
The Complexity of Learning SUBSEQ(A)

Stephen Fenner1 and William Gasarch2

1 University of South Carolina? ? ?

2 University of Maryland at College Park†

Abstract. Higman showed that if A is any language then SUBSEQ(A)
is regular, where SUBSEQ(A) is the language of all subsequences of
strings in A. We consider the following inductive inference problem: given
A(ε), A(0), A(1), A(00), . . . learn, in the limit, a DFA for SUBSEQ(A).
We consider this model of learning and the variants of it that are usually
studied in inductive inference: anomalies, mindchanges, and teams.

1 Introduction

In Inductive Inference [2, 4, 15] the basic model of learning is as follows.

Definition 1.1. A class A of decidable sets of strings1 is in EX if there is a
Turing machine M (the learner) such that if M is given A(ε), A(0), A(1), A(00),
A(01), A(10), A(11), A(000), . . . , where A ∈ A, then M will output e1, e2, e3, . . .
such that lims es = e and e is an index for a Turing machine that decides A.

Note that the set A must be computable and the learner learns a Turing
machine index for it. There are variants [1, 11, 13] where the set need not be
computable and the learner learns something about the set (e.g., ‘is it infinite?’,
or some other question).

Our work is based on the following remarkable theorem of Higman’s [16].

Definition 1.2. Let x, y ∈ Σ∗. We say that x is a subsequence of y if x =
x1 · · ·xn and y ∈ Σ∗x1Σ

∗x2 · · ·xn−1Σ
∗xnΣ∗. We denote this by x � y.

Notation 1.3. If A is a set of strings, then SUBSEQ(A) is the set of subse-
quences of strings in A.

Theorem 1.4 (Higman [16]). If A is any language over Σ∗, then SUBSEQ(A)
is regular. In fact, for any language A there is a unique minimum finite set S of
strings such that

SUBSEQ(A) = {x ∈ Σ∗ : (∀z ∈ S)[z 6� x]}. (1)
? ? ? Department of Computer Science and Engineering, Columbia, SC 29208.

fenner@cse.sc.edu. Partially supported by NSF grant CCF-05-15269.
† Department of Computer Science and Institute for Advanced Computer Studies,

College Park, MD 20742. gasarch@cs.umd.edu. Partially supported by NSF grant
CCR-01-05413.

1 The basic model is usually described in terms of learning computable functions;
however, virtually all of the results hold in the setting of decidable sets.



Note that A is any language whatsoever. Hence we can investigate the fol-
lowing learning problem.

Notation 1.5. We let s1, s2, s3, . . . be the standard length-first lexicographic
enumeration of Σ∗.

Definition 1.6. A class A of sets of strings in Σ∗ is in SUBSEQ-EX if there is
a Turing machine M (the learner) such that if M is given A(s1), A(s2), A(s3), . . .
where A ∈ A, then M will output e1, e2, e3, . . . such that lims es = e and e is an
index for a DFA that recognizes SUBSEQ(A). It is easy to see that we can take
e to be the least index of the minimum state DFA that recognizes SUBSEQ(A).
Formally, we will refer to A(s1)A(s2)A(s3) · · · being on an auxilary tape.

This problem is part of a general theme of research: given a language A,
rather than try to learn the language (which may be undecidable) learn some
aspect of it. In this case we learn SUBSEQ(A). Note that we learn SUBSEQ(A)
in a very strong way in that we have a DFA for it.

We look at anomalies, mind-changes, and teams (standard Inductive Infer-
ence variants) in this context. We prove the following results.

1. A ∈ SUBSEQ-EXa means that the final DFA may be wrong on ≤ a strings.
A ∈ SUBSEQ-EX∗ mean that the final DFA may be wrong on a finite
number of strings. The anomaly hierarchy collapses: that is SUBSEQ-EX =
SUBSEQ-EX∗. This constrasts sharply with the case of EXa.

2. Let A ∈ SUBSEQ-EXn mean that the Turing machine makes at most n + 1
conjectures (and hence changes its mind at most n times). The mind-change
hieararchy separates: that is, for all n, SUBSEQ-EXn ⊂ SUBSEQ-EXn+1.

3. The mind-change hierarchy also separates if you allow a transfinite number
of mind-changes, up to ωCK

1 .
4. Let A ∈ [a, b]SUBSEQ-EX mean that there are b Turing machines trying to

learn the DFA, and we demand that at least a of them succeed (it may be a
different a machines for different A ∈ A).
(a) If 1 ≤ a ≤ b and q = bb/ac, then [a, b]SUBSEQ-EX = [1, q]SUBSEQ-EX.

Hence we need only look at team learning of the form [1, n]SUBSEQ-EX.
(b) The team hiearchy separates. That is, for all b, [1, b]SUBSEQ-EX ⊂

[1, b + 1]SUBSEQ-EX.

Note 1.7. PEX [4, 3] is like EX except that the conjectures must be for total
Turing machines. The class SUBSEQ-EX is similar in that all the machines are
total (in fact, DFAs) but different in that we learn the subsequence language,
and the input need not be computable. The anomaly hierarchy for SUBSEQ-EX
collapses just as it does for PEX; however the team hiearchy for SUBSEQ-EX
is proper, unlike for PEX.

2 Definitions

2.1 Definitions about Subsequences

We let N = {0, 1, 2, . . .}.



