
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

THE COMPLEXITY OF LEARNING SUBSEQ(A)

STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Abstract. Higman essentially showed that if A is any language then SUBSEQ(A)

is regular, where SUBSEQ(A) is the language of all subsequences of strings in A. Let

s1, s2, s3, . . . be the standard lexicographic enumeration of all strings over some finite

alphabet. We consider the following inductive inference problem: given A(s1), A(s2),

A(s3), . . . , learn, in the limit, a DFA for SUBSEQ(A). We consider this model of learning

and the variants of it that are usually studied in Inductive Inference: anomalies, mind-

changes, teams, and combinations thereof.

This paper is a significant revision and expansion of an earlier conference version [10].

S1. Introduction. Our work is based on a remarkable theorem of Higman
[22],1 given below as Theorem 1.3.
Convention: Σ is a finite alphabet.

Definition 1.1. Let x, y ∈ Σ∗. We say that x is a subsequence of y if x =
x1 · · ·xn and y ∈ Σ∗x1Σ∗x2 · · ·xn−1Σ∗xnΣ∗. We denote this by x � y.

Notation 1.2. If A is a set of strings, then SUBSEQ(A) is the set of subse-
quences of strings in A.

Higman [22] showed the following using well-quasi-order theory.

Theorem 1.3 (Higman [22]). If A is any language over Σ∗, then SUBSEQ(A)
is regular. In fact, for any language A there is a unique minimum (and finite)
set S of strings such that

SUBSEQ(A) = {x ∈ Σ∗ : (∀z ∈ S)[z 6� x]}.(1)

The original proof of this theorem is nonconstructive. Nerode’s Recursive
Mathematics Program [27, 9] attempts to pin down what it means for a proof
to be noneffective. In [11] we showed that there can be no effective proof. In
particular we showed (among other things) that there is no partial computable

Key words and phrases. machine learning, inductive inference, automata, computability,

subsequence.
The first author is partially supported by NSF grant CCF-05-15269.

The second author is partially supported by NSF grant CCR-01-05413.
Some of this work was done while the third author was at Union College, Schenectady, NY.
1The result we attribute to Higman is actually an easy consequence of his work. See [11]

for more discussion.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

function that takes as input an index for a Turing Machine deciding A and
outputs a DFA for SUBSEQ(A).

What if A is not decidable? Then we cannot be given a Turing machine
deciding A. We could instead be given A one string at a time. In this case
we can try to learn a DFA for SUBSEQ(A) in the limit. We use variations of
notions from Inductive Inference to formalize this.

S2. Inductive Inference and our variants. In Inductive Inference [5, 7,
20] the basic model of learning is as follows.

Definition 2.1. A class A of decidable sets of strings2 is in EX if there is a
Turing machine M (the learner) such that if M is given A(ε), A(0), A(1), A(00),
A(01), A(10), A(11), A(000), . . . , where A ∈ A, then M will output e1, e2, e3, . . .
such that lims es = e and e is an index for a Turing machine that decides A.

Note that the set A must be computable and the learner learns a program
deciding it. There are variants [3, 16, 18] where the set need not be computable
and the learner learns something about the set (e.g., “Is it infinite?” or some
other question). Our work is in the same spirit in that we will be given the
characteristic sequence of a set A and try to learn SUBSEQ(A).

Notation 2.2. We let s1, s2, s3, . . . be the standard length-first lexicographic
enumeration of Σ∗. We refer to Turing machines as TMs.

Definition 2.3. A class A of sets of strings in Σ∗ is in SUBSEQ-EX if there
is a TM M (the learner) such that if M is given A(s1), A(s2), A(s3), . . . where
A ∈ A, then M will output e1, e2, e3, . . . such that lims es = e and e is an index
for a DFA that recognizes SUBSEQ(A). It is easy to see that we can take e
to be the least index of the minimum-state DFA that recognizes SUBSEQ(A).
Formally, we will refer to A(s1)A(s2)A(s3) · · · as being on an auxiliary tape.

Remark. Definitions 2.1 and 2.3 are similar in that the full characteristic func-
tion of a language is provided to the learner. In an alternate style of inductive
inference, the learner is provided instead with a list of elements (“positive exam-
ples”) of a c.e.3 language in some arbitrary order, and the learner must converge
to a grammar (equivalently, a c.e. index) for the language [20]. Although it is
not the focus of our current investigation, we do give some basic observations in
Section 5.2 about learning SUBSEQ(A) from one-sided data, both positive and
negative.

Remark. In Definition 2.3 the learner gets A on its tape, not SUBSEQ(A), but
still must learn a DFA for SUBSEQ(A). One might ask whether it makes more
sense to learn SUBSEQ(A) with SUBSEQ(A) on the tape instead of A. The
answer is no, at least for standard SUBSEQ-EX-learning; Proposition 4.18 gives
a single learner that would learn SUBSEQ(A) this way for all A ⊆ Σ∗. Even
with more restricted learning variants (e.g., bounded mind-changes, one-sided

2The basic model is usually described in terms of learning computable functions; however,
virtually all of the results hold in the setting of decidable sets.

3C.e. stands for “computably enumerable,” which is synonymous with “recursively

enumerable.”

LEARNING SUBSEQ(A) 3

data), learning from SUBSEQ(A) offers nothing new, as it is merely equivalent
to learning from A when we restrict ourselves to languages A such that A =
SUBSEQ(A) (the “�-closed” languages of Definition 4.10, below).

We give examples of elements of SUBSEQ-EX in Section 4.3, where we show
that SUBSEQ-EX contains the class of all finite languages. More generally,
SUBSEQ-EX contains the class of all regular languages and—more generally
still—the class of all context-free languages. Additional examples are given in
Section 5.1 (Proposition 5.2) and Section 6.

This problem is part of a general theme of research: given a language A,
rather than try to learn a program to decide it (which is not possible if A is
undecidable) learn some aspect of it. In this case we learn SUBSEQ(A). Note
that we learn SUBSEQ(A) in a very strong way in that we have a DFA for it. One
can certainly consider learning other devices for SUBSEQ(A) (e.g., context-free
grammars, polynomial-time machines, etc.) With respect to the basic model of
inductive inference, it turns out that the type of device being learned is largely
irrelevant: learning a DFA for SUBSEQ(A) is equivalent to learning a total
Turing machine for SUBSEQ(A). We will say more about this in Section 5.2.

If A ∈ EX, then a TM can infer a program that decides any A ∈ A. That
program is useful if you want to determine membership of particular strings,
but not useful if you want most global properties (e.g., “Is A infinite?”). If
A ∈ SUBSEQ-EX, then a TM can infer a DFA for SUBSEQ(A). The DFA is
useful if you want to determine virtually any property of SUBSEQ(A) (e.g., “Is
SUBSEQ(A) infinite?”) but not useful if you want to answer almost any question
about A.

S3. Summary of main results. We look at anomalies, mind-changes, and
teams, both alone and in combination. These are standard variants of the usual
model in inductive inference. See [7] and [32] for the definitions within inductive
inference; however, our definitions are similar.

We list definitions and our main results. All are related to the EX-style of
learning (Definitions 2.1 and 2.3)—learning from complete data about A, i.e., its
characteristic function. Section 5.2 discusses other styles of learning.

1. Let A ∈ SUBSEQ-EXa mean that the final DFA may be wrong on at most a
strings (called anomalies). Also let A ∈ SUBSEQ-EX∗ mean that the final
DFA may be wrong on a finite number of strings (i.e., a finite number of
anomalies—the number perhaps varying with A). The anomaly hierarchy
collapses; that is,

SUBSEQ-EX = SUBSEQ-EX∗.

This contrasts sharply with the case of EXa, where it was proven in [7] that
EXa ⊂ EXa+1.

2. Let A ∈ SUBSEQ-EXn mean that the TM makes at most n+1 conjectures
(and hence changes its mind at most n times). The mind-change hierarchy
separates; that is, for all n,

SUBSEQ-EXn ⊂ SUBSEQ-EXn+1.

This is analogous to the result proved in [7].

4 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

3. The mind-change hierarchy also separates if you allow a transfinite number
of mind-changes, up to ωCK

1 (see “Transfinite Mind Changes and Procras-
tination” in Section 5.4). This is also analogous to the result in [13].

4. Let A ∈ [a, b]SUBSEQ-EX mean that there is a team of b TMs trying to
learn the DFA, and we demand that at least a of them succeed (it may be
a different a machines for different A ∈ A).
(a) Analogous to results in [28, 29], if 1 ≤ a ≤ b and q = bb/ac, then

[a, b]SUBSEQ-EX = [1, q]SUBSEQ-EX.

Hence we need only look at the team learning classes [1, n]SUBSEQ-EX.
(b) The team hierarchy separates. That is, for all b,

[1, b]SUBSEQ-EX ⊂ [1, b+ 1]SUBSEQ-EX.

These are also analogous to results from [32].
5. In contrast with results in [32], the anomaly hierarchy collapses in the

presence of teams. That is, for all 1 ≤ a ≤ b,

[a, b]SUBSEQ-EX∗ = [a, b]SUBSEQ-EX.

6. There are no trade-offs between bounded anomalies and mind-changes:

SUBSEQ-EXa
c = SUBSEQ-EXc

for all a and c. This result contrasts with [7, Theorem 2.14]. However,
SUBSEQ-EX∗0 6⊆

⋃
c∈N SUBSEQ-EXc, and for any c > 0, SUBSEQ-EXc 6⊆

SUBSEQ-EX∗c−1, analogous to [7, Theorem 2.16]. There are nontrivial
trade-offs between anomaly revisions (transfinite anomalies) and mind-
changes.

7. There are several interesting trade-offs between mind-changes and teams.
For all 1 ≤ a ≤ b and c ≥ 0,

[a, b]SUBSEQ-EXc ⊆ [1, bb/ac]SUBSEQ-EXb(c+1)−1.

This is also the case for EX, as described by Jain [23]—see Appendix A.
(Somewhat to the converse, it is easily seen that [1, q]SUBSEQ-EXc ⊆
[a, aq]SUBSEQ-EXc for q ≥ 1.) Also, analogously to [32, Theorems 4.1, 4.2],

SUBSEQ-EXb(c+1)−1 ⊆ [1, b]SUBSEQ-EXc 6⊇ SUBSEQ-EXb(c+1).

In the other direction, however, the analogy is curiously off by a factor of
two: if b > 1 and c ≥ 1, then

SUBSEQ-EX2b(c+1)−3 ⊇ [1, b]SUBSEQ-EXc 6⊆ SUBSEQ-EX2b(c+1)−4.

Note 3.1. PEX [6, 7] is like EX except that even the intermediate conjectures
must be for total TMs. The class SUBSEQ-EX is similar in that all the machines
are total (in fact, DFAs) but different in that we learn the subsequence language,
and the input need not be computable. The anomaly hierarchy for SUBSEQ-EX
collapses just as it does for PEX; however, the team hierarchy for SUBSEQ-EX
is proper, unlike for PEX.

LEARNING SUBSEQ(A) 5

S4. Definitions and first results.

Notation 4.1. We let N = {0, 1, 2, . . . } and N+ = {1, 2, 3, . . . }. We assume
that Σ is some finite alphabet, that 0, 1 ∈ Σ, and that all languages are subsets
of Σ∗. We identify a language with its characteristic function.

Notation 4.2. For n ∈ N, we let Σ=n denote the set of all strings over Σ of
length n. We also define Σ≤n =

⋃
i≤n Σ=i and Σ<n =

⋃
i<n Σ=i. Σ≥n and Σ>n

are defined analogously.

4.1. Classes of languages. We define classes of languages via the types of
machines that recognize them.

Notation 4.3.
1. D1, D2, . . . is a standard enumeration of finite languages. (e is the canonical

index of De.)
2. F1, F2, . . . is a standard enumeration of minimized DFAs, presented in some

canonical form so that for all i 6= j we have L(Fi) 6= L(Fj). Let REG =
{L(F1), L(F2), . . . }.

3. P1, P2, . . . is a standard enumeration of {0, 1}-valued polynomial-time TMs.
Let P = {L(P1), L(P2), . . . }. Note that these machines are total.

4. M1,M2, . . . is a standard enumeration of Turing Machines. We let CE =
{L(M1), L(M2), . . . }, where L(Mi) is the set of all x such that Mi(x) halts
with output 1 (i.e., Mi(x) accepts). We define Wi := L(Mi) and say that i
is a c.e. index of Wi. For n ∈ N we let Wi,n ⊆Wi be the result of running
some standard uniformly computable enumeration of Wi for n steps.

5. We let DEC = {L(N) : N is a total TM}.

The notation below is mostly standard. For the notation that relates to com-
putability theory, our reference is [33].

For separation results, we will often construct tally sets, i.e., subsets of 0∗.
Notation 4.4.
1. The empty string is denoted by ε.
2. For m ∈ N, we define 0<m = {0i : i < m}.
3. If B ⊆ 0∗ is finite, we let m(B) denote the least m such that B ⊆ 0<m,

and we observe that SUBSEQ(B) = 0<m(B).
4. If A is a set then P(A) is the powerset of A.

Notation 4.5. If B,C ⊆ 0∗ and B is finite, we define a “shifted join” of B
and C as follows:

B ∪+C = {02n+1 : 0n ∈ B} ∪ {02(m(B)+n) : 0n ∈ C}.

In B ∪+C, all the elements from B have odd length and are shorter than the
elements from C, which have even length. We define inverses of the ∪+ operator:

Notation 4.6. For every m ≥ 0 and language A, let

ξ(A) := {0n : n ≥ 0 ∧ 02n+1 ∈ A},
π(m;A) := {0n : n ≥ 0 ∧ 02(m+n) ∈ A}.

If B,C ⊆ 0∗ and B is finite, then B = ξ(B ∪+C) and C = π(m(B);B ∪+C).

6 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Notation 4.7. For languages A,B ⊆ Σ∗, we write A ⊆∗ B to mean that A−B
is finite. We write A =∗ B to mean that A ⊆∗ B and B ⊆∗ A (equivalently, the
symmetric difference A4B is finite).

The following family of languages will be used in several places:

Definition 4.8. For all i, let Ri be the language (0∗1∗)i.

Note that R1 ⊆ R2 ⊆ R3 ⊆ · · · , but Ri+1 6⊆∗ Ri for any i ≥ 1. Also note that
SUBSEQ(Ri) = Ri for all i ≥ 1.

4.2. Definitions about subsequences.

Notation 4.9. Given a language A, we call the unique minimum set S satis-
fying

SUBSEQ(A) = {x ∈ Σ∗ : (∀z ∈ S)[z 6� x]}
(see Equation (1)) the obstruction set of A and denote it by os(A). In this case,
we also say that S obstructs A.

