 3 ¢ fo(y) € A
Combining these two facts yields

€A yedt

Hence g reduces A to Qf. It remains to show that g is
an Si‘,‘ reduction.

The only step in the algorithm for g that is not ob-
viously polynomial time is step 3. Since Ti{z) "W, # 8,
y exists; but we have to show that |y] is bounded by a
polynomial. We show that iyl < ge(p(|z]) by showing
that if not, then f.(y) is too large to be in TI(z). Assume

ge(p(lz])) < lul-
Since f. is g. honest,
ge(|f=(9)1) = lyl-
Combining these two inequalities yields
Qeu.fe(y)l) > %(P(Izn)'

Since g is a strictly increasing function,

|fe(w)] > p(l=]).

Since f.(y) € II(z), the string fe(y) has to be of length
< p(]z|), or else it could not be produced in time p{|=|).

Hence
|fe(w)] < p(l2])-

This contradicts the previous inequality, hence Jyl € ge ((]=)))-
Lastly we show that g is honest. Let = € B and g(z) =
y € *. Since fe(y) € (z),

g(I7(v)]) 2 |=l-
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Since p. bounds the complexity of fer pe(lyl) 2 1f W),

hence
q(p(191)) = a(lfe(¥)])-

Combining these inequalities yields

a(pe(ly)) 2 |=I-

Hence ¢ is (g © p)-honest. X

Lemma 2: (P = NP): Let Z* = BUCUD be a partition
of £* into three parts which are in P. Let S be some set
inP.LetAbeasetsuchthatCQAandDQE‘-—A.
Let ¢ € N. If there exists an hp partition IT of B that 4
respects such that

a) for every z € B* if fe(z) € B then (f(z}) NS #
b) f(;r every y € BN S, M(y) nW. #6,

then AN S =t &4,

Proof: ANS <k @2 by a modification of the algorithm
in Lemma 1. During step 4, instead of Jooking for y such
that f.(y) € II(z), look for y such that fely) e {z)nS.
A <h AN S by the following algorithm
ALGORITHM
1) Input(z).
2) If f.(z) = YES, then output(Y ES). I fe(z)
NO, then output(NO).
3) Compute TI(fe (=)
4) Find y € I(f(z)) N S.
5) Output(y).

END OF ALGORITHM
X

4) The Structure of Hm

We sketch a number of theorems about the structure
of the hm-degrees, contingent on P = NP. Full proofs
are in [7].
Notation: The partial order which has the hm-degrees
as its underlying set, and S:’n as its ordering, is denoted
by Hm. The subordering consisting of hm-degrees that
contain an r.e. set (and hence only r.e. sets) is denoted
by Hm N RE.
Note: The partial orders Hyy and H., NRE are dis-
tributive upper semilattices. The proof of this fact is
similar to the proof that the (classical) m-degrees form
a distributive upper semilattice [21].
Definition : A partial order (X, <) is on initicl segment
of Hy, if there exists a 1-1 map p X —Hp, such that
range(p) is closed downward under <P, and

z <y p(z) <h pY)

The existence of an hm-minimal set (assuming P=NP )
can be restated as %f P=NP then the two element chain is
an initial segment of Hm.” We have obtained extensions
along these lines: If P=NP then

e the topped finite initial segments of Hy;, are exactly
the finite distributive lattices,

e the topped initial segments of H., are exactly the
direct limits of ascending sequences of finite distribu-
tive lattices,

e all recursively presentable distributive lattices are ini-
tial segments of Hm N RE.

All results also hold if I is unary, with proofs modi-
fied as in [18].

We show, in detail, that if P=NP then the three el-
ement chain is an initial segment of H,,. Then we sketch
the proofs of the three results stated above. The proofs
can be found in detail in [7]. Using techniques of (18]
the proofs of all three theorems can easily be adapted to
the |Z| = 1 case, omitting the P=NP assumption. We
then examine whether or not Hey (Hm NRE ) is ele-
mentarily equivalent to the m-degrees (r.e. m-degrees).
We show that Hy, N RE is not elementarily equivalent
to the r.e. m-degrees, though the problem for Hpy versus
the m-degrees is open.

We use a modification of exptally sets. These sets
have been used for constructing minimal honest degrees
by Homer, Long, and Ambos-Spies [2,18].

Definition : Let g(0) = 1and forall m > 0, glm+1) =
29(m) A set Ais ezplallyif AC {09(™) | m € N}. Let
p be a fixed polynomial. Define

EP = {oﬂ(m)+j l méeN, 0L .7. < P(m) - 1}'

Sets of the form EP are called poly-ezptally. For any fixed
m the finite set

B™ = {Oq(m)ﬂ‘ lo0<s< p(m) -1}

is called the m*® block of E?.