Notation 2.1. Given a language A, we call the unique set S satisfying (1) the
obstruction set of A and denote it by os(A). In this case, we also say that S
obstructs A.

The following facts are obvious:

– The � relation is computable.
– For every string x there are finitely many y � x, and given x one can compute

a canonical index for the set of all such y.
– By various facts from automata theory, including the Myhill-Nerode mini-

mization theorem: given a DFA, NFA, or regular expression for a language
A, one can effectively compute the unique minimum state DFA recognizing
A. (The minimum state DFA is given in some canonical form.)

– Given DFAs F and G, one can effectively compute DFAs for L(F ), L(F ) ∪
L(G), L(F )∩L(G), L(F )−L(G), and L(F )4L(G) (symmetric difference).
One can also effectively determine whether or not L(F ) = ∅ and whether or
not L(F ) is finite.

– For any language A, the set SUBSEQ(A) is completely determined by os(A),
and in fact, os(A) = os(SUBSEQ(A)).

– The strings in the obstruction set of a language must be pairwise�-incompar-
able (i.e., the obstruction set is an �-antichain). Conversely, any �-antichain
S obstructs some language. For any S ⊆ Σ∗ define

obsby(S) = {x ∈ Σ∗ : (∀z ∈ S)[z 6� x]}.

The term obsby(S) is an abbreviation for ‘obstructed by S’. Note that
os(obsby(S)) ⊆ S, and equality holds iff S is an �-antichain.

Definition 2.2. We say that a language A ⊆ Σ∗ is �-closed if SUBSEQ(A) =
A.

Observation 2.3. A language A is �-closed if and only if there exists a lan-
guage B such that A = SUBSEQ(B).

Observation 2.4. Any infinite �-closed set contains strings of every length.

The next proposition implies that finding os(A) is computationally equivalent
to finding a DFA for SUBSEQ(A). We omit the easy proof.

Proposition 2.5. The following tasks are computable:

1. Given a DFA F , find a DFA G such that L(G) = SUBSEQ(L(F )).
2. Given the canonical index of a finite language D ⊆ Σ∗, compute a regular

expression for (and hence the minimum state DFA recognizing) the language
obsby(D) = {x ∈ Σ∗ : (∀z ∈ D)[z 6� x]}.

3. Given a DFA F , decide whether or not L(F ) is �-closed.
4. Given a DFA F , compute the canonical index of os(L(F )).



2.2 Classes of Languages

We define classes of languages via the types of machines that recognize them.

Notation 2.6.

1. D1, D2, . . . is a standard enumeration of finite languages. (e is the canonical
index of De.)

2. F1, F2, . . . is a standard enumeration of minimized DFAs, presented in some
canonical form, so that for all i and j, if L(Fi) = L(Fj) then Fi = Fj . (We
might have i 6= j and Fi = Fj , however.) Let REG = {L(F1), L(F2), . . .}.

3. P1, P2, . . . is a standard enumeration of {0, 1}-valued polynomial-time Turing
machines. Let P = {L(P1), L(P2), . . .}.

4. M1,M2, . . . is a standard enumeration of Turing machines. We let CE =
{L(M1), L(M2), . . .}, where L(Mi) is the set of all x such that Mi(x) halts
with output 1.

5. We let DEC = {L(N) : N is a total Turing machine}.

For the notation that relates to computability theory, our reference is [20].
For separation results, we will often construct tally sets, i.e., subsets of 0∗.

Notation 2.7.

1. The empty string is denoted by ε.
2. For m ∈ N, we define Jm = {0i : i < m}.
3. If A ⊆ 0∗ is finite, we let m(A) denote the least m such that A ⊆ Jm, and

we observe that SUBSEQ(A) = Jm(A).

If A,B ⊆ 0∗ and A is finite, we define a “shifted join” of A and B as follows:

A∪+B = {xx0 : x ∈ A} ∪ {02m(A)xx : x ∈ B}
= {02n+1 : 0n ∈ A} ∪ {02(m(A)+n) : 0n ∈ B}.

In A∪+B, all the elements from A have odd length and are shorter than the
elements from B, which have even length. We define inverses to the ∪+ operator:
For every m ≥ 0 and language A, let

ξ(A) := {0n : n ≥ 0 ∧ 02n+1 ∈ A},
π(m;A) := {0n : n ≥ 0 ∧ 02(m+n) ∈ A}.

If A,B ⊆ 0∗ and A is finite, then A = ξ(A∪+B) and B = π(m(A);A∪+B).

2.3 Variants on SUBSEQ-EX

There are several variations on the definition of SUBSEQ-EX.

Definition 2.8. Let e1, e2, . . . be the output sequence of some learner M on
some language A. Let n > 1. We say that M changes its mind at time n if
en 6= en−1. For fixed n ≥ 0, let SUBSEQ-EXn be the same as SUBSEQ-EX
except that we restrict the learner to change its mind no more than n times, for
any language A ∈ C.



Obviously,

SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ SUBSEQ-EX2 ⊆ · · · ⊆ SUBSEQ-EX. (2)

We will extend this definition into the transfinite later.