The following facts are obvious:
• The � relation is computable.
• For every string x there are finitely many y � x, and given x one can

compute a canonical index (see Notation 4.3) for the set of all such y.
• By various facts from automata theory, including the Myhill-Nerode mini-

mization theorem: given a DFA, NFA, or regular expression for a language
A, one can effectively compute the unique minimum state DFA recognizing
A. (The minimum state DFA is given in some canonical form.)

• Given DFAs F and G, one can effectively compute the number of states of
F , as well as DFAs for L(F), L(F)∪L(G), L(F)∩L(G), L(F)−L(G), and
L(F)4L(G). One can also effectively determine whether or not L(F) = ∅
and whether or not L(F) is finite. If L(F) is finite, then one can effectively
find a canonical index for L(F).

• For any language A, the set SUBSEQ(A) is completely determined by
os(A), and in fact, os(A) = os(SUBSEQ(A)).

• The strings in the obstruction set of a language must be pairwise �-
incomparable (i.e., the obstruction set is an �-antichain). Conversely, any
�-antichain obstructs some language.

Definition 4.10. A language A ⊆ Σ∗ is �-closed if SUBSEQ(A) = A.

Observation 4.11. A language A is �-closed if and only if there exists a
language B such that A = SUBSEQ(B).

Observation 4.12. Any infinite �-closed set contains strings of every length.

Notation 4.13. Suppose S ⊆ Σ∗. We define a kind of inverse to the os(·)
operator:

ObsBy(S) := {x ∈ Σ∗ : (∀z ∈ S)[z 6� x]}.

Note that ObsBy(S) is �-closed, and further, os(ObsBy(S)) ⊆ S with equality
holding iff S is an �-antichain. ObsBy(S) is the unique �-closed set obstructed
by S.

LEARNING SUBSEQ(A) 7

Observation 4.14. For any A,B ⊆ Σ∗, SUBSEQ(A) = ObsBy(B) if and
only if os(A) ⊆ B ⊆ SUBSEQ(A).

The next proposition implies that finding os(A) is computationally equivalent
to finding a DFA for SUBSEQ(A).

Proposition 4.15. The following tasks are computable:
1. Given a DFA F , find a DFA G such that L(G) = SUBSEQ(L(F)).
2. Given the canonical index of a finite language S ⊆ Σ∗, compute a regular

expression for (and hence the minimum-state DFA recognizing) ObsBy(S).
3. Given a DFA F , decide whether or not L(F) is �-closed.
4. Given a DFA F , compute the canonical index of os(L(F)).

Proof. We prove the fourth item and leave the first three as exercises for the
reader.

Given DFA F , first compute the DFA G of Item 1, above. Since os(A) =
os(SUBSEQ(A)) for all languages A, it suffices to find os(L(G)).

Suppose that G has n states.
We claim that every element of os(L(G)) has length less than n. Assume

otherwise, i.e., that there is some string w ∈ os(L(G)) with |w| ≥ n. Then w /∈
L(G), and as in the proof of the Pumping Lemma, there are strings x, y, z ∈ Σ∗

such that w = xyz, |y| > 0, and xyiz /∈ L(G) for all i ≥ 0. In particular,
xz /∈ L(G). But xz � w and xz 6= w, which contradicts the assumption that w
was a �-minimal string in L(G). This establishes the claim.

By the claim, in order to find os(L(G)), we just need to check each string of
length less than n to see whether it is a �-minimal string rejected by G. a

4.3. First results. In this section we give some easy, “warm-up” proofs of
membership in SUBSEQ-EX.

Notation 4.16. F is the set of all finite sets of strings.

Proposition 4.17. F ∈ SUBSEQ-EX.

Proof. Let M be a learner that, when A ∈ F is on the tape, outputs
k1, k2, . . . , where each ki is an index of a DFA that recognizes SUBSEQ(A ∩ Σ≤i).
Clearly, M learns SUBSEQ(A). a

More generally, we have

Proposition 4.18. REG ∈ SUBSEQ-EX.

Proof. When A is on the tape, for n = 0, 1, 2, . . . , the learner M
1. finds the least k such that A ∩ Σ<n = L(Fk) ∩ Σ<n, then
2. outputs the ` such that L(F`) = SUBSEQ(L(Fk)) (see Proposition 4.15(1)).

If A is regular, then clearly M will converge to the least k such that A = L(Fk),
whence M will converge to the least ` such that L(F`) = SUBSEQ(A). a

Even more generally, we have

Proposition 4.19. CFL ∈ SUBSEQ-EX, where CFL is the class of all con-
text-free languages.

8 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Proof. Similarly to the proof of Proposition 4.18, when A is on the tape,
for n = 0, 1, 2, . . . , the learner M initially finds the first context-free grammar
G (in some standard ordering) such that A ∩ Σ<n = L(G) ∩ Σ<n. By a result
of van Leeuwen [34] (alternatively, see [11]), given a context-free grammar for
a language A, one can effectively find a DFA for SUBSEQ(A). The learner M
thus computes and outputs the index of a DFA recognizing SUBSEQ(L(G)). a

We show later (Corollary 5.7) that coCFL /∈ SUBSEQ-EX, where coCFL is
the class of complements of context-free languages.

4.4. Variants on SUBSEQ-EX. In this section, we note some obvious in-
clusions among the variant notions of SUBSEQ-EX. We also define relativized
SUBSEQ-EX.

Obviously,

SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ SUBSEQ-EX2 ⊆ · · · ⊆ SUBSEQ-EX.(2)

We will extend this definition into the transfinite later. Clearly,

SUBSEQ-EX = SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ · · · ⊆ SUBSEQ-EX∗.(3)

Finally, it is evident that [a, b]SUBSEQ-EX ⊆ [c, d]SUBSEQ-EX if a ≥ c and
b ≤ d.

Definition 4.20. If X ⊆ N, then SUBSEQ-EXX is the same as SUBSEQ-EX
except that we allow the learner to be an oracle TM using oracle X.

We may combine these variants in a large variety of ways.

S5. Main results.
5.1. Standard learning. We start by giving an example of something in

SUBSEQ-EX that contains non-context-free languages. We will give more ex-
treme examples in Section 6.

Definition 5.1. For all i ∈ N, let

Si := {A ⊆ Σ∗ : | os(A)| = i}.
Also let

S≤i := S0 ∪ S1 ∪ · · · ∪ Si = {A ⊆ Σ∗ : | os(A)| ≤ i}.

Note that each Si contains languages of arbitrary complexity. For example,
if Σ = {a1, . . . , ak}, then S0 contains (among others) all languages A such that
A ∩ (a1 · · · ak)∗ is infinite.

Proposition 5.2. Si ∈ SUBSEQ-EX for all i ∈ N. In fact, there is a com-
putable function ` such that for each i, M`(i) learns SUBSEQ(A) for every
A ∈ Si.

Proof. Given A on its tape, let M = M`(i) behave as follows, for n =
0, 1, 2, . . . :

1. Compute N = os(A ∩ Σ≤n) ∩ Σ≤n.
2. If |N | < i, then go on to the next n.
3. Let x1, . . . , xi be the i shortest strings in N . If there is a tie, i.e., if there

is more than one set of i shortest strings in N , then go on to the next n.

LEARNING SUBSEQ(A) 9

4. Output the index of the DFA recognizing ObsBy({x1, . . . , xi}).
It is easy to see that {x1, . . . , xi} converges to os(A) in the limit. a

Remark. A consequence of Proposition 5.2 is that learning just the cardinality
of os(A) is equivalent to learning (a DFA for) SUBSEQ(A): Suppose we are given
a learner M that with A on its tape outputs natural numbers i1, i2, With A
on the tape, for n = 1, 2, . . . , run M`(in) on A for n steps and output its most
recent output (if there is one). If M ’s outputs converge to | os(A)|, then clearly
we learn SUBSEQ(A) this way.

It was essentially shown in [11] that DEC /∈ SUBSEQ-EX. The proof there
can be tweaked to show the stronger result that P /∈ SUBSEQ-EX. We include
the stronger result here.

Theorem 5.3 ([11]). P 6∈ SUBSEQ-EX. In fact, there is a computable func-
tion g such that for all e, setting A = L(Pg(e)), we have A ⊆ 0∗ and SUBSEQ(A)
is not learned by Me.

Proof. Assume, by way of contradiction, that P ∈ SUBSEQ-EX via Me.
Then we effectively construct a machine Ne that implements the following re-
cursive polynomial-time algorithm for computing A. Let j0 be the unique index
such that L(Fj0) = 0∗.
On input x:

1. If x /∈ 0∗ then reject. (This will ensure that A ⊆ 0∗.)
2. Let x = 0n. Using no more than n computational steps, recursively run Ne

on inputs ε, 0, 00, . . . , 0`n−1 to compute A(ε), A(0), A(00), . . . , A(0`n−1),
where `n ≤ n is largest such that this can all be done within n steps. Set
Sn := A ∩ 0<`n .

3. Simulate Me for `n − 1 steps with Sn on its tape. If Me does not output
anything within this time, then reject. [Note that Me only has time to scan
its tape on cells corresponding to inputs ε, 0, 00, . . . , 0`n−1 (and perhaps
some inputs not in 0∗).]

4. Let k be the most recent index output by Me within `n − 1 steps with Sn
on its tape.

5. If k = j0 (i.e., if L(Fk) = 0∗), then reject; else accept.
This algorithm runs in polynomial time for each fixed e, and thus A = L(Ne) ∈

P. Further, given e we can effectively compute an index i such that A = L(Pi).
We let g(e) = i.

We note the following:
• It is clear that the sequence `0, `1, `2, . . . is monotone and unbounded.
• When Me is simulated in step 3, it behaves the same way with Sn on its

tape as with A on its tape, because it does not run long enough to examine
any place on the tape where Sn and A may differ.

We now show that Me does not learn SUBSEQ(A). Assume otherwise, and let
k1, k2, . . . be the sequence of outputs of Me with A on the tape. By assumption,
there is a k′ = limn→∞ kn such that L(Fk′) = SUBSEQ(A). If L(Fk′) = 0∗, then
for all large enough n, the algorithm rejects 0n in Step 5, making A finite, which
makes SUBSEQ(A) finite. If L(Fk′) 6= 0∗, then the algorithm accepts 0n in

10 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Step 5 for all large enough n, making A infinite, which makes SUBSEQ(A) = 0∗.
In either case, L(Fk′) 6= SUBSEQ(A); a contradiction. a

Remark. The fact that 0∗ has a unique index j0 allows for an easy equality
test of indices in Step 5 above, and this is crucial to keeping the algorithm and
its polynomial-time efficiency proof simple. Had we used the more näıve test
“L(Fk) = 0∗” instead without unique indices, we would either need to make the
additional—and nontrivial—assumption that our indices encode the structure of
the DFAs in an efficient way (for example, if we restrict ourselves to minimum
DFAs indexed in lexicographically increasing order, it is not at all clear that
we can determine the structure of the kth minimum DFA (and hence decide
whether it recognizes 0∗) in time polynomial in log2 k), or else have to build in
an additional “wait-and-see” delay in deciding acceptance or rejection until our
input x was large enough to have the time to decide whether L(Fk) = 0∗ for one
of Me’s previous hypotheses k. This would be especially important if we allowed
BC-style learning for Me. Having unique indices for regular languages frees us
from having to make any such complications.

Corollary 5.4. P ∩ P(0∗) /∈ SUBSEQ-EX.

The nonmembership of P in SUBSEQ-EX is an instance of a general negative
result—Theorem 5.6 below. The following concepts are reasonably standard.

Definition 5.5. We say that a function g : N+ → N+ is a subrecursive pro-
gramming system (SPS) if g is computable and Mg(e) is total for all e. We also
define
• L(g) := {L(Mg(e)) : e ∈ N+}, and
• FINg := {e : L(Mg(e)) is finite}.

Theorem 5.6. Let g be any SPS. If L(g) ∈ SUBSEQ-EX, then FINg ≤T ∅′,
where ∅′ is the halting problem.

Proof. Suppose that L(g) ∈ SUBSEQ-EX witnessed by a learner N . Define
f(e, n) to be the following computable function:
On input e, n ∈ N+,

1. Simulate N with L(Mg(e)) on its tape, and let kn be its nth output.
2. If L(Fkn

) is finite, then let f(e, n) = 1; else let f(e, n) = 0.
Clearly,

e ∈ FINg ⇐⇒ L(Mg(e)) is finite ⇐⇒ SUBSEQ(L(Mg(e))) is finite.

Since L(Fkn
) = SUBSEQ(L(Mg(e))) for cofinitely many n, we have FINg(e) =

limn f(e, n), and hence by the Limit Lemma (see [33]), FINg ≤T ∅′. a
The following fact stands in sharp contrast to Proposition 4.19.

Corollary 5.7. coCFL /∈ SUBSEQ-EX, where coCFL is the class of all com-
plements of context-free languages.

Proof. The cofiniteness problem for context-free grammars is known to be
Σ2-complete [21], and thus not computable in ∅′. a

We can learn more with oracle access to the halting problem.

LEARNING SUBSEQ(A) 11

Theorem 5.8. CE ∈ SUBSEQ-EX∅
′
.

Proof. Consider a learner M for all c.e. languages that behaves as follows:
When the characteristic sequence of a c.e. language A is on the tape, M learns
(with the help of ∅′) a c.e. index for A by finding, for each n = 0, 1, 2, . . . , the
least e such that We ∩Σ≤n = A∩Σ≤n. Eventually M will settle on a correct e,
assuming A is c.e. Let en be the nth index found by M . Upon finding en, M uses
∅′ to determine, for each w ∈ Σ≤n, whether or not there is a z ∈Wen

such that
w � z. M collects the set D of all w ∈ Σ≤n for which this is not the case, then
outputs (an index for) the DFA recognizing ObsBy(D) as in Proposition 4.15(2).

For all large enough n we have A = Wen , and all strings in os(A) will have
length at most n. Thus M eventually outputs a DFA for SUBSEQ(A). a

5.2. Alternate learning modes. Our main focus is on SUBSEQ-EX and
its variants, but in this section we digress briefly to consider three alternatives
to SUBSEQ-EX for learning SUBSEQ(A):

1. BC (“behaviorally correct”) learning [4, 5, 7],
2. inferring devices for SUBSEQ(A) other than DFAs, and
3. learning SUBSEQ(A) given one-sided data (positive or negative examples).

This subsection is not needed for the rest of the paper.
5.2.1. BC learning of SUBSEQ(A). For every regular language there is a

unique index for a DFA that recognizes it (Notation 4.3(2)). Thus in the con-
text of standard, anomaly-free learning, there is no difference between the EX-
and BC-styles of learning SUBSEQ(A). Even when learning other devices or
learning with anomalies, we show that the EX and BC identification criteria
for SUBSEQ(A) are still largely equivalent (Propositions 5.9 and 5.19, below,
respectively).

5.2.2. Learning other devices for SUBSEQ(A). Learning SUBSEQ(A) turns
out to be largely independent of the type of device the learner must output.