Note: We will later be partitioning EP by partitioning
every block of it. The sets that form the partition are
called bozes. Each block will consist of a finite number of
boxes.

Convention: Modify the machines Py, Pz, Ps,...sothat
they are 0-1 valued. Let L(P;) denote the language rec-
ognized by Pe.

Theorem 3: (P = NP): The three element chain is a
finite initial segment of Hm.

Proof: Let p be a fixed polynomial. Let
={0%(™+/ |meN, 0<5 < p(m) — 1, 7 odd}
={09™+/ |meN, 0<j<p(m) -1 J even}

51
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We construct A such that the degrees of 9, AN Sy,
and A, form a 3-element chain in Hm. More precisely
we construct A C EP in stages to satisfy the following
requirements.

Rl}:ANS; # L(P.)

R3 : f, is not a reduction of Ato ANS;

RE:@‘:EPOI"I’:E?,‘AF‘I.%O:@;‘E;A

At the end of each stage s we will have the {following.

a) A, € P, the strings committed to A. A C EP.
b) A,, the strings committed to £*— A. (Note that 4,

is not the complement of 4,.)

¢) for every m, BT, the set of strings in B™ that are
not committed to A or Z°—A. Let B, = uz_, B
d) II,, an hp partition of EP such that
1) A will respect 11,,

i1) if z and y are in different blocks, then 1I,(z) #
T (y) (this makes I, p-honest),

#it) as m increases, the number of boxes of I, in
B™ that are wholly contained in Sy increases
without bound. (Such boxes are needed to sat-
isfy R? and are called pure bozes.)

During the construction we show inductively that
A, € P, A, € P, and that II, is an hp partition, The
partitions get coarser and coarser; however if £ € A, or
z € A, then for all t > s, T(z) = I, (z). For every
z € EP there is a stage 8 such that either z € A, or
z € A,. The set A is defined as the set of all z that are
placed in some A,. The set A will respect all partitions
11,.

If at stage s+1, AL(_A—. , 11,) is not mentioned, then
Ay = A, (An+1 = AI)HI+1 = H,).

CONSTRUCTION
Stage 0: Ao := 0. A = L* — E?, Forall z, Ip(z) =
{z}.
Stage s +1 = 3¢+ 1 (Satisfy R1): Let 7 be the shortest
element of EP such that z ¢ A, U4A,. If P.(z) =1 then
Agpr = A, UIL(5), else Ayqy:= A, UTL,(z).
Stage s+ 1 = 3¢+ 2 (Satisfy R2): Let « be the shortest
element of EP such that z ¢ A4, UA, and II{(z)N S = 0.
(Such an z exists inductively). There are four cases
1) f,(a:) € é‘. Let X,.H, = Z. UH.(:E).
2) fe(z) € A,. Let Apy1:= A, UTL(z).
3) fe(z) ¢ A, UA, and f.(z) € I,(z). Let A,41 =
A, UIL(z).
4) f.(z) ¢ (A,UE,UH,(z)). Let Ap41:= A,UTL, (z)
and A1 = A, UTL(fe(2)):
(Note that in case 3, T € A but f.(z) ¢ S2, s0
fe(z) ¢ AN S2).

Stage s+ 1 = 3¢+ 3 (Satisfy R3): There are three cases.

1) There exists a constant ¢ such that for all m, the num-
ber of boxes in B™ that intersect V is less than ¢. Set

Apri=Au U L@

zEV.NB,

Since we are assuming P = NP, V, €P. Inductively, I,
is an honest partition, B, €P, and A, €P. Since V. €
A,41 C A, @‘: €P.
2) There exists a constant ¢ such that for all m the num-
ber of pure boxes in B that intersect V is less than c.
(Recall that a box b is pure if b C §;.) Since we are not in
case 1), the number of impure boxes in B that intersect
V. is unbounded.

We intend to set Ag41, A,+1, and Il 41 such that
the following hold.

a) For every z € I* if f-(z) € By41 then f(z) is in
the same box as some y € Sz.
b) For evety y € Boga N Sz, 41 NV, # 9.

By Lemma 2 these two conditions make AN S2 E',:‘
oA

We set Ayt1, Ast1, 8nd Il,41 as follows. Yor every
m, let (b1,...,bx) be all the boxes induced by II, that
contain elements of B (and therefore only elements of
B™). For1<3 < k do the following. If b; is a pure box
that intersects V. then place all the elements of b; iuto
Auyr. Hb; NV, NSz # 0 then let b; be the 7% such box
and let b be the j*B box (if it exists) such that bNV, = )
and b1 Sy # 0. Merge b and b;. If after the kP box has
been processed there are boxes b such that bNV, = B and
bN Sy # @, then place all the elements of all such boxes
into Ag41-

Using A, € P, A, € P, 11, polynomial honest, and
P = NP, one can show that As41 €P, A,+1 EP, and
1M, is polynomial honest. Since the number of pure
boxes of B, is unbounded and the construction only af-
fects at most ¢ per block, the number of pure boxes in
B, 41 is unbounded.