Definition 2.9. Let a ∈ N, let M be a TM, and let A ⊆ Σ∗ be any language.
The machine M learns SUBSEQ(A) with at most a anomalies (respectively,
with finitely many anomalies) if it behaves as follows: when you feed A(s1),
A(s2), A(s3), . . . and M outputs e1, e2, e3, . . . , then e = limn→∞ en exists, and
|L(Fe)4SUBSEQ(A)| ≤ a (respectively, |L(Fe)4SUBSEQ(A)| is finite). For
a ∈ N let SUBSEQ-EXa be the same as SUBSEQ-EX except that we allow the
learner to learn SUBSEQ(A) with at most a anomalies. Let SUBSEQ-EX∗ be the
same as SUBSEQ-EX except that we allow the learner to learn SUBSEQ(A) with
finitely many anomalies. Note that in the latter case, the number of anomalies
may vary with the language being learned.

Clearly,

SUBSEQ-EX = SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ · · · ⊆ SUBSEQ-EX∗. (3)

Definition 2.10. For integers 1 ≤ a ≤ b, we say that a class C of languages is
in [a, b]SUBSEQ-EX iff there are learners M1, . . . ,Mb such that for any A ∈ C,
at least a of the learners learn SUBSEQ(A).

Evidently, if a ≥ c and b ≤ d, then [a, b]SUBSEQ-EX ⊆ [c, d]SUBSEQ-EX.

Definition 2.11. If X ⊆ N, then SUBSEQ-EXX is the same as SUBSEQ-EX
except that we allow the learner to be an oracle Turing machine using oracle X.

We may combine these variants in a large variety of ways.

3 Main Results

3.1 Standard Learning

It was essentially shown in [6] that DEC /∈ SUBSEQ-EX. The proof there can be
tweaked to show the stronger result that P /∈ SUBSEQ-EX. We omit the proof;
however, it will appear in the full version.

Theorem 3.1 ([6]). There is a computable function g such that for all e, setting
A = L(Pg(e)), we have A ⊆ 0∗ and SUBSEQ(A) is not learned by Me.

Corollary 3.2. P /∈ SUBSEQ-EX. In fact, P ∩ P(0∗) /∈ SUBSEQ-EX.

We now show some classes that are in SUBSEQ-EX.

Definition 3.3. Let F = {A ⊆ Σ∗ : A is finite}.



Proposition 3.4. F ∈ SUBSEQ-EX.

Proof. Let M be a learner that, when A ∈ F is on the tape, outputs k1, k2, . . . ,
where each ki is the least index of a DFA recognizing SUBSEQ(A ∩Σ≤i).
Clearly, M learns SUBSEQ(A). ut

More generally, we have

Proposition 3.5. REG ∈ SUBSEQ-EX.

Proof. When A is on the tape, n = 0, 1, 2, . . . , the learner M

1. finds the least k such that A ∩Σ<n = L(Fk) ∩Σ<n, then
2. outputs the least ` such that L(F`) = SUBSEQ(L(Fk)).

If A is regular, then clearly M will converge to the least k such that A = L(Fk),
whence M will converge to the least ` such that L(F`) = SUBSEQ(A). ut

3.2 Anomalies

The next theorem shows that the hierarchy of (3) collapses completely.

Theorem 3.6. SUBSEQ-EX = SUBSEQ-EX∗. In fact, there is a computable
h such that for all e and languages A, if Me learns SUBSEQ(A) with finitely
many anomalies, then Mh(e) learns SUBSEQ(A) (with zero anomalies).

Proof. Given e, let M = Mh(e) be the following learner:
When a language A is on the tape:

1. Run Me with A. Wait for Me to output something.
2. Whenever Me outputs some index k do the following:

(a) Let n be the number of outputs of Me thus far.
(b) Build a finite set E of anomalies as follows:

i. Initially, E := ∅.
ii. For each w ∈ Σ<n, define S(w) = {z ∈ Σ∗ : w � z}.

– If Fk rejects w but S(w) ∩Σ≤n ∩A 6= ∅, then put w into E. (w
is a “false negative.”)

– If Fk accepts w but S(w)∩Σ≤n∩A = ∅ and S(w)∩Σ=n∩L(Fk) =
∅, then put w into E. (w is a “potentially false positive.”)

(c) Output the least index for a DFA G such that L(G) = L(Fk)4E.

If Me learns SUBSEQ(A) with finite anomalies, then there is a DFA F such
that for all large enough n the nth output of Me is an index for F , and more-
over, SUBSEQ(A)4L(F ) ⊆ Σ<n (all anomalies are of length less than n). We
claim that for all large enough n the anomaly set E built in step 2b is exactly
SUBSEQ(A)4L(F ), and hence SUBSEQ(A) = L(G), where G is output by M
in step 2c. The theorem follows once we prove the claim.

Let n be large enough as above, and let w be any string in Σ<n. There are
four cases to consider:



w /∈ SUBSEQ(A) ∪ L(F ). Then F (w) rejects and S(w) ∩ A = ∅, so we don’t
put w into E. (w is a “true negative.”)

w ∈ SUBSEQ(A) − L(F ). Then F (w) rejects, but there is some z ∈ S(w)∩A.
So as long as n ≥ |z|, i.e., z ∈ Σ≤n, we will put w into E.

w ∈ L(F ) − SUBSEQ(A). Then F (w) accepts, and S(w) ∩ A = ∅. Further-
more, S(w) ∩ Σ=n ∩ L(F ) = ∅ because there are no anomalies of length n.
Thus we put w into E.

w ∈ SUBSEQ(A) ∩ L(F ). Then F (w) accepts. Since w ∈ SUBSEQ(A), there
is a z ∈ S(w) ∩ A. If |z| ≤ n, then S(w) ∩ Σ≤n ∩ A 6= ∅, and we would not
put w into E. If |z| > n, then there is some y ∈ Σ=n with w � y � z. Thus
we have y ∈ SUBSEQ(A), and since there are no anomalies of length n, we
also have y ∈ L(F ). Therefore, y ∈ S(w)∩Σ=n ∩L(F ) 6= ∅, and so we don’t
put w into E.