Proposition 5.9. Let A be a class of languages. A ∈ SUBSEQ-EX if and
only if there is a learner M that, with any A ∈ A on its tape, cofinitely often
outputs a co-c.e. index for SUBSEQ(A) (i.e., an e such that We = SUBSEQ(A)).

Proof. The forward implication is obvious. For the reverse implication, we
are given a learner M that with A ∈ A on its tape outputs indices e1, e2, . . .
such that Wej

= SUBSEQ(A) for all but finitely many j. We learn a DFA for
SUBSEQ(A) as follows:
With A on the tape, for n = 1, 2, . . . :

1. Simulate M on A to find e1, . . . , en.
2. Find WRONG(n) := {j : 1 ≤ j ≤ n ∧Wej ,n ∩ SUBSEQ(A ∩ Σ<n) 6= ∅}.
3. Output the index of a DFA for ObsBy(Sn) (Proposition 4.15(2)), where

Sn :=
⋃
{Wej ,n : j ∈ {1, . . . , n} −WRONG(n)}.

If Wej ∩SUBSEQ(A) 6= ∅, then evidently j ∈WRONG(n) for cofinitely many
n. Since there are only finitely many such j, we have that Sn ⊆ SUBSEQ(A)
for cofinitely many n. Finally, os(A) ⊆ Sn ⊆ SUBSEQ(A) for cofinitely many n,

12 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

because os(A) is finite and os(A) ⊆Wej = SUBSEQ(A) for some j. For all such
n, SUBSEQ(A) = ObsBy(Sn) by Observation 4.14. a

Proposition 5.9 obviously applies to any devices from which equivalent co-c.e.
indices can be found effectively, e.g., polynomial-time TMs, context-sensitive
grammars, total TMs, etc. This result contrasts with results in [11], where it
was shown, for example, that one cannot effectively convert a polynomial-time
TM deciding A into a total TM deciding SUBSEQ(A).

Proposition 5.9 does not extend to learning a c.e. index for SUBSEQ(A). This
follows easily from a standard result in inductive inference that goes back at
least to Gold [20], and whose proof is analogous to that of Proposition 4.19. The
corollary that follows should be compared with Theorem 5.6.

Proposition 5.10 (Gold [20]). Let g be an SPS (see Definition 5.5). Then
there is a learner M that, given any language A ∈ L(g) on its tape, converges to
an index e such that A = L(Mg(e)).

Corollary 5.11. For any SPS g there is a learner M that given any A ∈ L(g)
on its tape, converges to a c.e. index for SUBSEQ(A).

Proof. This follows from Proposition 5.10 and the easy fact, proved in [11],
that one can compute a c.e. index for SUBSEQ(A) given a c.e. index for A. a

5.2.3. Learning SUBSEQ(A) from one-sided data. When a learner learns from
positive examples, rather than having the characteristic function of A on its tape,
the learner is instead given an infinite list of all the strings in A in arbitrary or-
der [2]. Repetitions are allowed in the list, as well as any number of occurrences
of the special symbol ‘∗’ meaning “no data.” Such a list is called a text for A.
Learning from negative examples is similar except that the learner is given a
text for A. A class A of c.e. languages is in TxtEX iff there is a learner M that,
given any text for any A ∈ A, converges to a c.e. index for A. Variants of TxtEX
have been extensively studied [24, 1]. Here we give some brief observations about
learning SUBSEQ(A) from one-sided data (either positive or negative examples),
which may serve as a basis for further research.

Definition 5.12. A class A of languages is SUBSEQ-learnable from positive
(respectively negative) data if there is a learner M that, given any text for any
A ∈ A (respectively, text for A), converges on a DFA for SUBSEQ(A).

Observation 5.13. IfA is SUBSEQ-learnable from either positive or negative
data, then A ∈ SUBSEQ-EX.

Given text for A, it is easy to generate text for SUBSEQ(A), thus we have:

Observation 5.14. For any class A of languages, if {SUBSEQ(A) : A ∈ A} is
SUBSEQ-learnable from positive data, then so isA (and thusA ∈ SUBSEQ-EX).
It follows, for example, that {0∗}∪{0<n : n ∈ N} is not SUBSEQ-learnable from
positive data (see Corollary 5.4).

The converse of Observation 5.14 is false, witnessed by the class

{{0|A|+1}∪+A : A ⊆ 0∗ is finite} ∪ {{ε}∪+A : A ⊆ 0∗ is infinite},
which is SUBSEQ-learnable from positive data (without mind-changes).

The proof of Proposition 5.9 yields the next observation.

LEARNING SUBSEQ(A) 13

Observation 5.15. The class of �-closed languages is SUBSEQ-learnable
from negative data.

Our last observation regards learning a c.e. index for SUBSEQ(A). The proof
is similar to that of Corollary 5.11.

Observation 5.16. If A ∈ TxtEX, then there is a learner M that, given any
text for any A ∈ A, converges on a c.e. index for SUBSEQ(A).

5.3. Anomalies. The next theorem shows that the anomalies hierarchy of
Equation (3) collapses completely. In other words, allowing the output DFA to
be wrong on (say) five places does not increase learning power.

Theorem 5.17. SUBSEQ-EX = SUBSEQ-EX∗. In fact, there is a com-
putable h such that for all e and languages A, if Me learns SUBSEQ(A) with
finitely many anomalies, then Mh(e) learns SUBSEQ(A) (with zero anomalies).

Proof. Given e, we let Mh(e) learn SUBSEQ(A) by finding better and better
approximations to it: For increasing n, Mh(e) with A on its tape approximates
SUBSEQ(A) by examining its tape directly on strings in Σ<n (where there could
be anomalies) and relying on L(F) for strings of length ≥ n, where F is the most
recent output of Me. Here is the algorithm for Mh(e):

When language A is on the tape:
1. Run Me with A. Wait for Me to output something.
2. Whenever Me outputs some hypothesis k, do the following:

(a) Let n be the number of times Me has output a hypothesis thus far
(thus k is Me’s nth hypothesis).

(b) Compute a DFA G recognizing SUBSEQ((A ∩ Σ<n) ∪ (L(Fk) ∩ Σ≥n)).
(c) Output the index of G.

If Me learns SUBSEQ(A) with finite anomalies, then there is a DFA F such
that, for all large enough n, Me outputs an index for F as its nth hypothesis,
and furthermore L(F)4SUBSEQ(A) ⊆ Σ<n, that is, all anomalies are of length
less than n. For any such n, let Gn be the DFA output by Mh(e) after the nth
hypothesis of Me. We have

L(Gn) = SUBSEQ((A ∩ Σ<n) ∪ (L(F) ∩ Σ≥n))

= SUBSEQ((A ∩ Σ<n) ∪ (SUBSEQ(A) ∩ Σ≥n))
= SUBSEQ(A).

Thus Mh(e) learns SUBSEQ(A). a
One could define a looser notion of learning with finite anomalies: The learner

is only required to eventually (i.e., cofinitely often) output indices for DFAs
whose languages differ a finite amount from SUBSEQ(A), but these languages
need not all be the same. This is reminiscent of the BC criterion of inductive
inference [4, 5, 7].

Definition 5.18. For a learner M and language A, say that M weakly learns
SUBSEQ(A) with finite anomalies if, when A is on the tape, M outputs an
infinite sequence k1, k2, . . . such that SUBSEQ(A) =∗ L(Fki

) for all but finitely
many i.

14 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

A class C of languages is in SUBSEQ-BC∗ if there is a learner M that, for
every A ∈ C, weakly learns SUBSEQ(A) with finite anomalies.

Clearly, SUBSEQ-EX∗ ⊆ SUBSEQ-BC∗. We use Theorem 5.17 to get an even
stronger collapse.

Proposition 5.19. SUBSEQ-EX = SUBSEQ-BC∗. In fact, there is a com-
putable function b such that for all e and A, if Me weakly learns A with finite
anomalies, then Mb(e) learns A (without anomalies).

Proof. Let c be a computable function such that for all e and A, Mc(e)

with A on the tape simulates Me with A on the tape, and (supposing Me out-
puts k1, k2, . . .) whenever Me outputs kn, Mc(e) finds the least j ≤ n such that
L(Fkj

) =∗ L(Fkn
), and outputs kj instead. (Such a j can be computed.)

Now suppose Me weakly learns SUBSEQ(A) with finite anomalies, and let
k1, k2, . . . be the outputs of Me with A on the tape. Let j be least such
that L(Fkj

) =∗ SUBSEQ(A). Then for cofinitely many n, we have L(Fkn
) =∗

SUBSEQ(A), and so L(Fkn
) =∗ L(Fkj

) as well, but L(Fkn
) 6=∗ L(Fk`

) for all
` < j. Thus Mc(e) outputs kj cofinitely often, and so Mc(e) learns SUBSEQ(A)
with finite anomalies (not weakly!).

Now we let b = h ◦ c, where h is the function of Theorem 5.17. If Me weakly
learns SUBSEQ(A) with finite anomalies, then Mc(e) learns SUBSEQ(A) with
finite anomalies, and so Mb(e) = Mh(c(e)) learns SUBSEQ(A). a

5.4. Mind-changes. The next theorems show that the mind-change hierar-
chy of Equation (2) separates. In other words, if you allow more mind-changes
then you give the learning device more power.

Definition 5.20. For every i > 0, define the class

Ci = {A ⊆ 0∗ : |A| ≤ i}.

Proposition 5.21. Ci ∈ SUBSEQ-EXi for all i ∈ N. In fact, there is a single
learner M that for each i learns SUBSEQ(A) for every A ∈ Ci with at most i
mind-changes.

Proof. Let M be as in the proof of Proposition 4.17. Clearly, M learns any
A ∈ Ci with at most |A| mind-changes. a

Theorem 5.22. For each i > 0, Ci /∈ SUBSEQ-EXi−1. In fact, there is a
computable function ` such that, for each e and i > 0, M`(e,i) is total and decides
a unary language Ae,i = L(M`(e,i)) ⊆ 0∗ such that |Ae,i| ≤ i and Me does not
learn SUBSEQ(Ae,i) with fewer than i mind-changes.

Proof. Given e and i > 0 we construct a machine N = M`(e,i) that imple-
ments the following recursive algorithm to compute Ae,i:

Given input x,
1. If x /∈ 0∗, then reject. (This ensures that Ae,i ⊆ 0∗.) Otherwise, let x = 0n.
2. Recursively compute Sn = Ae,i ∩ 0<n.
3. Simulate Me for n− 1 steps with Sn on the tape. (Note that Me does not

have time to read any of the tape corresponding to inputs 0n
′

for n′ ≥ n.)
If Me does not output anything within this time, then reject.

LEARNING SUBSEQ(A) 15

4. Let k be the most recent output of Me in the previous step, and let c be
the number of mind-changes that Me has made up to this point. If c < i
and L(Fk) = SUBSEQ(Sn), then accept; else reject.

In step 3 of the algorithm, Me behaves the same with Sn on its tape as it
would with Ae,i on its tape, given the limit on its running time.

Let Ae,i = {0z0 , 0z1 , . . . }, where z0 < z1 < · · · are natural numbers.

Claim. For 0 ≤ j, if zj exists, then Me (with Ae,i on its tape) must output a
DFA for SUBSEQ(Szj

) within zj − 1 steps, having changed its mind at least j
times when this occurs.

Proof of the claim. We proceed by induction on j: For j = 0, the string
0z0 is accepted by N only if within z0 − 1 steps Me outputs a k where L(Fk) =
∅ = SUBSEQ(Sz0); no mind-changes are required. Now assume that j ≥ 0
and zj+1 exists, and also (for the inductive hypothesis) that within zj − 1 steps
Me outputs a DFA for SUBSEQ(Szj

) after at least j mind-changes. We have
Szj
⊆ 0<zj but 0zj ∈ Szj+1 , and so SUBSEQ(Szj

) 6= SUBSEQ(Szj+1). Since N
accepts 0zj+1 , it must be because Me has just output a DFA for SUBSEQ(Szj+1)
within zj+1 − 1 steps, thus having changed its mind at least once since the zjth
step of its computation, making at least j + 1 mind-changes in all. So the claim
holds for j + 1. End of Proof of Claim a

First we show that Ae,i ∈ Ci. Indeed, by the Claim above, zi cannot exist,
because the algorithm would explicitly reject such a string 0zi if Me made at
least i mind-changes in the first zi − 1 steps. Thus we have |Ae,i| ≤ i, and so
Ae,i ∈ Ci.

Next we show that Me cannot learn SUBSEQ(Ae,i) with fewer than i mind-
changes. Suppose that with Ae,i on its tape, Me makes fewer than i mind-
changes. Suppose also that there is a k output cofinitely many times by Me.
Let t be least such that t ≥ m(Ae,i) and Me outputs k within t − 1 steps.
Then L(Fk) 6= SUBSEQ(Ae,i), for otherwise the algorithm would accept 0t and
so 0t ∈ Ae,i, contradicting the choice of t. It follows that Me cannot learn
SUBSEQ(Ae,i) with fewer than i mind-changes. a

5.4.1. Transfinite mind-changes and procrastination. This subsection may be
skipped on first reading. We extend the results of the previous subsection into the
transfinite. Freivalds & Smith defined EXα for all constructive ordinals α [13].
When α < ω, the definition is the same as the finite mind-change case above. If
α ≥ ω, then the learner may revise its bound on the number of mind-changes
during the computation. The learner may be able to revise more than once, or
even compute a bound on the number of future revisions, and this bound itself
could be revised, et cetera, depending on the size of α. After giving some basic
facts about constructive ordinals, we define SUBSEQ-EXα for all constructive
α, then show that this transfinite hierarchy separates. Our definition is slightly
different from, but equivalent to, the definition in [13]. For general background
on constructive ordinals, see [30, 31].

Church defined the constructive (computable) ordinals, and Kleene defined
a partially ordered set 〈O, <O〉 of notations for constructive ordinals, where
O ⊆ N. 〈O, <O〉 may be defined as the least partial order that satisfies the
following closure properties:

16 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

• <O ⊆ O ×O, and <O is transitive.
• 0 ∈ O.
• If a ∈ O then 2a ∈ O and a <O 2a.
• If Me is total (with inputs in N) and

Me(0) <O Me(1) <O Me(2) <O · · · ,
then 3 · 5e ∈ O and Me(n) <O 3 · 5e for all n ∈ N.

〈O, <O〉 has the structure of a well-founded tree. For a ∈ O we let ‖a‖ be the
ordinal rank of a in the partial ordering.4 Then a is a notation for the ordinal
‖a‖. An ordinal α is constructive if it has a notation in O. We let ωCK

1 be the
set of all constructive ordinals, i.e., the height of the tree 〈O, <O〉. ωCK

1 is itself
a countable ordinal—the least nonconstructive ordinal.