Every box b in B, 41 is either a pure box (b C S1)
such that b NV, = @, or is such that bnV.NS; # 8.
Hence both a) and b) are satisfied.

3) The number of boxes of B™ that intersect V, is un-
bounded. We intend to set Ay41, A,+1, and I, 41 such
that for all z € B,4) there exists a y € M,+1({f-(2))
By Lemma 1 this implies A=t B

We set As41, 4,41, and I1,41 as follows. For ev-
ery m let by, b12,.. 4y bykys a1y b22y . s b2k, be all the
boxes induced by II, that contain elements of B* (and
therefore only elements of B}*); where bi1,b12y ey O1ky
are all the pure boxes that intersect V., and ba1, b2z, . . -, b2k,
are the rest of the boxes. Let ks = max(’—le, kz). For all
i < ks merge by; and bg;. For all 1 > kj place the ele-
ments of bg; into As41.
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Using A, € P, ‘A, € P, 11, honest, and P=NP one
can show that A, € P, Apt1 €E P, and I,y is a
hp partition. Since the number of pure boxes in B, is
unbounded and the construction affects less than half of
the pure boxes in each block, the number of pure boxes in
B, is unbounded.

Tt is easy to see that for every box bin B,41, bV, #
@. Hence for all € B,41 there exists y € ILy1(f(2})-
X

Theorem 4: The topped finite initial segments of of
H,, are exactly the finite distributive lattices.

Proof: (Sketch) The proof that any topped finite initial
segment of Hp, is a finite distributive lattice is like the
proof for a similar theorem about the m-degrees in recur-
sion theory [21).

We show that if D is eny topped finite distributive
lattice, then D is an initial segment of Hyy . Let
{ay,.. .,ak} be the join-irreducible elements of D (not
including the bottom element) and let <p be the natural
partial ordering on D. Note that every element z of D
is the join of all elements less than z. Let p be a fixed
polynomial. For 1 < < klet

§; = {0°(™+ | meN, 0<j<p(m)-1, j=1(k)}

We construct A such that the sets Az (indexed by
z € D) defined by

A, =An(J )

ai<px

form an initial segment isomorphic to D in Hm. More
precisely we can construct A C EP in stages to satisfy
the following requirements. The parameters e ranges over
N while the parameters = and y range over D.

Risei) ¢ Aay # L(P,).

Ri2,ezy) : 2 £p v, then fe is not a reduction of
A; to Ay.

R3 : There exists an € D such that oA =k A,

In the last requirement note that if z is the bottom
clement of the lattice then &2 €P.

The rest of the proof is similar to that of Theorem
3. Various notions of pure boxes are needed to satisfy
the second type of requirement and the fact that D is a
distributive lattice is used to prove that all requirements
fit together. X

Theorem 5: The topped initial segments of Hm, are ex-
actly the direct limits of ascending sequences of finite dis-
tributive lattices.

Proof: (sketch) Combine the techniques of the last theo-
rem with the techniques in [21] or [12] to prove the anal-
ogous theorem for the m-degrees. Details are in[7. [

Having characterized exactly which finite and count-
able lattices are initial segments of Hyy,, our next goal
is to examine uncountable structures. It is here that the
similarity of Hp, and the m-degrees may fail,
Definition : Let {X, <) be any partial order. An element
z € X has s strong <-minimal cover if there exists
y€ X such that z < y and (Vz € X)[z <y >z < 1].

The first step towards characterizing the uncount-
able structures that are initial segments of the (classical)
m-degrees is showing that every m-degree has a strong
<-minimal cover. An analogous theorem in H;, is not
known. Moreover, the question of whether or not Hpis
elementarily equivalent to the m-degzees is open.

The 1.e. m-degrees and Hm N RE resemble each other
in the same way the m-degrees and H,., do; however they
are not elementarily equivalent. We first prove a theorem
about the resemblance, and then about the difference.

Theorem 6: The topped finite initial segments of the or-
der Hp, N RE are exactly the finite distributive lattices.
Proof: (sketch) Combine the techniques of Theorems 5
with the e-state construction of a maximal r.e. set (see
(26] for an e-state construction in recursion theory, and (2]
for a modification used in complexity theory). The proof
resembles a similar theorem proven for the (classical) m-
degrees {13].