Thus E = (SUBSEQ(A)4L(F )) ∩ Σ<n = SUBSEQ(A)4L(F ) for all large
enough n. The claim follows. ut

3.3 Mind Changes

The next theorems show that the hierarchy (2) separates.

Definition 3.7. For every i > 0, define the class

Ci = {A ⊆ Σ∗ : |A| ≤ i}.

Theorem 3.8. Ci ∈ SUBSEQ-EXi for all i ∈ N. In fact, there is a single learner
M that for each i learns SUBSEQ(A) for every A ∈ Ci with at most i mind-
changes.

Proof. Let M be as in the proof of Proposition 3.4. Clearly, M learns any A ∈ Ci

with at most |A| mind-changes. ut

Theorem 3.9. For each i > 0, Ci ∩ P(0∗) /∈ SUBSEQ-EXi−1. In fact, there
is a computable function ` such that, for each e and i > 0, M`(e,i) is total and
decides a unary language Ae,i = L(M`(e,i)) ⊆ 0∗ such that |Ae,i| ≤ i and Me

does not learn SUBSEQ(Ae,i) with fewer than i mind-changes.

Proof. Given e and i > 0 we use the Recursion Theorem with Parameters to con-
struct a machine N = M`(e,i) that implements the following recursive algorithm
to compute Ae,i:

Given input x,

1. If x /∈ 0∗, then reject. (This ensures that Ae,i ⊆ 0∗.) Otherwise, let x = 0n.
2. Recursively compute Rn = Ae,i ∩ Jn.
3. Simulate Me for n − 1 steps with Rn on the tape. (Note that Me does not

have time to read any of the tape corresponding to inputs 0n′ for n′ ≥ n.)
If Me does not output anything within this time, then reject.



4. Let k be the most recent output of Me in the previous step, and let c be the
number of mind-changes that Me has made up to this point. If c < i and
L(Fk) = SUBSEQ(Rn), then accept; else reject.

In step 3 of the algorithm, Me behaves the same with Rn on its tape as it
would with Ae,i on its tape, given the limit on its running time.

Let Ae,i = {0z0 , 0z1 , . . .}, where z0 < z1 < · · · are natural numbers.

Claim 3.10. For 0 ≤ j, if zj exists, then Me (with Ae,i on its tape) must output
a DFA for SUBSEQ(Rzj

) within zj − 1 steps, having changed its mind at least
j times when this occurs.

Proof (of the claim). We proceed by induction on j: For j = 0, the string 0z0

is accepted by N only if within z0 − 1 steps Me outputs a k where L(Fk) =
∅ = SUBSEQ(Rz0); no mind-changes are required. Now assume that j ≥ 0 and
zj+1 exists, and also (for the inductive hypothesis) that within zj − 1 steps
Me outputs a DFA for SUBSEQ(Rzj

) after at least j mind-changes. We have
Rzj

⊆ Jzj
but 0zj ∈ Rzj+1 , and so SUBSEQ(Rzj

) 6= SUBSEQ(Rzj+1). Since N
accepts 0zj+1 , it must be because Me has just output a DFA for SUBSEQ(Rzj+1)
within zj+1 − 1 steps, thus having changed its mind at least once since the zjth
step of its computation, making at least j + 1 mind-changes in all. So the claim
holds for j + 1. This ends the proof of the claim. ut

First we show that Ae,i ∈ Ci. Indeed, by Claim 3.10, zi cannot exist, because
the algorithm would explicitly reject such a string 0zi if Me made at least i
mind-changes in the first zi − 1 steps. Thus we have |Ae,i| ≤ i, and so Ae,i ∈ Ci.

Next we show that Me cannot learn Ae,i with fewer than i mind-changes.
Suppose that with Ae,i on its tape, Me makes fewer than i mind-changes. Sup-
pose also that there is a DFA F such that cofinitely many of Me’s outputs are
indices for F . Let t be least such that t ≥ m(Ae,i) and Me outputs an index for
F within t− 1 steps. Then L(F ) 6= SUBSEQ(Ae,i), for otherwise the algorithm
would accept 0t and so 0t ∈ Ae,i, contradicting the choice of t. It follows that
Me cannot learn Ae,i with fewer than i mind-changes. ut

Transfinite Mind Changes and Procrastination. We extend the results
of this section into the transfinite. Freivalds & Smith defined EXα for all con-
structive ordinals α [8]. When α < ω, the definition is the same as the finite
mind-change case above. If α ≥ ω, then the learner may revise its bound on
the number of mind changes during the computation. The learner may be able
to revise more than once, or even compute a bound on the number of future
revisions, and this bound itself could be revised, etc., depending on the size of α.
We define SUBSEQ-EXα for all constructive α, then show that this transfinite
hierarchy separates. Our definition is slightly different from, but equivalent to,
the definition in [8]. For general background on constructive ordinals, see [18,
19].