It can be shown that 〈O, <O〉 has individual branches of height ωCK
1 . If B ⊆ O

is such a branch, then every constructive ordinal has a unique notation in B.
In keeping with [13], we fix a single such branch ORD ⊆ N of unique notations
once and for all, then identify (for computational purposes) each constructive
ordinal with its notation in ORD. (It is likely that the classes we define depend
on the actual system ORD chosen, but our results hold for any such branch that
we fix.)

We note the following basic facts about constructive ordinals α < ωCK
1 :

• It is a computable task to determine whether α is zero, α is a successor,
or α is a limit. (α = 0, α = 2a for some a, or α = 3 · 5e for some e,
respectively.)

• If α is a successor, then its predecessor (= log2 α) can be computed.
• If α = 3 · 5e is a limit, then we can compute Me(0),Me(1),Me(2), . . . , and

this is a strictly ascending sequence of ordinals with limit α.
• We can compute the unique ordinals λ and n such that λ is zero or a limit,
n < ω, and λ+ n = α. We denote this n by N(α) and this λ by Λ(α).

• There is a computably enumerable set S such that for all b ∈ ORD and
a ∈ N, (a, b) ∈ S iff a ∈ ORD and ‖a‖ < ‖b‖. That is, given an ordinal
α < ωCK

1 , we can effectively enumerate all β < α, and this enumeration is
uniform in α.

• Thanks to ORD being totally ordered, the previous item implies that we
can effectively determine whether or not α < β for any α, β < ωCK

1 . That
is, there is a partial computable predicate that extends the ordinal less-than
relation on ORD.

Definition 5.23. A procrastinating learner is a learner M equipped with an
additional ordinal tape, whose contents is always a constructive ordinal. Given a
language on its input tape, M runs forever, producing infinitely many outputs as
usual, except that just before M changes its mind, if α is currently on its ordinal
tape, M is required to compute some ordinal β < α and replace the contents of
the ordinal tape with β before proceeding to change its mind. (So if α = 0, no
mind-change may take place.) M may alter its ordinal tape at any other time,
but the only allowed change is replacement with a lesser ordinal.

4The usual expression for the rank of a is |a|, but we change the notation here to avoid
confusion with set cardinality and string length.

LEARNING SUBSEQ(A) 17

Thus a procrastinating learner must decrease its ordinal tape before each mind-
change.

We abuse notation and let M1,M2, . . . be a standard enumeration of procras-
tinating learners. Such an effective enumeration exists because we can enforce
the ordinal-decrease requirement for a machine’s ordinal tape: if b ∈ ORD is the
current contents of the ordinal tape, and the machine wishes (or is required) to
alter it—say, to some value a ∈ N—we first start to computably enumerate the
set of all c ∈ ORD such that ‖c‖ < ‖b‖ and allow the machine to proceed only
when a shows up in the enumeration.

Definition 5.24. Let M be a procrastinating learner, α a constructive ordi-
nal, and A a language. We say that M learns SUBSEQ(A) with α mind-changes
if M learns SUBSEQ(A) with α initially on its ordinal tape.

If C is a class of languages, we say that C ∈ SUBSEQ-EXα if there is a
procrastinating learner that learns every language in C with α mind-changes.

The following two observations are straightforward and given without proof.

Observation 5.25. If α < ω, then SUBSEQ-EXα is the same as the usual
finite mind-change version of SUBSEQ-EX.

Observation 5.26. For all α < β < ωCK
1 ,

SUBSEQ-EXα ⊆ SUBSEQ-EXβ ⊆ SUBSEQ-EX.

In [13], Freivalds and Smith defined EXα for constructive α and showed that
this hierarchy separates using classes of languages constructed by a noneffective
diagonalization based on learner behavior. Although their technique can be
adapted to prove a separation of the SUBSEQ-EXα hierarchy as well (essentially
by trading step positions in the step function for strings in the language), we
take a different approach and define straightforward, learner-independent classes
of languages that separate the SUBSEQ-EXα hierarchy. These or similar classes
may be of independent interest.

Definition 5.27. For every α < ωCK
1 , we define the class Fα inductively as

follows: Let n = N(α), and let λ = Λ(α).
• If λ = 0, let

Fα = Fn = {B ∪+ ∅ : (B ⊆ 0∗) ∧ (|B| ≤ n)}.
• If λ > 0, then λ has notation 3 · 5e for some TM index e. Let

Fα = {B ∪+C : (B,C ⊆ 0∗) ∧ (|B| ≤ n+ 1) ∧ (C ∈ FMe(m(B)))}.

It is evident by induction on α that Fα consists only of finite unary languages
and that ∅ ∈ Fα. Note that in the case of finite α we have the condition |B| ≤ n,
but in the case of α ≥ ω we have the condition |B| ≤ n+1. This is not a mistake.

The proofs of the next two theorems are roughly analogous to the finite mind-
change case, but they are complicated somewhat by the need for effective trans-
finite recursion.

Theorem 5.28. For every constructive α, Fα ∈ SUBSEQ-EXα. In fact, there
is a single procrastinating learner Q such that for every α, Q learns every lan-
guage in Fα with α mind-changes.

18 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Proof. With α initially on its ordinal tape and language A ∈ Fα on its input
tape, for n = 0, 1, 2, . . . , the machine Q checks whether 0n ∈ A. If not, then Q
simply outputs the index k such that L(Fk) = SUBSEQ(A ∩ 0<n+1), which is
the same as its previous output, if there was one. If 0n ∈ A, then outputting k
as above may require a mind-change first. There are two cases:

1. If N(α) > 0, then Q replaces α with its predecessor, outputs k as above,
and goes on to the next n.

2. If N(α) = 0, then it must be that α ≥ ω (otherwise, A /∈ Fα), and so α
(= Λ(α)) has notation 3 · 5e for some e. Q then
(a) computes B := ξ(A ∩ 0<n+1) and γ := Me(m(B)) (note: it must be

the case that B = ξ(A); otherwise, A /∈ Fα), then
(b) changes its ordinal tape to γ + 1, outputs k as above, then changes its

ordinal tape again to γ, then
(c) simulates itself recursively (forever) from the beginning with C :=

π(m(B);A) on the input tape and γ initially on the ordinal tape.
Whenever the simulation decreases its ordinal tape, Q decreases its own
ordinal tape to the same value, and whenever the simulation outputs an
index i, Q outputs the index of a DFA for SUBSEQ(B ∪+(L(Fi) ∩ 0∗))
instead.

A straightforward induction on α proves that Q correctly learns SUBSEQ(A)
with α mind-changes for any A ∈ Fα.

If α < ω, then A = B ∪+ ∅ for some B ⊆ 0∗ such that |B| ≤ N(α) = α.
Because |A| = |B| ≤ N(α), Q has enough mind-changes available to repeat
Case 1 until it sees all of A and thus learns SUBSEQ(A).

Now suppose that α ≥ ω and that Λ(α) has notation 3 · 5e for some e. We
know that A = B ∪+C, where B,C ⊆ 0∗, |B| ≤ N(α) + 1, and C ∈ Fγ , where
γ = Me(m(B)). Since |B| ≤ N(α) + 1, Q can repeat Case 1 enough times to
see all but the longest string of B (if there is one) without dropping its ordinal
below Λ(α). Therefore, if or when Q encounters Case 2 and needs to drop its
ordinal below Λ(α), it has seen all of B, which is thus computed correctly along
with γ in Step 2a. Since C ∈ Fγ , by the inductive hypothesis, the recursive
simulation in Step 2c correctly learns SUBSEQ(C) with γ mind-changes, and so
Q has enough mind-changes available to run the simulation, which eventually
converges on an index i such that L(Fi) = SUBSEQ(C) = 0<m(C). Clearly,

SUBSEQ(A) = SUBSEQ(B ∪+C) = SUBSEQ(B ∪+ SUBSEQ(C)).

So the original run of Q will output the index of a DFA recognizing SUBSEQ(A)
cofinitely often, using α mind-changes.

There is one last technicality. Note that Q decreases its ordinal just before
starting the simulation in Step 2c. This is needed because the first conjecture of
the simulation may produce a mind-change in the original run of Q. a

Theorem 5.29. For all β < α < ωCK
1 , Fα /∈ SUBSEQ-EXβ. In fact, there

is a computable function r such that, for each e and β < α < ωCK
1 , Mr(e,α,β) is

total and decides a language Ae,α,β = L(Mr(e,α,β)) ∈ Fα such that Me does not
learn SUBSEQ(Ae,α,β) with β mind-changes.

LEARNING SUBSEQ(A) 19

Proof. This proof generalizes the proof of Theorem 5.22 to the transfinite
case. We first define a computable function v(e, c, t, b) such that for all e, c, t, b ∈
N, the procrastinating learner Mv(e,c,t,b) with language C on its input tape and
g ∈ N on its ordinal tape5 behaves as follows:

1. Without changing the ordinal tape or outputting anything, Mv(e,c,t,b) sim-
ulates Me for t steps with (Dc ∩ 0∗)∪+(C ∩ 0∗) on Me’s input tape and b
on Me’s ordinal tape.

2. Mv(e,c,t,b) continues to simulate Me as above beyond t steps, except that
now:
• Whenever Me changes its ordinal tape to some value u, Mv(e,c,t,b)

changes its ordinal tape to the same value u (provided this is allowed).
• Whenever Me outputs a value k, Mv(e,c,t,b) outputs the index of a DFA

recognizing the language π(m(Dc);L(Fk)) (provided this is allowed).
The function v is defined so that if Me learns SUBSEQ(Dc ∪+C) (for some
Dc, C ⊆ 0∗) with β mind-changes and Me manages to decrease its ordinal tape
to some δ within the first t steps of its computation, then Mv(e,c,t,β) learns
SUBSEQ(C) with γ mind-changes, for any γ ≥ δ. (Observe that SUBSEQ(C) =
π(m(Dc); SUBSEQ(Dc ∪+C)).) We will use the contrapositive of this fact in the
proof, below.

Given e and β < α < ωCK
1 we construct the set Ae,α,β ⊆ 0∗, which is decidable

uniformly in e, α, β. The rough idea is that we build Ae,α,β to be of the form
B ∪+C, where B,C ⊆ 0∗ and |B| ≤ N(α) + 1 (assuming α ≥ ω), while diago-
nalizing against Me with β on its ordinal tape. We put strings into B to force
mind-changes in Me until either Me runs out of mind-changes (and is wrong) or
it decreases its ordinal tape to some ordinal δ < Λ(α). If the latter happens, we
then put one more string into B to code some γ such that δ < γ < Λ(α), and
then (recursively) make C equal to Aê,γ,δ for some appropriate ê chosen using
the function v, above. Here is the construction of Ae,α,β :

1. Let λ = Λ(α).
2. Initialize B := ∅ and t := 0.
3. Repeat the following as necessary to construct B:

(a) Run Me with B ∪+ ∅ on its tape and β initially on its ordinal tape
until it outputs some k such that L(Fk) = SUBSEQ(B ∪+ ∅) after
more than t steps. This may never happen, in which case we define
Ae,α,β := B ∪+ ∅ and we are done.

(b) Let t′ > t be the number of steps it took Me to output k, above. Let
δ be the contents of Me’s ordinal tape when k was output. [Note that
Me did not have time to scan any strings of the form 0s for s > t′.]
Reset t := t′.

(c) If δ < λ, then go on to Step 4.
(d) Set B := B ∪ {0t+1} and continue the repeat-loop.

4. Now we have δ < λ, and so λ is a limit ordinal with notation 3 ·5u for some
u. Let p be least such that p > t and Mu(p + 1) is the notation for some
ordinal γ > δ. [Note that γ < λ ≤ α.]

5For the purposes of defining the function v, we must take b and g to be arbitrary numbers,
although they will usually be notations for ordinals.

20 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

5. Set B := B ∪ {0p}. [This makes m(B) = p+ 1.]
6. Let c be such that B = Dc. Set ê := v(e, c, t, β), and (recursively) define
Ae,α,β := B ∪+Aê,γ,δ. [The ordinal in the second subscript decreases from
α to γ, so the recursion is well-founded.]

For all e and all β < α < ωCK
1 , we show by induction on α that Ae,α,β ∈ Fα

and that Me cannot learn SUBSEQ(Ae,α,β) with β initially on its ordinal tape.
Let λ = Λ(α) (λ may be either 0 or a limit), and let n = N(α). Consider Me

running with Ae,α,β on its input tape and β initially on its ordinal tape. In
the repeat-loop, t bounds the running time of Me and strictly increases from
one complete iteration to the next, and the only strings added to B have length
greater than t. This implies two things: (1) that Me behaves the same in Step 3a
with B ∪+ ∅ on its tape as it would with Ae,α,β on its tape, and (2) the number of
mind-changes Me must make to be correct increases in each successive iteration
of the loop.

We now consider two cases:

λ is the 0 ordinal: Then Me can change its mind at most n−1 times (since
β < α = n). This means that the repeat-loop will run for at most n
complete iterations, then hang in Step 3a on the next iteration, because
by then Me has run out of mind-changes and so cannot update its answer
to be correct. In this case, Ae,α,β = B ∪+ ∅, and we’ve added at most n
strings to B. Thus Ae,α,β ∈ Fα, and Me does not learn SUBSEQ(Ae,α,β)
with β mind-changes.

λ is a limit ordinal with notation 3 · 5u for some u: In this case, Me

can change its mind at most n − 1 times before it must drop its ordi-
nal to some δ < λ for its next mind-change. So again there can be at
most n complete iterations of the repeat-loop—putting at most n strings
into B—before we either hang in Step 3a (which is just fine) or go on to
Step 4. In the latter case, we put one more string into B in Step 5, making
|B| ≤ n + 1. By the inductive hypothesis and the choice of p and γ, we
have Aê,γ,δ ∈ Fγ = FMu(m(B)), and so Ae,α,β ∈ Fα.

The index ê is chosen precisely so that if Me learns SUBSEQ(Ae,α,β) with
β mind-changes then Mê learns SUBSEQ(Aê,γ,δ) with δ mind-changes. By
the inductive hypothesis, Mê cannot do this. Thus in either case Me does
not learn SUBSEQ(Ae,α,β) with β mind-changes.

It remains to show that Ae,α,β is decidable uniformly in e, α, β. The only
tricky part is Step 3a, which may run forever. It is not hard to see, however,
that if Me runs for at least ` steps for some `, then either 0` is already in B by
this point or it will never get into B. Hence we can decide whether or not 02`+1

is in Ae,α,β . Even-length strings in 0∗ can be handled similarly, possibly via a
recursive call to Aê,γ,δ. a

We end with an easy observation.

Corollary 5.30.

SUBSEQ-EX 6⊆
⋃

α<ωCK
1

SUBSEQ-EXα.