Lachlan showed that every incomplete r.e. m-degrees
has an r.e. strong minimal <n-cover. We show that the
analogous theorem for Hy MRE does not hold, which
shows that the r.e. m-degrees are not elementarily equiv-
alent to Hm NRE.

Theorem 7: There exists an incomplete r.e. set A that
has no strong S_',;,-minimn.l cover.

Proof: (sketch) We construct r.e. sets A,B,Q;:,Qa-..
to satisfy the following requirements:

P : B#9f
N.: A<" W. = (Q. <k, W, and Q. £, 4)

The P; requirements ensures that A is incomplete,
while the N, requirements ensures that A has no strong
S',;,-minimal cover.

We break N, into two subrequirements some of which
may entail an infinite number of requirements.
Requirement R} : A <k W.= Q. <h Ww..

The condition Q¢ <", W, will hold since Q. will be
constructed by a Ladner-style “looking back techniques,”
[1,14,16] s0 Q. will be “W, with holes in it.” To satisfy
R} we satisfy the following requirements

Niewy "l(A S',:, Q. via M;).

It is easy to see that if A <h W, and all the N are
satisfied, then Q. <P We.
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Requirement R? : A <h, W, = Q. £h A

To satisfy Rf we satis{ly the following set of require-
ments:

ﬁ(g"') : (We <B A) V= (Q. <M Avia M;).

The sets Q. are defined by a Ladner-style looking
back construction. In particular, a 0-1 valued polynomial
time function f{—, —) with domain IV X N in unary form
will be constructed, and the sets {Q.}2; will be defined
by

o€ Qe ¢ (f(e,]o]) =1 and 0 € W,).

We informally describe how to satisfy each require-
ment.

Meeting N(.): We use strings of the form {0,1%) to
satisfy N(e_,-). At some stage 8 such that no member of
{(0,1%) | t > s} has either entered or been restrained
from entering A, we begin an attack on N(.). Set fle,t)
to 0 fort=s,8+1,8+2,... until ¢ is found such thas
either
a) M.({0,1°)) = YES, in which case we restrain {0,1%)
from entering A, or
b) M.({0,1%)) = NO, in which case we put {0, 1*) into
A, or
¢) |M.{(0,1%))| 2 s, in which case we make sure that
f(e,|M.((0,1%))]) has been set to 0, and we put

(0,1*) into A.

By honesty, one of these three conditions must occur.
Meeting N(,y.-) while meeting N jy: While N5 is
being attacked we set f(e, s) =1 for all ¢ # k, hoping
that if W, €% A then making Q. look like W, will force
—~(Q. <k, Avia M;). (We donot try to find a witness for
this requirement). If ¢ = k then this course of action is
not open to us, so instead we try to code W, into A. For
as long as f(e, |o|) = 0, if 7 enters W, then put (1%, 7)
into A.

We show that these actions satisfy each requirement N (e) -
If Q. S:‘n A then we obtain W, Sz‘n A as follows: Given
o, compute f(¢,lo]). I f(e,|o]) = 1 then (0 € Q. iff
o €W,). Hence 0 € W, iff M;(0) € A. X fle,lo]) =0
then (o € W, iff {¢,0) € A).

Meeting P;: P is satisfied in 8 manner similar to how
N(g';) is satisfied. In particular, we keep elements out of
A until an opportunity arises to diagonalize. By honesty,
such an opportunity will arise. X

5) Low Sets Are Not hT-minimal

The hT-minimal sets constructed by Homer and Long
{11} are recursive in §"'. Ambos-Spies (2] (and indepen-
dently Downey) constructed r.e. sets that are AT-minimal.
Furthermore, Ambos-Spies showed that every high r.e. de-
gree contains an AT-minimal set.

Definition : A set A is lowif A’ =r @ Aset Adis

high if A" =p 8", A Turing degree a is low (high) if it
contains a low (high) set.
Note: Low sets resemble recursive sets, while high sets
resemble K (the halting set). Examples of this resem-
blance can be found in [17,25]. The main theorem of this
section indicates another way that low sets resemble re-
cursive sets.

Ambos-Spies’s construction seems to work only for
high r.e. degrees. He raised the natural question of whether
any nonhigh set can be hT-minimal. We give a partial
negative answer by showing that low sets cannot be AT-
minimal. Our proof also works for semilow sets which we
define later. This result appears, in greater detail, in [6).

Convention: For this section we assume that all M, are
0-1 valued. Let L{M,) be the language accepted by M.,.

Definition : Let A be any set. The half jump of A is
Hy = {i | Win A # 0}. Note that Hy <1 A, and
Hy<r A"

Theorem 8: Let A be a set such that 4 <7 @, A ¢P,
and A is low. Then A is not AT-minimal.