Definition 3.11. A procrastinating learner is a learner M equipped with an
additional ordinal tape, whose contents is always a constructive ordinal. Given a
language on its input tape, M runs forever, producing infinitely many outputs as
usual, except that just before M changes its mind, if α is currently on its ordinal
tape, M is required to compute some ordinal β < α and replace the contents of
the ordinal tape with β before proceeding to change its mind. (So if α = 0, no
mind-change may take place.) M may alter its ordinal tape at any other time,
but the only allowed change is replacement with a lesser ordinal.

Thus a procrastinating learner must decrease its ordinal tape before each
mind-change. We abuse notation and let M1,M2, . . . be a standard enumeration
of procrastinating learners. Such an effective enumeration can be shown to exist.

Definition 3.12. Let M be a procrastinating learner, α a constructive ordinal,
and A a language. We say that M learns SUBSEQ(A) with α mind-changes if
M learns SUBSEQ(A) with α initially on its ordinal tape.

If C is a class of languages, we say that C ∈ SUBSEQ-EXα if there is a
procrastinating learner that learns every language in C with α mind-changes.

The following is straightfoward and given without proof.

Proposition 3.13. If α < ω, then SUBSEQ-EXα is equal to the corresponding
class in Definition 2.8.

Proposition 3.14. For all α < β < ωCK
1 ,

SUBSEQ-EXα ⊆ SUBSEQ-EXβ ⊆ SUBSEQ-EX.

Proof. The first containment follows from the fact that any procrastinating
learner allowed α mind-changes can be simulated by a procrastinating learner,
allowed β mind-changes, that first decreases its ordinal tape from β to α before
the simulation. (α is hard-coded into the simulator.)

The second containment is trivial; any procrastinating learner is also a regular
learner. ut

In [8], Freivalds and Smith and showed that the hierarchy separates using
classes of languages constructed by diagonalization. We take a different approach
and define “natural” (using the term loosely) classes of languages that separate
the SUBSEQ-EXα hierarchy.

Definition 3.15. For every α < ωCK
1 , we define the class Fα inductively as

follows: Let n and λ uniquely satisfy n < ω, λ is not a successor, and λ+n = α.

– If λ = 0, let

Fα = Fn = {A∪+ ∅ : (A ⊆ 0∗) ∧ (|A| ≤ n)}.

– If λ > 0, then λ = 3 · 5e for some e. Let

Fα = {A∪+B : (A,B ⊆ 0∗) ∧ (|A| ≤ n + 1) ∧ (B ∈ FMe(m(A)))}.



It is evident by induction on α that Fα consists only of finite unary languages,
and that ∅ ∈ Fα. Note that in the case of finite α we have the condition that
|A| ≤ n, but in the case of α ≥ ω we have the condition that |A| ≤ n + 1. This
is not a mistake.

The next two theorems have proofs that are similar to the finite mind-change
case in some ways, but very different in others. Unfortunatly we have to omit
the proofs for this version.

Theorem 3.16. For every constructive α, Fα ∈ SUBSEQ-EXα. In fact, there is
a single procrastinating learner N such that for every α, N learns every language
in Fα with α mind-changes.

Theorem 3.17. For all β < α < ωCK
1 , Fα /∈ SUBSEQ-EXβ. In fact, there is a

computable function r such that, for each e and β < α < ωCK
1 , Mr(e,α,β) is total

and decides a language Ae,α,β = L(Mr(e,α,β)) ∈ Fα such that Me does not learn
SUBSEQ(Ae,α,β) with β mind-changes.

We end with an easy observation.

Corollary 3.18.

SUBSEQ-EX 6⊆
⋃

α<ωCK
1

SUBSEQ-EXα.

Proof. Let F ∈ SUBSEQ-EX be the class of Definition 3.3. For all α < ωCK
1 , we

clearly have Fα+1 ⊆ F , and so F /∈ SUBSEQ-EXα by Theorem 3.17. ut

3.4 Teams

In this section, we show that [a, b]SUBSEQ-EX depends only on bb/ac. Recall
that b ≤ c implies [a, b]SUBSEQ-EX ⊆ [a, c]SUBSEQ-EX.

Lemma 3.19. For all 1 ≤ a ≤ b, [a, b]SUBSEQ-EX = [1, bb/ac]SUBSEQ-EX.

Proof. Let q = bb/ac. To show that [1, q]SUBSEQ-EX ⊆ [a, b]SUBSEQ-EX, let
C ∈ [1, q]SUBSEQ-EX. Then there are learners Q1, . . . , Qq such that for all A ∈ C
there is some Qi that learns SUBSEQ(A). For all 1 ≤ i ≤ q and 1 ≤ j ≤ a, let
Ni,j = Qi. Then clearly, C ∈ [a, qa]SUBSEQ-EX as witnessed by the Ni,j . Thus,
C ∈ [a, b]SUBSEQ-EX, since b ≥ qa.

To show the reverse containment, suppose that D ∈ [a, b]SUBSEQ-EX. Let
Q1, . . . , Qb be learners such that for each A ∈ D, at least a of the Qi’s learn
SUBSEQ(A). We define learners N1, . . . , Nq to behave as follows.

Each Nj runs all of Q1, . . . , Qb. At any time t, let k1(t), . . . , kb(t) be the
most recent outputs of Q1, . . . , Qb, respectively, after running for t steps (if
some machine Qi has not yet output anything in t steps, let ki(t) = 0).