LEARNING SUBSEQ(A) 21

Proof. Let F ∈ SUBSEQ-EX be the class of Notation 4.16. For all α < ωCK
1 ,

we clearly have Fα+1 ⊆ F , and so F /∈ SUBSEQ-EXα by Theorem 5.29. a
5.5. Teams. In this section, we show that [a, b]SUBSEQ-EX depends only

on bb/ac. The next lemma is analogous to a result of Pitt & Smith concerning
teams in BC and EX learning [29, Theorem 12], proved using techniques of Pitt
[28] regarding probabilistic inference. Because testing language equivalence of
DFAs is trivial, we can avoid most of the complexity in their proof and give a
new, easy proof of Lemma 5.31.

Lemma 5.31. For all 1 ≤ a ≤ b,
[a, b]SUBSEQ-EX = [1, bb/ac]SUBSEQ-EX.

Proof. Let q = bb/ac. We get [1, q]SUBSEQ-EX ⊆ [a, b]SUBSEQ-EX via
the standard trick of duplicating each of the q learners in a team a times, then
observing that [a, qa]SUBSEQ-EX ⊆ [a, b]SUBSEQ-EX.

For the reverse containment, let Q1, . . . , Qb be learners and fix a language
A such that at least a of the Qi’s learn SUBSEQ(A). For any t > 0, let
k1(t), . . . , kb(t) be the most recent outputs of Q1, . . . , Qb, respectively, after
running for t steps with A on their tapes (if some machine Qi has not yet output
anything in t steps, let ki(t) = 0).

We define learners N1, . . . , Nq to behave as follows with A on their tapes.
Define a consensus value at time t to be a value that shows up at least a times

in the list k1(t), . . . , kb(t). (Each Nj uses A only for computing k1(t), . . . , kb(t)
and nothing else.) We let

POPULAR(t) := {v : |{j ∈ {1, . . . , b} : kj(t) = v}| ≥ a}
to be the set of these consensus values. There can be at most q many different
consensus values at any given time, so we can make the machines Nj output these
consensus values. If kcorrect is the index of the DFA recognizing SUBSEQ(A),
then kcorrect will be a consensus value at all sufficiently large times, and so kcorrect

will eventually always be output by one or another of the Nj . The only trick is
to ensure that kcorrect is eventually output by the same Nj each time. To make
sure of this, the Nj will output consensus values in order of seniority.

For 1 ≤ j ≤ q and t = 1, 2, 3, . . . , each machine Nj computes POPULAR(t′)
for all t′ ≤ t. For each v ∈ N, we define the start time of v at time t to be

Startt(v) :=
{

(µs ≤ t)[v ∈
⋂
s≤t′≤t POPULAR(t′)] if v ∈ POPULAR(t),

t+ 1 otherwise.

As its t’th output, Nj outputs the value with the j’th smallest value of Startt(v).
If there is a tie, then we consider the smaller value to have started earlier. This
ends the description of the machines N1, . . . , Nq.

Let Y =
⋃
s

⋂
t≥s POPULAR(t), the set of all consensus values that occur

cofinitely often. Clearly, kcorrect ∈ Y , and there is a time t0 such that all elements
of Y are consensus values at all times t ≥ t0. Note that the start times of the
values in Y do not change from t0 onward, but the start time of any value not in
Y increases monotonically without bound. Thus there is a time t1 ≥ t0 beyond
which any v /∈ Y has a start time later than that of any v′ ∈ Y . It follows that
from time t1 onward, the start time of kcorrect has a fixed rank amongst the start

22 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

times of all the current consensus values, and so kcorrect is output by the same
machine Nj at all times t ≥ t1. a

To prove a separation, we cannot use unary languages as we have before; it is
easy to see (exercise for the reader) that P(0∗) ∈ [1, 2]SUBSEQ-EX. To separate
the team hierarchy beyond level 2, we use an alphabet Σ that contains 0 and 1
(at least) and show that S≤n ∈ [1, n + 1]SUBSEQ-EX − [1, n]SUBSEQ-EX for
all n ≥ 1, where S≤n is given in Definition 5.1.

Lemma 5.32. For all n ≥ 1, S≤n ∈ [1, n+ 1]SUBSEQ-EX and S≤n ∩DEC /∈
[1, n]SUBSEQ-EX. In fact, there is a computable function d(s) such that for all
n ≥ 1 and all e1, . . . , en, the machine Md([e1,... ,en]) decides a set A[e1,... ,en] ∈ S≤n
that is not learned by any of Me1 , . . . ,Men

.6

Proof. Fix n ≥ 1. First, we have S≤n = S0∪· · ·∪Sn, and Si ∈ SUBSEQ-EX
for each i ≤ n by Proposition 5.2. It follows that S≤n ∈ [1, n+ 1]SUBSEQ-EX.

Next, we show that S≤n /∈ [1, n]SUBSEQ-EX. Fix any n learners Q1, . . . , Qn.
We build a set A ⊆ Σ∗ in stages n, n + 1, n + 2, . . . , ensuring that | os(A)| ≤ n
(hence A ∈ S≤n) and that none of the Qi learn SUBSEQ(A). At each stage j ≥
n, we define n strings yj1, . . . , y

j
n ∈ {0, 1}∗ which are candidates for membership

in os(A). These strings satisfy
1. |yj1| ≤ · · · ≤ |yjn| ≤ j + 1, and
2. yji ∈ 0n−i1∗1 for all 1 ≤ i ≤ n.

Note that these two conditions imply that yj1, . . . , y
j
n are pairwise �-incompa-

rable. We then define A on all strings of length j.
Stage n: For all 1 ≤ i ≤ n, set yni := 0n−i1i+1. Set An := Σ≤n.
Stage j > n:

• Run each learner Qi for j − 1 steps with Aj−1 on its tape (by the
familiar argument, Qi will act the same as with A on its tape), and let
ki be its most recent output (or let ki = 0 if there is no output yet).

• Compute si := | os(L(Fki
))| for all 1 ≤ i ≤ n.

• Let mj be the least element of {0, . . . , n} − {s1, . . . , sn}.
• Set yji := yj−1

i for all 1 ≤ i ≤ mj , and set yji := 0n−i1j+1−n+i for all
mj < i ≤ n.

• Set Aj := Aj−1 ∪ {x ∈ Σ=j : (∀i ≤ mj)y
j
i 6� x}.

Define A :=
⋃∞
j=nAj . Also define m := lim infj→∞mj , and let j0 > n be

least such that mj ≥ m for all j ≥ j0. For 1 ≤ i ≤ m, we then have yj0i =
yj0+1
i = yj0+2

i = · · · , and we define yi to be this string. It remains to show
that os(A) = {y1 . . . , ym}, for if this is the case, then the obstruction set size
m = | os(A)| = | os(SUBSEQ(A))| is omitted infinitely often by all the learners
running with A on their tapes, and so none of the learners can converge on a
language with an obstruction set of size m, and hence none of the learners learn
SUBSEQ(A).

To see that os(A) = {y1, . . . , ym}, consider an arbitrary string x ∈ Σ∗. We
need to show that x ∈ SUBSEQ(A) iff (∀i)yi 6� x. By the construction, no z � yi
ever enters A for any i ≤ m, so if x � z and z ∈ A, then (∀i)yi 6� z and thus

6[e1, e2, . . . , en] is a natural number encoding the finite sequence e1, e2, . . . , en.

LEARNING SUBSEQ(A) 23

(∀i)yi 6� x. Conversely, if (∀i)yi 6� x, then (∀i)yi 6� x0t for any t ≥ 0, because
each yi ends with a 1. Fix the least j1 ≥ max(j0, |x|) such that mj1 = m, and
let t = j1 − |x|. Then |x0t| = j1, and x0t is added to A at Stage j1. So we have
x � x0t ∈ A, whence x ∈ SUBSEQ(A).

Finally, the whole construction of A above is effective uniformly in n and
indices for Q1, . . . , Qn, and uniformly decides A. Thus the computable function
d of the Lemma exists. a

Remark. The foregoing proof can be easily generalized to show that Sj1∪Sj2∪
· · · ∪ Sjk ∈ [1, k]SUBSEQ-EX− [1, k − 1]SUBSEQ-EX for all j1 < j2 < · · · < jk.

Lemmas 5.31 and 5.32 combine to show the following general theorem, which
completely characterizes the containment relationships between the various team
learning classes [a, b]SUBSEQ-EX.

Theorem 5.33. For every 1 ≤ a ≤ b and 1 ≤ c ≤ d, [a, b]SUBSEQ-EX ⊆
[c, d]SUBSEQ-EX if and only if bb/ac ≤ bd/cc.

Proof. Let p = bb/ac and let q = bd/cc.
By Lemma 5.31 we have

[a, b]SUBSEQ-EX = [1, p]SUBSEQ-EX,

and

[c, d]SUBSEQ-EX = [1, q]SUBSEQ-EX.

By Lemma 5.32 we have [1, p]SUBSEQ-EX ⊆ [1, q]SUBSEQ-EX if and only if
p ≤ q. a

5.6. Anomalies and teams. In this and the next few subsections we will
discuss the effect that combining the variants discussed previously have on the
results of the previous subsections.

The next result shows that Theorem 5.17 is unaffected by teams. In fact,
teams and anomalies are completely orthogonal.

Theorem 5.34. The anomaly hierarchy collapses with teams. In other words,
for all a and b,

[a, b]SUBSEQ-EX∗ = [a, b]SUBSEQ-EX.

Proof. Given a team Me1 , . . . ,Meb
of b Turing machines, we use the collapse

strategy from Theorem 5.17 on each of the machines. We replace each Mei
with

the machine Mh(ei), where h is the function of Theorem 5.17. If a of the b
machines learn the subsequence language with finite anomalies each, then their
replacements will learn it with no anomalies. a

5.7. Anomalies and mind-changes. Next, we consider machines which
are allowed a finite number of anomalies, but have a bounded number of mind-
changes.

In our proof that the anomaly hierarchy collapses (Theorem 5.17), the simulat-
ing learner Mh(e) may have to make many more mind-changes than the learner
Me being simulated. As the next result shows, we cannot do better than this.

Proposition 5.35. SUBSEQ-EX∗0 6⊆
⋃
c∈N SUBSEQ-EXc. (It is even the

case that SUBSEQ-EX∗0 6⊆
⋃
α<ωCK

1
SUBSEQ-EXα.)

24 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Proof. The class F of Notation 4.16 is in SUBSEQ-EX∗0 (the learner always
outputs the DFA for ∅). But F /∈ SUBSEQ-EXc for any c ∈ N by Theorem 5.22
(and F /∈ SUBSEQ-EXα for any α < ωCK

1 by Corollary 5.30). a
In light of Proposition 5.35, it may come as a surprise that a bounded number

of anomalies may be removed without any additional mind-changes.

Theorem 5.36. SUBSEQ-EXa
c = SUBSEQ-EXc for all a, c ≥ 0. In fact,

there is a computable h such that, for all e, a and languages A, Mh(e,a) on A
makes no more mind-changes than Me on A, and if Me learns SUBSEQ(A) with
at most a anomalies, then Mh(e,a) learns SUBSEQ(A) (with zero anomalies).

Proof. The ⊇-containment is obvious. For the ⊆-containment, we modify
the learner in the proof of Theorem 5.17. Given e and a, we give the algorithm
for the learner Mh(e,a) below. We will use the word “default” as a verb to mean,
“output the same DFA as we did last time, or, if there was no last time, don’t
output anything.” The opposite of defaulting is “acting.” Here’s how Mh(e,a)

works:
When language A is on the tape:
1. Run Me with A. Wait for Me to output something.
2. Whenever Me outputs some hypothesis k, do the following:

(a) Let n be the number of times Me has output a hypothesis thus far. (k
is the nth hypothesis.)

(b) If there was some time in the past when we acted and Me has not
changed its mind since then, then default.

(c) Else, if Fk has more than n states, then default.
(d) Else, if L(Fk) ∪ Σ<n is not �-closed, then default.
(e) Else, if there are strings w ∈ os(L(Fk) ∪ Σ<n) and z ∈ A such that

w � z and |z| < |w| + a, then default. [Note that w, if it exists, has
length at least n.]

(f) Else, find a DFA G recognizing the language

SUBSEQ((A ∩ Σ<n) ∪ (L(Fk) ∩ Σ≥n)),

and output the index of G. [This is where we act, i.e., not default.]
First, it is not too hard to see that Mh(e,a) does not change its mind any more

than Me does: After Me makes a new conjecture, Mh(e,a) will act at most once
before Me makes a different conjecture. This is ensured by Step 2b. Note that
Mh(e,a) only makes a new conjecture when it acts.

Suppose Me learns SUBSEQ(A) with at most a anomalies. Let F be the final
DFA output by Me with A on its tape. We have |L(F) 4 SUBSEQ(A)| ≤ a.
Let n0 be least such that Me always outputs F starting with its n0th hypothesis
onwards. It remains to show that

1. Mh(e,a) acts sometime after Me starts perpetually outputting F , i.e., after
its n0th hypothesis, and

2. when this happens, the G output by Mh(e,a) is correct, that is, L(G) =
SUBSEQ(A). (Since Mh(e,a) only defaults thereafter, it outputs G forever
and thus learns SUBSEQ(A).)

For (1), we start by noting that there is a least n ≥ n0 such that

LEARNING SUBSEQ(A) 25

• F has at most n states, and
• all anomalies are of length less than n, i.e., L(F)4 SUBSEQ(A) ⊆ Σ<n.

We claim that Mh(e,a) acts sometime between Me’s n0th and nth hypotheses,
inclusive. Suppose we’ve reached Me’s nth hypothesis and we haven’t acted since
the n0th hypothesis. Then we don’t default in Step 2b. We don’t default in
Step 2c because F has at most n states. Since all anomalies are in Σ<n, clearly,
L(F) ∪ Σ<n = SUBSEQ(A) ∪ Σ<n, which is �-closed, so we don’t default in
Step 2d. Finally, we won’t default in Step 2e: if w and z existed, then w would
be an anomaly of length ≥ n, but all anomalies are of length < n. Thus we act
on Me’s nth hypothesis, which proves (1).

For (2), we know from (1) that Mh(e,a) acts on Me’s nth hypothesis, for some
n ≥ n0, at which time Mh(e,a) outputs some DFA G. We claim that L(G) =
SUBSEQ(A).

Since Mh(e,a) acts on Me’s nth hypothesis, we know that
• F has at most n states,
• L(F) ∪ Σ<n is �-closed, and
• there are no strings w ∈ os(L(F) ∪ Σ<n) and z ∈ Σ<|w|+a ∩ A such that
w � z.

It suffices to show that there are no anomalies of length ≥ n, for then we have

L(G) = SUBSEQ((A ∩ Σ<n) ∪ (L(F) ∩ Σ≥n))

= SUBSEQ((A ∩ Σ<n) ∪ (SUBSEQ(A) ∩ Σ≥n)) = SUBSEQ(A)

as in the proof of Theorem 5.17.
There are two kinds of anomalies—false positives (which are elements of L(F)−

SUBSEQ(A)) and false negatives (which are elements of SUBSEQ(A)− L(F)).
First, there can be no false positives of length ≥ n: Suppose w is such a string.