Proof: The proof resembles the delayed diagonalization
arguments of Ladner [14], but the requirements may be
injured. We sketch the proof assuming familiarity with
Ladner’s proof that no recursive set is hT-minimal.

We construct B <A A to satisfy the following re-
quirements:

Ry, : B# L(Mc)
Raes1 : L(PE)# A

We construct a function f €P, f : 0* — {0,1}, and
define B via

zeBe (f(0*)=1and z € 4).

The set B will alternate between looking like A and
looking empty. The basic idea is that to satisfy Rz, we
make B look like A until we spot a disagreement between
B and L(M.) (which must happen since A ¢ P); and
to satisfy Rzeq1 we make B lock empty until we spot a
disagreement (which must happen since A ¢ P).

In the classical Ladner argument the set A is recur-
sive so disagreements are easily spotted by looking back.
In the present construction A is nonrecursive, so it is hard
to spot a disagreement. We will use the lowness of A to
get around this obstacle. (This sort of argument has a
long history in recursion theory and is know there as the
“Robinson trick”.)

Since A <7 @', by the Shoenfield limit lemma (see
[26) Chapter 111, Theorem 3.3 ) there is a recursive func-
tion h: B* x N — {0, 1} such that A(z) = lim¢—~eo h(z,t).
By slowing down the construction of h we can take h as
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polynomial time computable in |:t\ and t. Let A, and B,
be

A, ={z | h(z,8) = 1 and 0 < |2| < log s[}
B, ={z |z € 4, and f(01*) =1}

Note that A, can be generated in time polynomial in sl.
Since A is low

Hy<r A' < ¢,

Hi<r A' <7 ¥

Hence by the Shoenfield limit lemma there exists recursive
functions g(f,8) and §(5, 8) such that g(s,t) € {0,1},
3(i,t) € {0,1}, Hals) = limioo gfi,t), and Hz{s)
lim¢— oo g(t,t). We use g, G, and the recursion theorem
to help spot disagreements.

We describe how to spot an alleged disagreement of
L(M.) and B at stage s. The key point will be that we
may be wrong about the disagreement but this happens
only finitely often, and eventually we are right. Keep in
mind that while trying to spot a disagreement we make
B look like A.

While trying to spot disagreement we may spot a 2
such that M, (2) # B,(z). Since A may change and thus
B, (z) might not equal B(z), this disagreement may be
deceptive. We need more evidence that M.(2) # B(2).
By the recursion theorem we may assume that there are
recursive functions ¢ and 7 such that

Wit =z | (B)Me(s) # Bu(2) = 0},
Wy ={z | (39)M.(2) # Bu(2) = 1.

If M.{(z) # B,(2) = B(z) and B(z) =0 (B(z)
then z € ANWj() (2 € ANWj), so

lim; o0 Glile), t) = 1 (limi—co g(7(e), £} = 1). We use
this to supply further evidence that a disagreement has
been spotted.

Formally R, appears to be satisfied at stage s if
during the computation of f(0°) a z is found such that
M.(2) # B,-1(2) and either

1) B,_1(2) =0,z € Wite).or gli(e),9) =1, 0r
2) B,-1(2) = 1, 2 € W), 9(3(e), 8) = 1.

A definition of Rg.41 appearing satisfied at stage s
can be formulated similarly.

We describe the computation of f(O') informally.
For s steps try to spot which requirements (in order)
appear to be satisfied. Let a be the least number such
that Rg does not appear satisfied. If a is even the let
f(0%) =1, else let F(0*) = 0. We say that requirement &
has received attention. If a had appeared to be satisfied
earlier, but has just been disovered to not be satisfied,
then R, is said to have been injured.

1)

We need to see why this works. If the same require-
ment receives attention cofinitely often then A €P by the
usual arguments. Since g and § only change their mind
finitely often on any argument, no requirement can be in-
jured infinitely often. An induction proof shows that all
requirements are eventually satisfied. X

In the above proof we used the lowness of A only
once, when we needed that Hy and H,T were recursive in
.

Definition : A set A is semilow if Hq <t §'.
From the proof of the above theorem we easily have

Theorem 9: Let A be a set such that A <r @', A¢P, A
is semilow, and A is semilow. Then A is not AT-minimal.

If Ais r.e., then the set B constructed in the proof
is r.e. also. Hence we can obtain the following theorems
with minor modifications.

Theorem 10: The hT-degrees of low r.e. sets are dense.
The pT-degrees of low r.e. sets are dense.

The results above are related to the machine inde-
pendent theory of computational complexity of Blum [4}
and Blum-Marques [5]. The following definition is due to
Blum and Marques (5].