Define a consensus value at time t to be a value that shows up at least a times
in the list k1(t), . . . , kb(t). There can be at most q many different consensus values
at any given time. The idea is that the machines Nj output consensus values. If



kcorrect is the least index of a DFA recognizing SUBSEQ(A), then kcorrect will be
a consensus value at all sufficiently large times t, and so we hope that kcorrect will
eventually always be output by some Nj . We could simply assign each consensus
value at time t to be output by one of the machines N1, . . . , Nq to guarantee
that kcorrect is eventually always output by one or another of the Nj , but this
does not suffice, because it may be output by different Nj at different times. The
tricky part is to ensure that kcorrect is eventually output not only by some Nj ,
but also by the same Nj each time. To make sure of this, we hold a popularity
contest among the consensus! values.

For 1 ≤ j ≤ q and t = 1, 2, 3, . . . , each machine Nj computes k1(t′), . . . , kb(t′)
and all the consensus values at time t′ for all t′ ≤ t. For each v ∈ N, let pv(t)
be the number of times ≤ t at which v is a consensus value. We call pv(t) the
popularity of v at time t. We rank all the consensus values found so far (at all
times t′ ≤ t) in order of decreasing popularity; if there is a tie, i.e., some u 6= v
such that pu(t) = pv(t), then we consider the smaller value to be more popular.
As its t’th output, Nj outputs the j’th most popular consensus value at time t.

This ends the description of the machines N1, . . . , Nq.
We’ll be done if we can show that there is a 1 ≤ j ≤ q such that Nj outputs

kcorrect cofinitely often.
Let t0 be least such that kcorrect is a consensus value at time t for all t ≥ t0.

We claim that

– from t0 on, kcorrect will never lose ground in the popularity rankings, and
– eventually kcorrect will be one of the q most popular consensus values.

For all t ≥ t0, let P (t) be the set of all values that are at least as popular as
kcorrect at time t. That is,

P (t) = {v ∈ N : either pv(t) > pkcorrect(t), or pv(t) = pkcorrect(t) and v ≤ kcorrect}.

We claim that
P (t0) ⊇ P (t0 + 1) ⊇ P (t0 + 2) ⊇ · · · .

This holds because the only way for a value v to go from being less popular than
kcorrect to being more popular than kcorrect is for there to be a time t ≥ t0 when
v is a consensus value but kcorrect is not, but this never happens.

Since the P (t) are clearly all finite, there is a t1 ≥ t0 such that P (t1) =
P (t1 +1) = P (t1 +2) = · · · =

⋂
t P (t). Set P = P (t1), and let r = |P |. It suffices

to show that r ≤ q, for then Nr outputs kcorrect for all t ≥ t1 and so Nr learns
SUBSEQ(A).

Suppose r > q. Let v1, . . . , vr−1 ∈ P be the values in P other than kcorrect.
Then v1, . . . , vr−1 ∈ P (t) for all t ≥ t0. For each such t ≥ t0, there can be at
most q consensus values at time t, and one of these is kcorrect, so at least one of
v1, . . . , vr−1 does not appear as a consensus value at time t. By the pigeon hole
principle, there is some vi that does not appear as a consensus value at time t for
infinitely many t ≥ t0. For every t ≥ t0 we have pkcorrect(t + 1) = pkcorrect(t) + 1,
and

pvi(t + 1) =
{

pvi
(t) + 1 if vi is a consensus value at time t + 1,

pvi(t) otherwise,



and the second case occurs infinitely often. Thus there is some t2 ≥ t0 such
that pvi(t2) < pkcorrect(t2), making vi less popular than kcorrect at time t2. Thus
vi /∈ P (t2), which is a contradiction. Hence, r ≤ q, and we are done. ut

To prove a separation, we describe classes A1,A2, . . . and prove that for any
n > 1,

An ∈ [1, n]SUBSEQ-EX− [1, n− 1]SUBSEQ-EX.

Notation 3.20. For languages A,B ⊆ Σ∗, we write A ⊆∗ B to mean that
A−B is finite.

Definition 3.21. For i ≥ 1, let Ri be the language (0∗1∗)i, and define

Qi = {A ⊆ {0, 1}∗ : Ri ⊆ SUBSEQ(A) ⊆∗ Ri}.

For all n ≥ 1, define
An = Q1 ∪Q2 ∪ · · · ∪ Qn.

Note that R1 ⊆ R2 ⊆ R3 ⊆ · · ·, but Ri+1 6⊆∗ Ri for any i ≥ 1. This means
that the Qi are all pairwise disjoint. Also note that SUBSEQ(Ri) = Ri for all
i ≥ 1.

Lemma 3.22. For all n > 1, An ∈ [1, n]SUBSEQ-EX and An ∩DEC /∈ [1, n−
1]SUBSEQ-EX. In fact, there is a computable function d(s) such that for all
n > 1 and all e1, . . . , en−1, the machine Md([e1,...,en−1]) decides a language
A[e1,...,en−1] ∈ An that is not learned by any of Me1 , . . . ,Men−1 .