Then since w is at least as long as the number of states of F , by the Pumping
Lemma for regular languages there are strings x, y, z with |y| > 0 such that the
strings

w = xyz ≺ xy2z ≺ xy3z ≺ · · ·
are all in L(F). But since w /∈ SUBSEQ(A), none of these other strings is in
SUBSEQ(A) either. This means there are infinitely many anomalies, which is
false by assumption. Thus no such w exists.

Finally, we prove that there are no false negatives in Σ≥n. Suppose u is such
a string. We have u ∈ SUBSEQ(A), and so there is a string z ∈ A such that
u � z. We also have u /∈ L(F) ∪ Σ<n, and since L(F) ∪ Σ<n is �-closed, there
is some string w ∈ os(L(F) ∪ Σ<n) such that w � u. Now w � z as well, so it
must be that |z| ≥ |w| + a by what we know above. Since w � z, there is also
an ascending chain of strings

w = w0 ≺ w1 ≺ · · · ≺ wk = z,

where |wi| = |w| + i and so k ≥ a. All the wi are in SUBSEQ(A) because
z ∈ A. Moreover, none of the wi are in L(F) ∪ Σ<n because w /∈ L(F) ∪ Σ<n

and L(F) ∪ Σ<n is �-closed. Thus the wi are all anomalies, and there are at
least a+ 1 of them, contradicting the fact that Me learns SUBSEQ(A) with ≤ a
anomalies. Thus no such u exists. a

26 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Proposition 5.21 and Theorems 5.22 and 5.36 together imply that we cannot
replace a single mind-change by any fixed finite number of anomalies. A stronger
statement is true.

Theorem 5.37. SUBSEQ-EXc 6⊆ SUBSEQ-EX∗c−1 for any c > 0.

Proof. Let Ri = (0∗1∗)i as in Definition 4.8, and define

Rc =

A ⊆ {0, 1}∗ :
A ⊆ Rc ∧
(A is �-closed) ∧
(∃j)[0 ≤ j ≤ c ∧Rj ⊆ A ⊆∗ Rj]

 .

Recall (Notation 4.7) that A ⊆∗ B means that A−B is finite.
We claim that Rc ∈ SUBSEQ-EXc − SUBSEQ-EX∗c−1 for all c > 0.
To see that Rc ∈ SUBSEQ-EXc, with A ∈ Rc on the tape the learner M

first sets i := c and may decrement i as the learning proceeds. For each i, the
machine M proceeds on the assumption that Ri ⊆ A. For n = 1, 2, 3, . . . , M
waits until n ≥ 2i and there are no strings in A−Ri of length n. At this point,
it is not hard to see that A−Ri ⊆ Σ<n. (Note that a string x ∈ {0, 1}∗ is in Ri
iff 0x1 has at most i occurrences of 01 as a substring.) M now starts outputting
a DFA for Ri ∪ (A ∩ Σ<n) = SUBSEQ(Ri ∪ (A ∩ Σ<n)). If M ever discovers a
string in Ri −A, then M resets i := i− 1 and starts over. Thus M can make at
most c mind-changes before finding the unique j such that Rj ⊆ A ⊆∗ Rj .

To show that Rc /∈ SUBSEQ-EX∗c−1 we use a (by now) standard diagonal-
ization. Given a learner M , we build A such that A ∩ Σ<n = Rc ∩ Σ<n for
increasing n until M outputs some DFA F such that L(F) =∗ Rc while only
querying strings of length less than n. We then make A look like Rc−1 on strings
of length ≥ n until M outputs a DFA G with L(G) =∗ Rc−1. We then make A
look like Rc−2 above the queries made by M so far, et cetera. In the end, M
clearly must make at least c mind-changes to be right within a finite number of
anomalies. We can make A decidable uniformly in c and an index for M . a

Although we don’t get any trade-offs between anomalies and mind-changes,
we do get trade-offs between anomaly revisions and mind-changes. If a learner
is allowed to revise its bound on allowed anomalies from time to time, then we
can trade these revisions for mind-changes. The proper setting for considering
anomaly revisions is that of transfinite anomalies, which we consider next.

5.7.1. Transfinite anomalies and mind-changes. This section uses some of the
concepts introduced in the section on transfinite mind-changes, above. If you
skipped that section, then you may skip this one, too.

We get a trade-off between anomalies and mind-changes if we consider the
notion of transfinite anomalies, which we now describe informally. Suppose we
have a learner M with a language A on its tape and some constructive ordinal
α < ωCK

1 initially on its ordinal tape, and suppose that M can decrease its
ordinal any time it wants to (it is not forced to by mind-changes). We say that
M learns SUBSEQ(A) with α anomalies if M ’s final DFA F and final ordinal β
are such that |L(F)4 SUBSEQ(A)| ≤ N(β). For example, if M starts out with
ω + ω on its ordinal tape, then at some point after examining A and making
conjectures, M may tentatively decide that it can find SUBSEQ(A) with at most
17 anomalies. It then decreases its ordinal to ω + 17 (N(ω + 17) = 17). Later,

LEARNING SUBSEQ(A) 27

M may find that it really needs 500 anomalies. It can then decrease its ordinal a
second time from ω+ 17 to 500. M is now committed to at most 500 anomalies,
because it cannot further increase its allowed anomalies by decreasing its ordinal.

More generally, if M starts with the ordinal ω · n+ k for some n, k ∈ N, then
M is allowed k anomalies to start, and M can increase the number of allowed
anomalies up to n many times.

There was no reason to introduce transfinite anomalies before, because the
anomaly hierarchy collapses completely. Transfinite anomalies are nontrivial,
however, when combined with limited mind-changes.

The next theorem generalizes Theorem 5.36 to the transfinite. It shows that
a finite number of extra anomalies makes no difference.

Theorem 5.38. Let k, c ∈ N and let λ < ωCK
1 be any limit ordinal. Then

SUBSEQ-EXλ+k
c = SUBSEQ-EXλ

c .

Proof sketch. We show the c = 0 case; the general case is similar. Sup-
pose M learns SUBSEQ(A) with λ + k anomalies and no mind-changes. To
learn SUBSEQ(A) with λ anomalies and no mind-changes, we first run the al-
gorithm of Theorem 5.36 with λ initially on our ordinal tape and assuming
≤ k anomalies (i.e., setting Me := M and a := k). If M never drops its or-
dinal below λ, then this works fine. Otherwise, at some point, M drops its
ordinal to some γ < λ. If this happens before we act—i.e., before we output
anything—then we abandon the algorithm, drop our own ordinal to γ, and from
now on simulate M directly. If the drop happens after we act, then M has al-
ready outputted some final DFA F and we have outputted some G recognizing
L(G) = SUBSEQ((A ∩ Σn) ∪ (L(F) ∩ Σ≥n)) for some n. Since L(F) ∪ Σ<n is
�-closed, it follows that L(G)4L(F) ⊆ Σ<n and hence is finite. So we compute
d := |L(G)4 L(F)|, drop our ordinal from λ to γ + d, and keep outputting G
forever. Whenever M drops its ordinal further to some δ, then we drop ours to
δ + d, etc. If ` is the final number of anomalies allowed by M , then we have

|L(G)4 SUBSEQ(A)| ≤ |L(G)4 L(F)|+ |L(F)4 SUBSEQ(A)| ≤ d+ `,

and so we have given ourselves enough anomalies. a
We show next that ω anomalies can be traded for an extra mind-change.

Theorem 5.39. For all c ∈ N and λ < ωCK
1 , if λ is zero or a limit, then

SUBSEQ-EXλ+ω
c ⊆ SUBSEQ-EXλ

c+1.

Proof sketch. Suppose M learns SUBSEQ(A) with λ+ ω anomalies and c
mind-changes. With ordinal λ on our ordinal tape, we start out by simulating
M exactly—outputting the same conjectures—until M drops its ordinal to some
γ. If γ < λ, then we drop our ordinal to γ and keep simulating M forever. If
γ = λ+ k for some k ∈ N, then we immediately adopt the strategy in the proof
of Theorem 5.38, above. Our first action after this point may constitute an extra
mind-change, but that’s okay because we have c+ 1 mind-changes available. a

Corollary 5.40. SUBSEQ-EXω·n+k
c ⊆ SUBSEQ-EX0

c+n for all c, n, k ∈ N.

Proof. By Theorems 5.36, 5.38, and 5.39. a
Next we show that the trade-off in Corollary 5.40 is tight.

28 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

Theorem 5.41. SUBSEQ-EXω·n
c 6⊆ SUBSEQ-EXc+n−1 for any c and n > 0.

Proof sketch. Consider the classes Ci = {A ⊆ 0∗ : |A| ≤ i} of Defi-
nition 5.20. By Theorem 5.22, Cc+n /∈ SUBSEQ-EXc+n−1. We check that
Cc+n ∈ SUBSEQ-EXω·n

c . Given A ∈ Cc+n on the tape and ω · n initially on
its ordinal tape, the learner M outputs a DFA for SUBSEQ(A ∩ Σ≤i) as its ith
output (as in Proposition 4.17) until it runs out of mind-changes. M continues
outputting the same DFA, but every time it finds a new element 0j ∈ A it revises
its anomaly count to j + 1. It can do this n times. a

This can be generalized to SUBSEQ-EXω·n
c 6⊆ SUBSEQ-EXω·(n−x)

c+x−1 for any
n ∈ N and 0 ≤ x ≤ n, witnessed by the same class Cc+n.

5.8. Mind-changes and teams. In this section we will consider teams of
machines which have a bounded number of mind-changes. All of the machines
have the same bound. Recall the definition of consensus value from Lemma 5.31
as a value that shows up at least a times in the list of outputs at time t.

We will start with analogues of Lemma 5.31.

Observation 5.42. [1, q]SUBSEQ-EXc ⊆ [a, aq]SUBSEQ-EXc for all q, a ≥ 1
and c ≥ 0.

Lemma 5.43. [a, b]SUBSEQ-EXc ⊆ [1, bb/ac]SUBSEQ-EXb(c+1)−1 for every
1 ≤ a ≤ b and c ≥ 0.

Proof. This follows from the second part of the proof of Lemma 5.31, noting
that each of the machines N1, . . . , Nq might make a new conjecture any time
any one of the Qi does, but not at any other time. a

Notice that the previous two results do not give us that

[a, b]SUBSEQ-EXc = [1, bb/ac]SUBSEQ-EXc

as in Lemma 5.31. (See Appendix A for the analogue of Lemma 5.43 for EX.)

Corollary 5.44. If a
b >

1
2 then [a, b]SUBSEQ-EXc ⊆ SUBSEQ-EXb(c+1)−1.

Theorem 5.45. SUBSEQ-EXq(c+1)−1 ⊆ [a, aq]SUBSEQ-EXc for all a, q ≥ 1
and c ≥ 0.

Proof. Divide the aq team learners into q groups G1, . . . , Gq of a learners
each. Suppose we are given some learner M with some A on the tape. The
first time M outputs a conjecture k1, the machines in G1 (and no others) start
outputting k1. The next time M changes its mind and outputs a new conjecture
k2 6= k1, only the machines in G2 start outputting k2, et cetera. This continues
through the groups cyclically. All the machines in some group will eventually
output the final DFA output by M . There are q groups, and so each team
machine makes a 1/q fraction of the conjectures made by M . If M makes at
most q(c+ 1)− 1 mind-changes, then it makes at most (c+ 1)q conjectures, and
so each team machine makes at most c + 1 conjectures with at most c mind-
changes. a

From here on out, we will work with teams of the form [1, b]. The next two
results complement each other.

LEARNING SUBSEQ(A) 29

Corollary 5.46. SUBSEQ-EXb(c+1)−1 ⊆ [1, b]SUBSEQ-EXc for all b ≥ 1
and c ≥ 0.

Theorem 5.47. SUBSEQ-EXb(c+1) 6⊆ [1, b]SUBSEQ-EXc for any b ≥ 1 and
c ≥ 0.

Proof. We prove that Cb(c+1) /∈ [1, b]SUBSEQ-EXc by building a language
A ∈ Cb(c+1) to diagonalize against all b machines. We start by leaving A empty
until one of the machines conjectures a DFA for ∅. Then we add a string to A
to render this conjecture incorrect. (The string must of course be long enough
so that the machine conjectures the DFA before seeing the string.) Whenever
a machine conjectures a DFA for a finite language, we add an appropriately
long string to A that is not in the conjectured language. After breaking the
b(c+ 1) conjectures, we will have added at most b(c+ 1) elements to A, so it is
in Cb(c+1). a

Theorem 5.48. For all b ≥ 1, [1, b]SUBSEQ-EX0 ⊆ SUBSEQ-EX2b−2 and
[1, b]SUBSEQ-EXc ⊆ SUBSEQ-EX2b(c+1)−3 for all c ≥ 1.

Proof. We are given b machines team-learning SUBSEQ(A) and outputting
at most c+1 conjectures each. For n = 1, 2, 3, . . . we output the DFA (if there is
one) that recognizes the ⊆-minimum language among the machines’ past outputs
that are consistent with the data so far. That is, for each n we output F iff

1. F is an output of one of the b machines running within n steps (not neces-
sarily the most recent output of that machine),

2. SUBSEQ(A ∩ Σ≤n) ⊆ L(F) (that is, F is consistent with the data), and
3. L(F) ⊆ L(G) for any G satisfying items 1 and 2 above.

We’ll call such an F good (at time n). If a good F exists, it is clearly unique.
If no good F exists, then we default (in the same sense as in the proof of The-
orem 5.36). We can assume for simplicity that at most one of the b machines
makes a new conjecture at a time.

Clearly, for all large enough n, the correct DFA will be good, and so we will
eventually output it forever. To count the number of mind-changes we make,
suppose that at some point our current conjecture is some good DFA F . We
may change our mind away from F for one of two reasons:

finding an inconsistency: we’ve discovered that F is inconsistent with the
data (violating item 2 above) and another good G exists, or

finding something better: F is still consistent, but a good G appears such
that L(G) ⊂ L(F).

Let G0, G1, G2, . . . , Gk be the chronological sequence of DFAs we output, ex-
cluding DFAs that equal their immediate predecessors (so Gi+1 6= Gi for all 0 ≤
i < k). So we make exactly k mind-changes for some k. Let V = {G0, . . . , Gk}
be the set of all DFAs that we output, and let m = |V |. We only make con-
jectures that the team machines make, so m ≤ b(c + 1). We build a directed
graph with vertex set V as follows: For each 0 ≤ i < k, we draw a new directed
edge Gi → Gi+1 from Gi to Gi+1 representing the mind-change. We color this
edge red if the mind-change results from finding Gi to be inconsistent, and we
color it blue if the mind-change occurs because Gi+1 is better than Gi. Note

30 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

that L(Gi+1) ⊂ L(Gi) if the edge is blue and L(Gi+1) 6⊆ L(Gi) if the edge is
red. Let R be the set of red edges and B the set of blue edges. The sequence
of conjectures we make then forms a directed path p = G0 → G1 → · · · → Gk
through the directed graph (V,R ∪ B). The path p may visit the same vertex
several times. We’ll say that the red degree of a vertex Gi is the outdegree of
Gi in the directed graph (V,R), and the blue degree of Gi is the indegree of
Gi in the directed graph (V,B). Our total number k of mind-changes is clearly
|R|+ |B|.