Definition : Let ®;, 83, Ps,... be a Blum complexity
measure associated to the acceptable programming system
é1,$2, 43, ... {e.g. step counting). An r.e. set Ais non-
speedable if there exists a recursive function h such that
A has a fastest program modulo h. Formally There is an
index t, W; = A, such that

(V) (W; = A= ( for almost all z)

[z € A= ®i(z) < h(z, ®4(z))]).

In [25] Soare showed that an r.e. set A is non-
speedable iff A is semilow. We thus have as a corollary

Corollary 11: If A is an r.e. non-speedable set then A
is not AT-minimal.
6) Index Sets are not RT-minimal

We show index sets are nonminimal. Do do this, we
need a convention about our programming system.

Convention: Let 1,92, Ps,.-- denote an acceptable
programming system such that the s-m-n functions [22]
are computable in polynomial time. This is reasonable if
the machine model is similar to real programs, in which
case the s-m-n functions merely replace a read statement
with an assignment statement.

Definition: A set Aisan indez setif whenever ;i = @5
(2s functions) then either i,j€ Aori,j¢ A The proof
of the following theorem resembles the proof of Rice’s The-
orem [22].
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Theorem 12: If A is a nontrivial index set (i.e. A # @,
A # T¥), then A is not AT-minimal.

Proof Let a € Aand b ¢ A. Let C be a recursive
set such that C ¢P and ©; be a recursive function that
computes the characteristic function of C. Let 2 be such

that
paly) ifzel

erten) = {5 Hogo

Since we assume the s-m-n functions are polynomial
time computable, we have 2 function f €P such that
Ps (z: y)_—'Pl(x.z) (y)

2 € C => Q1(x,2) = Pa = flz,z) €A

2¢ C=>prea) =0 => f(2,2) ¢ A

The function f is polynomial time computable and
honest, hence C < A. Since C is recursive and A is not
recursive, it is not the case that A <p C. Hence C <, A
and thus A is not an AT-minimal set. X

7) Nonrelativizations

Virtually all the constructions in the honest minimal
degree literature, including the ones in this paper, use
recursion-theoretic techniques. Hence the question arises,
“Do the theorems (and techniques) relativize?” If the
techniques relativize, then they will not suffice to solve
the P=?NP problem [3].

In this section we exhibit two theorems about honest
reductions that do not relativize. The theorems are not
contrived in that they arose while studying the jumps of
minimal degrees. This aspect will be discussed breifly.

Recall that PA is g(z)-honest if for all z, for all
queries y made in the computation of PA(z), g(|yl) 2 |=]-
Hence P= is 2-honest if for all z, for all queries y made
in the computation of PA(z), |y > |=z[.

For any set A, define

RA ={e| P2 is z-honest}.
Q4 ={c | (3K)[PA is (z + k)-honest]}

Note that honesty is a property of the computation
rather than of the set computed. Even for recursive A,
Q4 and R4 are not index sets in the usual sense (see
Rogers [22] ). The following theorem extends a result of
Hajek [9).

Theorem 13: For every recursive set A, RA s T4
complete.

Proof: For recursive A, ng = H?, so giving this proof for
A = 0 would suffice. However the proof is given relative
to an arbitrary recursive A to stress the dependence of
the set on the particular oracle queries and to point up
the difficulties of relativizing this construction to a general

nonrecursive A.
R# is TI? as it can easily be expressed by a ns

statement:

(This is true for all A.)
___ To prove that RA is TI{-complete we will show that
KA <., R* where,

= {elp? (¢) halts}.

This suffices since K4 is a N1£-complete set [22].

Given e, define the index p(e) as follows. PPA(C) is
a linear time machine which on input z simulates lpf on
input ¢ for |z| steps. These |z| steps include the simula-
tion of a fixed algorithm for the recursive set A whenever
a query of the oracle for A occurs in the computation.
There are two cases.

1) If A (e) halts in less than |z| steps of the above

simulation, then P4 e )(z) queries if 1 € A and halts.
2) Otherwise, P p( ) (z) halts immediately.

Ifee K4, then for all but finitely many =, :( 0 {z)
will query if 1 € A, and so PA o(e) is not z-honest. If
¢ ¢ K#, then 1) holds for only finitely many , hence A

is only queried for finitely many values of z so P4 o(e) is 2-
honest. These two statments show that p is the required

X

Theorem 14: For every recursive set A, Q4 is Eg—
complete.

reduction.

Proof: This proof is similar to the one above.
Q4 is )3" as it can easily be expressed by a o4
statement:

¢ € Q4 & (3k)(Vz)[PA(z) is (2 + k)-honest].

To prove that @4 is £4-complete we will show that
FINA <,, Q4, where

FIN# = {¢ | domain{p?) is finite }.