2

Proof. To see that An ∈ [1, n]SUBSEQ-EX, let Q1, . . . , Qn be learners that
behave as follows given a language A on their tapes: For 1 ≤ i ≤ n, Qi

outputs ki,1, ki,2, ki,3, . . . , where ki,j is the least index of a DFA recognizing
Ri ∪ SUBSEQ(A ∩Σ≤j). Suppose A ∈ Qi for some 1 ≤ i ≤ n. We claim
that Qi learns SUBSEQ(A). Since A ∈ Qi, there is a finite set D such that
SUBSEQ(A) = Ri∪D. For every x ∈ D, there is a y ∈ A with x � y. Because D
is finite, this implies that D ⊆ SUBSEQ(A ∩Σ≤j) for all large enough j. Then
for all such j,

SUBSEQ(A) = Ri ∪D ⊆
Ri ∪ SUBSEQ(A ∩Σ≤j) ⊆ SUBSEQ(A) ∪ SUBSEQ(A) = SUBSEQ(A),

and thus SUBSEQ(A) = Ri ∪ SUBSEQ(A ∩Σ≤j) for all large enough j. This
proves the claim, and shows that An ∈ [1, n]SUBSEQ-EX.

To show that An /∈ [1, n − 1]SUBSEQ-EX effectively, we use the Recursion
Theorem with Parameters to define a computable function d(s) such that for
all n > 1 and e1, . . . , en−1, the machine Md([e1,...,en−1]) is total and decides a
language A = A[e1,...,en−1] ∈ An, and SUBSEQ(A) is not learned by any of
Me1 , . . . ,Men−1 . The machine Md([e1,...,en−1]) has some input alphabet Σ such
that 0, 1 ∈ Σ, and it decides A via the following recursive algorithm:

On input x ∈ Σ∗:
2 [e1, e2, . . . , en−1] is a natural number encoding the finite sequence e1, e2, . . . , en−1.



1. If x is not of the form (0t1t)i, where t ≥ 1 and 1 ≤ i ≤ n, then reject. (This
ensures that A ⊆ {(0t1t)i : (t ≥ 1)∧ (1 ≤ i ≤ n)}.) Otherwise, let t and i be
such that x = (0t1t)i.

2. Recursively compute Rt = A ∩ {(0s1s)` : (1 ≤ s < t) ∧ (1 ≤ ` ≤ n)}.
3. Compute k1(t), . . . , kn−1(t), the most recent outputs of Me1 , . . . ,Men−1 , re-

spectively, after running for t steps with Rt on their tapes. If some Mej
has

not yet output anything within t steps, then set kj(t) = 0. (None of these
machines has time to scan any tape cells corresponding to strings of the form
(0u1u)` where ` ≥ 1 and u ≥ t, so the machines’ behaviors with Rt on their
tapes are the same as with A on their tapes.)

4. Let 1 ≤ it ≤ n be least such that there is no 1 ≤ j ≤ n − 1 such that
L(Fkj(t)) ∈ Qit . (Such an it exists by the disjointness of the Qi and by the
pigeon hole principle, and we can compute such an it.)

5. If i = it, then accept; else reject.

By the pigeon hole principle, there is some largest imax that is found in
step 4 for infinitely many values of t. That is, it = imax for infinitely many t,
and it > imax for only finitely many t.

We first claim that A ∈ Qimax , and hence A ∈ An. Since A contains strings of
the form (0t1t)imax for arbitrarily large t, it is clear that Rimax ⊆ SUBSEQ(A).
By the choice of imax, there is a t0 such that A contains no strings of the form
(0t1t)i where i > imax and t > t0. Therefore the set D = A−Rimax is finite, and
we also have

SUBSEQ(A) = Rimax ∪ SUBSEQ(D).

Thus SUBSEQ(A) ⊆∗ Rimax , and so we have A ∈ Qimax .
We next claim that no Mej

learns SUBSEQ(A) for any 1 ≤ j ≤ n−1. This is
immediate by the choice of imax: For infinitely many t, none of the kj(t) satisfies
L(Fkj(t)) ∈ Qimax , and so none of the Mej

can learn SUBSEQ(A). ut

Lemmas 3.19 and 3.22 combine to show the following general theorem, which
completely characterizes the containment relationships between the various classes
[a, b]SUBSEQ-EX.

Theorem 3.23. For every 1 ≤ a ≤ b and 1 ≤ c ≤ d, [a, b]SUBSEQ-EX ⊆
[c, d]SUBSEQ-EX if and only if bb/ac ≤ bd/cc.

Proof. Let p = bb/ac and let q = bd/cc. By Lemma 3.19, [a, b]SUBSEQ-EX =
[1, p]SUBSEQ-EX and [c, d]SUBSEQ-EX = [1, q]SUBSEQ-EX. By Lemma 3.22,
[1, p]SUBSEQ-EX ⊆ [1, q]SUBSEQ-EX if and only if p ≤ q. ut

4 Rich Classes

Are there classes in SUBSEQ-EX containing languages of arbitrary complexity?
Yes, trivially.

Proposition 4.1. There is a C ∈ SUBSEQ-EX0 such that for all A ⊆ N, there
is a B ∈ C with B ≡T A.



Proof. Let

C = {A ⊆ Σ∗ : |A| = ∞∧ (∀x, y ∈ Σ∗)[x ∈ A ∧ |x| = |y| → y ∈ A]}.

That is, C is the class of all infinite languages, membership in whom depends
only on a string’s length.

For any A ⊆ N, define

LA =
{

Σ∗ if A is finite,⋃
n∈A Σ=n otherwise.