If we find an inconsistency with some Gi, then we never output Gi again.
Thus each vertex in V has red degree at most 1. We never find an inconsistency
with the correct team learner’s final (correct) output, and so our last conjecture
Gk has red degree 0. We therefore have |R| ≤ m− 1.

Suppose that we conjecture some Gi, change our mind at least once, then
conjecture Gi again later. We claim that any conjecture Gi′ we make in the
interim must satisfy L(Gi′) ⊆ L(Gi), and the return to Gi follows a red edge:

Claim. Suppose Gi → Gi+1 → · · · → Gj−1 → Gj = Gi is a cycle in p
of length j − i ≥ 2. Then L(Gi′) ⊆ L(Gi) for all i ≤ i′ ≤ j. Furthermore,
Gj−1 → Gj is a red edge.

Proof of the claim. Since the cycle starts and ends with Gi, Gi is known
and consistent with the data throughout the cycle. This means that any Gi′

conjectured in the interim (being good at the time of conjecture) must satisfy
L(Gi′) ⊆ L(Gi) by the ⊆-minimality of L(Gi′). It follows immediately that
the return to Gj = Gi can only come from following a red edge, i.e., find-
ing an inconsistency, for otherwise we would have L(Gj) ⊂ L(Gj−1) (and thus
L(Gj−1) 6⊆ L(Gj) = L(Gi)). End of Proof of Claim a

It follows from the Claim that each vertex in V has blue degree at most 1,
and that our very first conjecture G0 has blue degree 0. Thus |B| ≤ m − 1.
Combining this with the bound on |R| gives us |R|+ |B| ≤ 2m−2 ≤ 2b(c+1)−2
mind-changes. This is enough for the c = 0 case of the theorem.

Now assuming c ≥ 1, we will shave off another mind-change. We are done if
|R| < m − 1, so suppose |R| = m − 1. This can happen only if all the vertices
of V have red degree 1 except Gk—our final conjecture—which has red degree
0. First, suppose G0 6= Gk. Then G0 has red degree 1, and so at some point we
follow a red edge from G0 to some other H. Since L(H) 6⊆ L(G0) because of the
red edge, the Claim implies that we have not conjectured H before (otherwise,
consider the initial cycle G0 → · · · → H → · · · → G0 and apply the Claim). And
so, also by the Claim, H must have blue degree 0, because we first encounter H
through a red edge. So we have two vertices (G0 and H) with blue degree 0, and
thus |B| ≤ m− 2, and we have at most 2m− 3 ≤ 2b(c+ 1)− 3 mind-changes.

Now suppose G0 = Gk. Then it is possible that |R| + |B| = 2m − 2, but
we will see that in this case, m < b(c + 1), and thus our algorithm still uses at
most 2b(c + 1) − 3 mind-changes. Let M be one of the b team machines that
eventually outputs the correct DFA (i.e., Gk) forever. If one of the b machines
other than M outputs Gk, or if M outputs Gk at some point before changing its
mind, then the b machines collectively make strictly fewer than b(c+ 1) distinct
conjectures, and so m < b(c + 1). So we can assume that Gk appears only as

LEARNING SUBSEQ(A) 31

the final conjecture made by M . We claim that V does not contain any other
conjecture made by M except Gk, which shows that m < b(c+ 1). If M makes a
conjecture H 6= Gk, it does so before it ever outputs Gk, and so we know about
H before we output G0 as our very first conjecture. If H is inconsistent with the
data when we first output G0, then we never output H, and hence H /∈ V and
we are done. But otherwise, H has been consistent with the data from the time
we first discovered it, i.e., before we first discover G0. In this case, we would
have output some good DFA (perhaps H) before discovering G0, contradicting
the fact that G0 is our initial conjecture. Thus we never output H, which proves
the claim and the theorem. a

Theorem 5.48 is tight.

Theorem 5.49. For all b > 1, [1, b]SUBSEQ-EX0 6⊆ SUBSEQ-EX2b−3 and
[1, b]SUBSEQ-EXc 6⊆ SUBSEQ-EX2b(c+1)−4 for all c ≥ 1.

Proof. We’ll only prove the case where c ≥ 1. The c = 0 case is easier and
only slightly different.

Let f : N+ → N be any map. For any j ∈ N, define a j-bump of f to be
any nonempty, finite, maximal interval [x, y] ⊆ N+ such that f(t) > j for all
x ≤ t ≤ y. Define the language

Af := {(0t1t)f(t) : t ∈ N+}.
Observe that, if lim supt→∞ f(t) = ` < ∞, then f has finitely many `-bumps
and R` ⊆ SUBSEQ(Af) ⊆∗ R`, where R` = (0∗1∗)` as in Definition 4.8.

Now fix b > 1 and c ≥ 1. We say that f is good if
• f(1) = b and 0 ≤ f(t) ≤ b for all t ≥ 1,
• f has at most c many 0-bumps,
• f has at most c+ 1 many `-bumps, where ` = lim supt f(t), and
• if (∃t)[f(t) = 0] then lim supt f(t) ≤ b− 1.

We define the class

Tb,c := {Af : f is good},
and show that Tb,c ∈ [1, b]SUBSEQ-EXc − SUBSEQ-EX2b(c+1)−4.

To see that Tb,c ∈ [1, b]SUBSEQ-EXc, we define learners Q1, . . . , Qb acting as
follows with Af on their tapes for some good f : Each learner examines its tape
enough to determine f(1), f(2), For 1 ≤ j ≤ b − 1, learner Qj goes on the
assumption that lim supt f(t) = j. Each time it notices a new j-bump [x, y] of
f , it assumes that [x, y] is the last j-bump it will see and so starts outputting a
DFA for

Rj ∪ SUBSEQ(Af ∩ {(0t1t)k : t ≤ y ∧ k ≤ b}).
which captures all the elements of Af −Rj seen so far. Let ` = lim supt f(t). If
1 ≤ ` ≤ b− 1, then Q` will see at most c+ 1 many `-bumps of f and so make at
most c+ 1 conjectures, the last one being correct.

The learner Qb behaves a bit differently: It immediately starts outputting the
DFA for Rb, and does this until it (ever) finds a t with f(t) = 0. It then proceeds
on the assumption that lim supt f(t) = 0 and acts similarly to the other learners.
Again, let ` = lim supt f(t). Since f is good, if there is a t such that f(t) = 0,

32 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

then ` ≤ b−1 and so all possible values of ` are covered by the learners. If ` = 0,
then since there are only c many 0-bumps, Qb will be correct after at most c+ 1
conjectures. If ` = b, then SUBSEQ(Af) = Rb, and since f is good, Qb will never
revise its initial conjecture of Rb. This establishes that Tb,c ∈ [1, b]SUBSEQ-EXc.

To show that Tb,c /∈ SUBSEQ-EX2b(c+1)−4, let M be a learner that correctly
learns SUBSEQ(Af) for every good f . We now describe a particular good f that
forces M to make at least 2b(c+ 1)− 3 mind-changes.

For t = 1, 2, 3, . . . , we first let f(t) = b until M outputs a DFA for Rb. Then we
make f(t) = b − 1 until M outputs a DFA F such that Rb−1 ⊆ L(F) ⊆∗ Rb−1,
at which point we start making f(t) = b again, et cetera. The value of f(t)
alternates between b and b−1, forcing a mind-change each time, until f(t) = b−1
and there are c+ 1 many (b− 1)-bumps of f . Then f starts alternating between
b− 1 and b− 2 in a similar fashion until there are c+ 1 many (b− 2)-bumps, et
cetera. These alternations continue until f(t) = 0 and there are c many 0-bumps
of f included in the interval [1, t]. Thus far, M has needed to make 2c+ 1 many
conjectures for each of the first b − 1 many alternations, plus 2c conjectures
for the 1, 0 alternation, for a total of (b − 1)(2c + 1) + 2c = 2bc + b − 1 many
conjectures.

Now we let f(t) slowly increase from 0 through to b−1, forcing a new conjecture
with each step, until we settle on b − 1. This adds b − 1 more conjectures for
a grand total of 2bc + 2(b − 1) = 2b(c + 1) − 2 conjectures, or 2b(c + 1) − 3
mind-changes. a

5.9. All three modifications. Finally, we consider teams of machines which
are allowed to have anomalies, but have a bounded number of mind-changes.

Theorem 5.50. [a, b]SUBSEQ-EXk
c ⊆ [a, b]SUBSEQ-EXc for all c, k ≥ 0 and

1 ≤ a ≤ b.

Proof. This follows from the proof of Theorem 5.36. We apply the algorithm
there to each of the b machines. a

S6. Rich classes. Are there classes in SUBSEQ-EX containing languages of
arbitrary complexity? Yes, trivially.

Proposition 6.1. There is a C ∈ SUBSEQ-EX0 such that for all A ⊆ N,
there is a B ∈ C with B ≡T A.

Proof. Let

C = {A ⊆ Σ∗ : |A| =∞∧ (∀x, y ∈ Σ∗)[x ∈ A ∧ |x| = |y| → y ∈ A]}.
That is, C is the class of all infinite languages, membership in whom depends
only on a string’s length.

For any A ⊆ N, define

LA =

{
Σ∗ if A is finite,⋃
n∈A Σ=n otherwise.

Clearly, LA ∈ C and A ≡T LA. Furthermore, SUBSEQ(L) = Σ∗ for all L ∈ C,
and so C ∈ SUBSEQ-EX0 witnessed by a learner that always outputs a DFA for
Σ∗. a

LEARNING SUBSEQ(A) 33

In Proposition 4.18 we showed that REG ∈ SUBSEQ-EX. Note that the A ∈
REG are trivial in terms of computability, but the languages in SUBSEQ(REG)
can be rather complex (large obstruction sets, arbitrary �-closed sets). By
contrast, in Proposition 6.1, we show that there can be A ∈ SUBSEQ-EX of
arbitrarily high Turing degree but SUBSEQ(A) is trivial. Can we obtain classes
A ∈ SUBSEQ-EX where A ∈ A has arbitrary Turing degree and SUBSEQ(A)
has arbitrary �-closed sets independently? Of course, if SUBSEQ(A) is finite,
then A must be finite and hence computable. Aside from this obvious restriction,
the answer to the above question is yes.

Definition 6.2. A class C of languages is rich if for every A ⊆ N and �-
closed S ⊆ Σ∗, there is a B ∈ C such that SUBSEQ(B) = S and, provided A is
computable or S is infinite, B ≡T A.

Definition 6.3. Let G be the class of all languages A ⊆ Σ∗ for which there
exists a length c = c(A) ∈ N (necessarily unique) such that

1. A ∩ Σ=c = ∅,
2. A ∩ Σ=n 6= ∅ for all n < c, and
3. os(A) = os(A ∩ Σ≤c+1) ∩ Σ≤c.

We’ll show that G ∈ SUBSEQ-EX0 and that G is rich.

Proposition 6.4. G ∈ SUBSEQ-EX0.

Proof. Consider a learner M acting as follows with a language A on its tape:
1. Let c be least such that A ∩ Σ=c = ∅ (assuming c exists).
2. Compute O = os(A ∩ Σ≤c+1) ∩ Σ≤c. (If A ∈ G, then O = os(A) by defini-

tion.)
3. Use O to compute the least index k such that L(Fk) is �-closed and

os(L(Fk)) = O. (If A ∈ G, then we have L(Fk) = SUBSEQ(A), because
O = os(A) = os(SUBSEQ(A)).)

4. Output k repeatedly forever.
It is evident that M learns every language in G with no mind-changes. a

The next few propositions show that G is big enough.

Definition 6.5. Let S ⊆ Σ∗ be any �-closed set.
1. Say that a string x is S-special if x ∈ S and S ∩ {y ∈ Σ∗ : x � y} is finite.
2. Say that a number n ∈ N is an S-coding length if n > |y| for all S-special
y and n ≥ |z| for all z ∈ os(S).

The next proposition implies that S-coding lengths exist for any S.

Proposition 6.6. Any �-closed S has only finitely many S-special strings.

Proof. This follows from the fact, first proved by Higman [22], that (Σ∗,�) is
a well-quasi-order (wqo). That is, for any infinite sequence x1, x2, . . . of strings,
there is some i < j such that xi � xj . A standard result of well-quasi-order
theory, proved using techniques from Ramsey theory, gives a stronger fact: Every
infinite sequence x1, x2, . . . of strings contains an infinite monotone subsequence

xi1 � xi2 � · · · ,

34 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

where i1 < i2 < · · · .
Suppose that some S has infinitely many S-special strings s1, s2, . . . with all

the si distinct. Then S includes an infinite monotone subsequence si1 ≺ si2 ≺ · · ·
of S-special strings, but then si1 clearly cannot be S-special. Contradiction. a

Corollary 6.7. S-coding lengths exist for any �-closed S.

Definition 6.8. Let G′ be the class of all A ⊆ Σ∗ that have the following
properties (setting S = SUBSEQ(A)):

1. A contains all S-special strings, and
2. there exists a (necessarily unique) S-coding length c for which the following

hold:
(a) A ∩ Σ=c = ∅,
(b) A ∩ Σ=n 6= ∅ for all n < c, and
(c) A ∩ Σ=c+1 = S ∩ Σ=c+1.

Proposition 6.9. {A ⊆ Σ∗ : A is �-closed and finite } ⊆ G′ ⊆ G.

Proof. For the first inclusion, it is easy to check that the criteria of Defini-
tion 6.8 hold for any finite �-closed A if we let c be least such that A ⊆ Σ<c.

For the second inclusion, suppose A ∈ G′, and let c satisfy the conditions of
Definition 6.8 for A. It remains to show that

os(A) = os(A ∩ Σ≤c+1) ∩ Σ≤c.(4)

Set S = SUBSEQ(A). Since c is an S-coding length, we have os(A) = os(S) ⊆
Σ≤c.