This suffices since FIN4 is a 54 -complete set [22]
Given ¢, define the index p(e) as follows. P4 i e) is a

linear time machine which on input £10¥ simulates @2 on
input z for k steps. These k steps include the simulation of
a fixed algorithm for the recursive set A whenever a query
of the oracle for A occurs in the computation. There are
two cases.
1) If oA () halts in exactly k steps of the above simu-
lation, then P (e)(zlok) queries if 1 € A and halts.

2) Otherwise, P, o e)(110") halts immediately.

P'te) halts immedi-

On any input not of the form z10%, f

ately after checkmg this fact.
if doma.m( ) is infinite, then for infinitely many =
and any k, P4 ) (110") will query if 1 € A, and so P4 a(e)

¢ € RA & (Vz)|P#(x) only queries y such that |y| > |z])is not (2 + k) -honest for any k.



If domain(@?) is finite then the condition of 1) holds
for only finitely many z and k, and A is queried only
finitely often. Then, by 2), P,Qc) is (2 + k)-honest for
some k.

So ¢ € FINA iff p(e) € Q4. X

We show that neither of the above proofs relativize
to arbitrary nonrecursive A. This is surprising, as most
similar proofs in recursion theory and complexity theory
easily relativize. The obstacle to relativization is the hon-
esty condition in the definitions of sets PA and Q4. The
failure to relativize points up the contention (see Homer
{11) ) that constructions which depend on honesty do not
in general relativize.

Theorem 15: There exists aset B with RF <1 B (hence
RP is not [T2-complete).

Proof: Since RP is TIF for all B, we need only construct
B such that RE is EIB. Then RF € &P NP so RE <p
B.

Let C1, C3, Ca, ... be a recursive partition of 2* such
that each C; is infinite. We construct B in stages. At
the end of stage s we will have completely determined
BnNC,, and also whether P,B is z-honest., The answer to
the “s € RB? question will be coded into C, in a Pl
way. We may also place (restrain) other elements into

(out of) B.

CONSTRUCTION

Stage 0: Set Bo = 9.

Stage e > 0: Let B.—1 = the set of elements put into B
through stage ¢ — 1. There are two cases.

CASE 1: There is a finite set D consistent with B,._ such
that (3z)[PP(z) not z-honest). By D being consistent
with B.—; we mean that D agrees with any elements put
into Be—j or kept out of Be1 at a previous stage.

In this case let D and z be the least such strings and
let Dt = D —{y : |y| < |z|}. Note that the PBYD™ (g)
computation is dishonest since it is identical to the P,D
computation up to and including the first dishonest query,
i.e., the first query to a string of length less than |z|.

Set B, = B.-.1 uDt.

For any C; such that D adds some element of C;
to B we fix all elements of BN C; up to length |z° + ¢.
(Recall that |z}° + € bounds the running time of P (=))
That is, at any subsequent stage we never put into B or
take out of B any other elements of C; which have length
< |zl*+e Let z € C; be the least element of C; whose
membership in B has not yet been decided and put z € B.
Putting this 2z into B will make it impossible for case 1 of
the construction to result in C; having a long sequences
of adjacent elements all in B.

CASE 2: For all finite sets D consistent with B._1, we
have (Vz)[P? () is z-honest].

Find the least = € C, with 2/%l > |z|*+¢ and whose
membership in B has not yet been decided. There exists
such an z since only finitely much of Ce N B has been
decided. Starting at = put the next 21zl many elements of
C, into B.

In either case 1 or 2 we now fix B N C, by putting
all elements of C, not yet decided into B.

END OF CONSTRUCTION.

Intuitively, the only way a long sequence of elements
from B can be in any C. is if we put it there on purpose
in Case 2. This is the key to our coding.

Claim 1: If PB is z-honest, then at stage ¢ of the con-
struction, we put 2|2l consecutive elements from C into

B.
Proof of Claim 1:

Since PP is z-honest at stage ¢ of the construction
we must have followed Case 2. Otherwise we would have
put elements into B to guarantee that PP is dishonest.
But then, in Case 2 of stage ¢, we put elements into B
which satisfy the claim.

XKend of proof of Claim 1)

Claim 2: For any ¢, e € RP if and only if there exists an
z such that z € Cb, 2l > |z]® + ¢, and 2l#l consecutive
elements of C, starting with z are all in B.

Proof of Claim £:

If ¢ is in RE, then PP is z-honest. Thus, by Claim
1, there is € C, which satisfies this claim.

If e is not in RE, P2 is not z-honest. Hence at stage
¢ the construction follows Case 1 and we have,

(3D consistent with B.—1)(3z)[P2 (z) is not 2-honest].