Clearly, LA ∈ C and A ≡T LA. Furthermore, SUBSEQ(LA) = Σ∗, and so
C ∈ SUBSEQ-EX0 witnessed by a learner that always outputs a DFA for Σ∗.

ut

In Proposition 3.5 we showed that REG ∈ SUBSEQ-EX. Note that the A ∈
REG are trivial in terms of computability, but the languages in SUBSEQ(REG)
can be rather complex (large obstruction sets, arbitrary �-closed sets). By con-
trast, in Proposition 4.1, we show that there can be A ∈ SUBSEQ-EX of ar-
bitrarily high Turing degree but SUBSEQ(A) is trivial. Can we obtain classes
A ∈ SUBSEQ-EX where A ∈ A has arbitrary Turing degree and SUBSEQ(A)
has arbitrary �-closed sets independently? Yes, subject to an obvious restriction.

Definition 4.2. A class C of languages is rich if for every A ⊆ N and �-closed
S ⊆ Σ∗, there is a B ∈ C such that SUBSEQ(B) = S and, provided S is infinite,
B ≡T A.

Definition 4.3. Let G be the class of all languages A ⊆ Σ∗ for which there
exists a length c = c(A) ∈ N (necessarily unique) such that

1. A ∩Σ=c = ∅,
2. A ∩Σ=n 6= ∅ for all n < c, and
3. os(A) = os(A ∩Σ≤c+1) ∩Σ≤c.

In the full paper, we show the following:

Proposition 4.4. G ∈ SUBSEQ-EX0 and G is rich.

5 Open Questions

We can combine teams, mindchanges, and anomalies in different ways. For ex-
ample, for which a, b, c, d, e, f, g, n is [a, b]SUBSEQ-EXd

c ⊆ [e, f ]SUBSEQ-EXh
g?

This problem has been difficult in the standard case of EX though there have
been some very intersesting results [9, 5]. The setting of SUBSEQ-EX may be
easier since all the machines that are output are total.

We can also combine the two notions of queries with SUBSEQ-EX and its
variants. The two notions are allowing queries about the set [14, 12, 10] and al-
lowing queries to an undecidable set [7, 17]. In the full paper, we show that
CE ∈ SUBSEQ-EX∅

′
, where ∅′ is the halting problem.



References

1. G. Baliga and J. Case. Learning with higher order additional information. In Proc.
5th Int. Workshop on Algorithmic Learning Theory, pages 64–75. Springer-Verlag,
1994.

2. L. Blum and M. Blum. Towards a mathematical theory of inductive inference.
Information and Computation, 28:125–155, 1975.

3. J. Case, S. Jain, and S. N. Manguelle. Refinements of inductive inference by
Popperian and reliable machines. Kybernetika, 30–1:23–52, 1994.

4. J. Case and C. H. Smith. Comparison of identification criteria for machine induc-
tive inference. Theoretical Computer Science, 25:193–220, 1983.

5. R. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probabil-
ity 1/2 barrier in FIN-type learning. Journal of Computer and System Sciences,
50:574–599, 1995.

6. S. Fenner, W. Gasarch, and B. Postow. The complexity of finding SUBSEQ(L),
2006. Unpublished manuscript.

7. L. Fortnow, S. Jain, W. Gasarch, E. Kinber, M. Kummer, S. Kurtz, M. Pleszkoch,
T. Slaman, F. Stephan, and R. Solovay. Extremes in the degrees of inferability.
Annals of pure and applied logic, 66:21–276, 1994.

8. R. Freivalds and C. H. Smith. On the role of procrastination for machine learning.
Information and Computation, 107(2):237–271, 1993.

9. R. Freivalds, C. H. Smith, and M. Velauthapillai. Trade-off among parameters
affecting inductive inference. Information and Computation, 82(3):323–349, Sept.
1989.

10. W. Gasarch, E. Kinber, M. Pleszkoch, C. H. Smith, and T. Zeugmann. Learning
via queries, teams, and anomalies. Fundamenta Informaticae, 23:67–89, 1995. Prior
version in Computational Learning Theory (COLT), 1990.

11. W. Gasarch and A. Lee. Inferring answers to queries. In Proceedings of 10th Annual
ACM Conference on Computational Learning Theory, pages 275–284, 1997. Long
version on Gasarch’s home page, in progress, much expanded.

12. W. Gasarch, M. Pleszkoch, and R. Solovay. Learning via queries to [+, <]. Journal
of Symbolic Logic, 57(1):53–81, Mar. 1992.

13. W. Gasarch, M. Pleszkoch, F. Stephan, and M. Velauthapillai. Classification using
information. Annals of Math and AI, pages 147–168, 1998. Earlier version in Proc.
5th Int. Workshop on Algorithmic Learning Theory, 1994, 290–300.

14. W. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM, 39(3):649–
675, July 1992. Prior version in IEEE Sym. on Found. of Comp. Sci. (FOCS), 1988.

15. E. M. Gold. Language identification in the limit. Information and Computation,
10(10):447–474, 1967.

16. A. G. Higman. Ordering by divisibility in abstract algebra. Proc. of the London
Math Society, 3:326–336, 1952.

17. M. Kummer and F. Stephan. On the structure of the degrees of inferability. Journal
of Computer and System Sciences, 52(2):214–238, 1996. Prior version in Sixth
Annual Conference on Computational Learning Theory (COLT), 1993.

18. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted by MIT Press, 1987.

19. G. E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

20. R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1987.