Let x be some string in os(A). Then x /∈ S, but y ∈ S for every y ≺ x.
Consider any y ≺ x.
• If y is S-special, then y ∈ A (since A contains all S-special strings), and

since |y| < |x| ≤ c, we have y ∈ A∩Σ≤c+1, and so y ∈ SUBSEQ(A ∩ Σ≤c+1).
• If y is not S-special, then there are arbitrarily long z ∈ S with y � z. In

particular there is a z ∈ S∩Σ=c+1 such that y � z. But then z ∈ A∩Σ=c+1

(because A ∈ G′), which implies y ∈ SUBSEQ(A ∩ Σ≤c+1).
In either case, we have shown that x is not in SUBSEQ(A ∩ Σ≤c+1), but every
y ≺ x is in SUBSEQ(A ∩ Σ≤c+1). This means exactly that x ∈ os(A ∩ Σ≤c+1),
and since |x| ≤ c, we have the forward containment in (4).

Conversely, suppose that |x| ≤ c and x ∈ os(A ∩ Σ≤c+1). Then x /∈ A∩Σ≤c+1

but (∀y ≺ x)(∃z ∈ A∩Σ≤c+1)[y � z]. Thus, x /∈ A but (∀y ≺ x)(∃z ∈ A)[y � z].
That is, x ∈ os(A). a

Theorem 6.10. G′ is rich. In fact, there is a learner M such that M learns
every language in G′ without mind-changes, and for every A and infinite S, M
learns some B ∈ G′ satisfying Definition 6.2 while also writing the characteristic
function of A on a separate one-way write-only output tape.

Proof. Given A and S as in Definition 6.2, we define

L(A,S) := S ∩

(
Σ<c ∪

⋃
n∈N

Σ=c+2n+1 ∪
⋃
n∈A

Σ=c+2n+2

)
,(5)

where c is the least S-coding length.

LEARNING SUBSEQ(A) 35

Set B = L(A,S), and let c be the least S-coding length.
We must first show that S = SUBSEQ(B) and that B ∈ G′. We have two

cases: S is finite or S is infinite. First suppose that S is finite. Then every string
in S is S-special, and so by the definition of S-coding length, we have S ⊆ Σ<c.
Thus we clearly have B = S = SUBSEQ(B) ∈ G′ by Proposition 6.9.

Now suppose S is infinite. Since B ⊆ S and S is �-closed, to get S =
SUBSEQ(B) it suffices to show that S ⊆ SUBSEQ(B). Let x be any string in
S.
• If x is S-special, then x ∈ Σ<c, by the definition of S-coding length. It

follows that x ∈ B, and so x ∈ SUBSEQ(B).
• If x is not S-special, then there is a string z ∈ S such that x � z and
|z| ≥ c + 2|x| + 1. By removing letters one at a time from z to obtain x,
we see that at some point there must be a string y such that x � y � z
and |y| = c+ 2|x|+ 1. Thus y ∈ S, and, owing to its length, y ∈ B as well.
Therefore we have x ∈ SUBSEQ(B).

Now that we know that S = SUBSEQ(B), it is straightforward to verify that
B ∈ G′. We showed above that B contains all S-special strings. The value c
clearly satisfies the rest of Definition 6.8. For example, because S has strings of
every length, we have B ∩ Σ=n = S ∩ Σ=n 6= ∅ for all n < c.

It is immediate by the definition that B ≤T A, because S is regular. We now
describe the learner M , which will witness that A ≤T B as well, provided S is
infinite. M behaves exactly as in the proof of Proposition 6.4, except that for
n = 0, 1, 2, . . . in order, M appends a 1 to the string on its special output tape if
B∩Σ=c+2n+2 6= ∅, and it appends a 0 otherwise. If S is infinite, then S contains
strings of every length, and so M will append a 1 for n if and only if n ∈ A. (If
S is finite, then M will write all zeros.) a

Corollary 6.11. G is rich.

S7. Open questions. We have far from fully explored the different ways
we can combine teams, mind-changes, and anomalies. For example, for which
a, b, c, d, e, f, g is [a, b]SUBSEQ-EXd

c ⊆ [e, f]SUBSEQ-EXh
g? This problem has

been difficult in the standard case of EX, though there have been some very
interesting results [14, 8]. The setting of SUBSEQ-EX may be easier since all
the machines that are output are total and their languages have easily discernible
properties. Of particular interest is the four-parameter problem of mind-changes
versus teams: For which b, c,m, n is [1,m]SUBSEQ-EXb ⊆ [1, n]SUBSEQ-EXc?
This is interesting in that our current partial results do not completely match
those in [32] for EX.

We also have not studied in depth different ways of combining variants of the
alternate ways of learning SUBSEQ-EX given in Section 5.2. For example, BC
learning of co-c.e. indices for SUBSEQ(A) is equivalent to SUBSEQ-EX (Propo-
sition 5.9), as is BC learning of DFAs for SUBSEQ(A) with finite anomalies
(Proposition 5.19), but is the combination of the two—BC learning of co-c.e.
indices for SUBSEQ(A) with finite anomalies—equivalent to SUBSEQ-EX? We
suspect not. What about combining mind-changes or teams with learning other
devices or learning from one-sided data?

36 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

One could also combine the two notions of queries with SUBSEQ-EX and its
variants. The two notions are allowing queries about the set [19, 17, 15] and
allowing queries to an undecidable set [12, 26].

Acknowledgments. The authors would like to thank Walid Gomma and
Semmy Purewal for proofreading and helpful discussions. We also thank two
anonymous referees for many helpful suggestions, including Observation 5.14.
Finally, we thank Sanjay Jain for informing us of Theorem A.1 and providing a
proof, and we thank Mahe Velauthapillai for informing us of the improvements
in [25] to Theorem A.1.

Appendix A. Mind-changes and teams for EX. The following result is
not in the literature. It is the analogue to Lemma 5.43 for EX, which we include
for completeness. It was proven by Sanjay Jain [23], whose proof sketch is below.

Theorem A.1 (Jain [23]). For all a, b, and c,

[a, b]EXc ⊆ [1, d]EXb(c+1)−1,

where d = bb/ac.

Proof sketch. Let C ∈ [a, b]EXc via machines M1, . . . ,Mb. We construct
N1, . . . , Nd to show that C ∈ [1, d]EXb(c+1)−1. Assume without loss of generality
that the programs output by different Mi are always distinct (this can be ensured
by padding).

Let ϕ0, ϕ1, ϕ2, . . . be a standard listing of all partial computable functions. If
one of the Mi or Ni outputs j, then this means that it thinks the function is ϕj .

Assume the input to the d machines is the function f , so they are getting
f(0), f(1), We feed them to the M1, . . . ,Mb, observe the output, and care-
fully output some of the results.

We say that a program p output by some machine Mi is spoiled if either it is
seen to be convergently wrong, or there is a later mind change by Mi.

Initially, all of the N1, . . . , Nd are available, and none has output a program.
We dovetail the following two steps forever:

1. If at any stage there is a set S of a unspoiled programs which have not
been assigned to a machine from N1, . . . , Nd, then assign S to an available
machine from N1, . . . , Nd, which then becomes unavailable (we can argue
that there will be such an available machine, as there are at most b unspoiled
programs at any stage). The program output by this machine will be for
the function which, on input x, dovetails all ϕj(x) for j ∈ S and outputs
the first answer that converges.

2. If a program from the set of programs S assigned to Ni gets spoiled, then
Ni becomes available, and all the unspoiled programs in the set S assigned
to Ni become unassigned.

The result easily follows since the following two facts hold:
1. Final programs output by Ni’s do not make a convergent error, and at least

one of the Ni’s has a correct program in its set of assigned programs.
2. Each mind change of any Ni corresponds to a corresponding spoiling of

some program output by some machine in M1, . . . ,Mb. Thus, in total

LEARNING SUBSEQ(A) 37

there are at most b(c + 1) − 1 mind changes. (Actually there are much
fewer, as we start with at least a programs being assigned, and we could
also do assignments so that not everything comes to the same Ni.)

a
As was suggested in its proof, this inclusion is not tight. Jain, Sharma, &

Velauthapillai [25] have obtained (among other things) [3, 6]EX0 = [1, 2]EX0,
which is better than Theorem A.1 with a = 3, b = 6, and c = 0.

REFERENCES

[1] A. Ambainis, S. Jain, and A. Sharma, Ordinal mind change complexity of language

identification, Theoretical Computer Science, vol. 220 (1999), no. 2, pp. 323–343.

[2] D. Angluin, Inductive inference of formal languages from positive data, Information
and Control, vol. 45 (1980), no. 2, pp. 117–135.

[3] G. Baliga and J. Case, Learning with higher order additional information, Proceedings
of the 5th international workshop on algorithmic learning theory, Springer-Verlag, 1994,
pp. 64–75.

[4] J. M. Barzdin, Two theorems on the limiting synthesis of functions, Theory of algo-
rithms and programs (J. Barzdin, editor), Latvian State University, Riga, U.S.S.R., 1974,
pp. 82–88.

[5] L. Blum and M. Blum, Towards a mathematical theory of inductive inference, Infor-
mation and Control, vol. 28 (1975), pp. 125–155.

[6] J. Case, S. Jain, and S. N. Manguelle, Refinements of inductive inference by Poppe-

rian and reliable machines, Kybernetika, vol. 30–1 (1994), pp. 23–52.
[7] J. Case and C. H. Smith, Comparison of identification criteria for machine inductive

inference, Theoretical Computer Science, vol. 25 (1983), pp. 193–220.

[8] R. Daley, B. Kalyanasundaram, and M. Velauthapillai, Breaking the probability
1/2 barrier in FIN-type learning, Journal of Computer and System Sciences, vol. 50 (1995),

pp. 574–599.

[9] Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (editors), Handbook
of recursive mathematics, Elsevier North-Holland, Inc., New York, 1998, Comes in two

volumes. Volume 1 is Recursive Model Theory, Volume 2 is Recursive Algebra, Analysis, and

Combinatorics.
[10] S. Fenner and W. Gasarch, The complexity of learning SUBSEQ(A), Proceedings

of the 17th international conference on algorithmic learning theory, Lecture Notes in

Artificial Intelligence, vol. 4264, Springer-Verlag, 2006, pp. 109–123.
[11] S. Fenner, W. Gasarch, and B. Postow, The complexity of finding SUBSEQ(A),

Theory of Computing Systems, (2008), to appear.
[12] L. Fortnow, S. Jain, W. Gasarch, E. Kinber, M. Kummer, S. Kurtz,

M. Pleszkoch, T. Slaman, F. Stephan, and R. Solovay, Extremes in the degrees of in-

ferability, Annals of Pure and Applied Logic, vol. 66 (1994), no. 3, pp. 231–276.
[13] R. Freivalds and C. H. Smith, On the role of procrastination for machine learning,

Information and Computation, vol. 107 (1993), no. 2, pp. 237–271.

[14] R. Freivalds, C. H. Smith, and M. Velauthapillai, Trade-off among parameters
affecting inductive inference, Information and Computation, vol. 82 (1989), no. 3, pp. 323–

349.
[15] W. Gasarch, E. Kinber, M. Pleszkoch, C. H. Smith, and T. Zeugmann, Learning

via queries, teams, and anomalies, Fundamenta Informaticae, vol. 23 (1995), pp. 67–89,
Prior version in Computational Learning Theory (COLT), 1990.

[16] W. Gasarch and A. Lee, Inferring answers to queries, Proceedings of the 10th
annual acm conference on computational learning theory, 1997, Journal version to appear

in JCSS in 2008, pp. 275–284.
[17] W. Gasarch, M. Pleszkoch, and R. Solovay, Learning via queries to [+, <], this

Journal, vol. 57 (1992), no. 1, pp. 53–81.

38 STEPHEN FENNER, WILLIAM GASARCH, AND BRIAN POSTOW

[18] W. Gasarch, M. Pleszkoch, F. Stephan, and M. Velauthapillai, Classification
using information, Annals of Mathematics and Artificial Intelligence, vol. 23 (1998), pp.

147–168, Earlier version in Proceedings of the 5th International Workshop on Algorithmic

Learning Theory, 1994, 290–300.
[19] W. Gasarch and C. H. Smith, Learning via queries, Journal of the ACM, vol. 39

(1992), no. 3, pp. 649–675, Prior version in Proceedings of the 29th IEEE Symposium on
Foundations of Computer Science (FOCS), 1988.

[20] E. M. Gold, Language identification in the limit, Information and Control, vol. 10

(1967), no. 10, pp. 447–474.
[21] J. Hartmanis, Context-free languages and Turing machine computations, Mathemati-

cal aspects of computer science (J. T. Schwartz, editor), Proceedings of Symposia in Applied

Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1967, pp. 42–51.
[22] A. G. Higman, Ordering by divisibility in abstract algebras, Proceedings of the Lon-

don Mathematical Society, vol. s3–2 (1952), no. 1, pp. 326–336.

[23] S. Jain, 2008, personal communication.
[24] S. Jain and A. Sharma, Computational limits on team identification of languages,

Information and Computation, vol. 130 (1996), no. 1, pp. 19–60.

[25] S. Jain, A. Sharma, and M. Velauthapillai, Finite identification of functions by
teams with success ratio 1/2 and above, Information and Computation, vol. 121 (1995),

no. 2, pp. 201–213.
[26] M. Kummer and F. Stephan, On the structure of the degrees of inferability, Journal

of Computer and System Sciences, vol. 52 (1996), no. 2, pp. 214–238, Prior version in Sixth

Annual Conference on Computational Learning Theory (COLT), 1993.
[27] G. Metakides and A. Nerode, Effective content of field theory, Annals of Mathe-

matical Logic, vol. 17 (1979), pp. 289–320.

[28] L. Pitt, Probabilistic inductive inference, Journal of the ACM, vol. 36 (1989), no. 2,
pp. 383–433.

[29] L. Pitt and C. H. Smith, Probability and plurality for aggregations of learning ma-

chines, Information and Computation, vol. 77 (1988), pp. 77–92.
[30] H. Rogers, Theory of recursive functions and effective computability, McGraw-

Hill, 1967, Reprinted by MIT Press, 1987.

[31] G. E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-
Verlag, Berlin, 1990.

[32] C. H. Smith, The power of pluralism for automatic program synthesis, Journal of the
ACM, vol. 29 (1982), pp. 1144–1165, Prior version in Proceedings of the 22nd IEEE Symposium

on Foundations of Computer Science (FOCS), 1981.

[33] R. I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical
Logic, Springer-Verlag, Berlin, 1987.

[34] J. van Leeuwen, Effective constructions in well-partially-ordered free monoids, Dis-
crete Mathematics, vol. 21 (1978), pp. 237–252.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIVERSITY OF SOUTH CAROLINA

COLUMBIA, SC 29208, USA

E-mail : fenner@cse.sc.edu

DEPARTMENT OF COMPUTER SCIENCE AND INSTITUTE FOR ADVANCED COMPUTER

STUDIES

UNIVERSITY OF MARYLAND AT COLLEGE PARK

COLLEGE PARK, MD 20742, USA

E-mail : gasarch@cs.umd.edu

ACORDEX IMAGING SYSTEMS

37 WALKER ROAD

NORTH ANDOVER, MA 01845, USA

E-mail : postow@acm.org