Otherwise every extension consistent with B.—1 results
in z-honesty and so P2 is z-honest. So at stage € we
add D (defined in the construction) to B and we fix all
elements of C, in or out of B at this stage.

Now note that C. N B cannot contain 2l2l many
consecutive elements of C, starting at some z € C, with
2i#l > |z|® + . To see this consider a stage e <e Ifwe
add elements of C, to B at stage ¢' we do this for some
computation P:,a e-1 (a:) For this computation we only
add elements y to B with |y| > |z| and we add at most
2] + ¢ < 1%l such elements to C.. When this occurs
in Case 1 of ¢/, we fix all elements of C.N B up to length
|:c|°' 4+ ¢' and put the next element of C, into B. X{end
of proof of claim 2)

Now, to finish the proof, note that Claim 2 gives a
8 definition of RB. So we have RB in II¥ NI which
gives RB <t B. X
Note: The set B constructed is recursive in the halting
set.
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Theorem 18: There exists a set B with Q% <r B’
(hence @& is not 8 complete).
Proof: We show that if R® <r B then QF <, B
Since we constructed such B in the last theorem, this will
complete the proof.

We need the following auxiliary function . If ¢,k €
N then 7(e, k) is the polynomial oracle machine that, on
input z, deletes the first k bits of £ and runs Pe() on the
remainder. Note that ¢ € QB ¢ (3k){r(e, k) € RP].
Since RZ <r B the predicate 7(e, k) € RPE is equivalent
to a predicate recursive in B. When that substitution is
made we have a £ definition of QPB. Hence QF <y B.
X

In recursion theory the following two theorems about
Turing-minimal degrees are known (see Lerman [17]).

Theorem 17: There exists a Turing-minimal set A such
that A' =p #'.

Theorem 18: There exists a Turing-minimal set A such
that A" =r 8.

The construction in Theorem 12 (13) interleaves mak-
ing the set A Turing-minimal and making A < ¥
(I* <7 §") where I 4 is some index set such that for
every A, I* is I1{-complete (E4-complete). The inter-
leaving is difficult.

We attempt a similar construction with respect to
5’7“ reductions. The index sets we use are RA and Q4 be-
cause they seem like a natural analogue to the sets IA used
in the recursion theoretic results. We show that interleav-
ing the constructions can be carried out. Unfortunately,
since QA is not always Ef-complete we do not obtain the
analog we seek. It is of some interest that the ‘easy’ part-
having a construction relativize- does not carry over, but
the hard part- interleaving two constructions- does carry
over.

Theorem 19: (P=NP) There is an hT-minimal set A
such that Q4 <t 8"

Proof: (Sketch) The construction is carried out in infinitely
many stages. At each stage 1 a partial function f; is con-
structed. Each f; is an extension of fi—1. The set A
is the unique set which is consistent with every fi. At
even stages we do the Homer-Long construction of an
hT-minimal set, and at the odd stages we help to make
QA <r 9. A key point is that at the end of every
stage there is still an infinite number of values where the
set is not determined. This enables the Homer-Long con-
struction to be carried out on the even stages without any
difficulty. (Full details are in (8]. ) X

8) A Recursive Superminimal Set

Definition : Let g be as defined in section 4 (second
definition of that section). Let B™ = {z g(m) <
|z} < g(m—+1)}. Aset Ais blocktype if it is the union of

sets of the form B™. Note that for all m, if any element
of B™ isin A, then all elements of B™ are in A (hence if
some element of B™ is not in A, then no element of B™
is in A).
Lemma 20: If A is blocktype and C <M A, then
Aghto,
Proof: Let C <B:*° A via a total honest f. Let p and ¢
be polynomials such that p bounds the runtime of f, and
f is g-honest.
The reduction A <t° C is as follows: on input ¥
find m such that y € B™, and then output otle(m)),
We show

ye As f(00m™) e 4 & 0te™) e C.

The second equivalence holds because f is a reduction of
C to A. The first equivalence will follow if we show that
f(O"(”("‘))) € B™, since A is blocktype.

Since f is computable in time p

|£(02tm))| < p(g(g(m))} < 29¢™) = g(m + 1).
Since f is g-honest

g(1£(0e™)) > g(g(m)), so
|f (020tmD ) > g(m).

Hence

g(m) < |£(0°CC™)] < g(m +1)

so f(09(¢(m))) € B™. i

Theorem 21: Given any recursive function T, there exists
a recursive set A such that A ¢DTIME(T(n)) and A is
superminimal, and hence hmto-minimal.

Proof: Tt is easy to construct a blocktype set that is not in
DTIME(T(n)). By the above Lemma, that set is hmto-
minimal. x

The techniques in this section can also be used to
show that Ladner’s proof cannot be extended to finite-to-
1 reductions (honesty is not needed).
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