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I. Introduction

Computer scientists have become interested in inductive inference as a form of machine
learning, in part because of artificial intelligence considerations, see [7,8] and the references
therein. The contribution of this paper is a formal verification that a technique that humans
use to learn (asking questions) is also advantageous to machines that are trying to learn.
Inquisitiveness is the driving force behind all of science. Formal learning situations almost
always provide opportunities for the learner(s) to ask questions. The notion of learning by
asking questions is formalized, and results are obtained that show asking questions to be
a powerful learning technique. As will be seen, our results may be of relevance to human
learning, even though, for many of our results, the trainer supplying the answers to the

queries must surpass the algorithmic in ability.
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Traditional work in the field [7,8] and the more recent work on Valiant’s [43] model of
time bounded learning [25,26,31] regard the inference machines as passive recipients of data
regarded as examples of the behavior of the function to be learned. Subsequently, Angluin
devised an elegant formulation of a teacher and learner paradigm [3]. In this work the
inference device is allowed, in addition to receiving data, to ask a teacher questions. These
questions, moreover, may be of a more general kind than merely “is ¢ € L?” They can also
be of the kind “is this a good model of L and if not, why not?” Besides asking questions
regarding membership and equivalence with another language, Angluin permits questions
of subset and superset [5]. The basic paradigm of asking questions has been applied
to DNF formulas [4], context-free grammars [2], deterministic one-counter automata [9],
deterministic bottom up tree automata [38], deterministic skeletal automata [37], Prolog
programs [39]. Valiant also considered the issue briefly. [43]. For a nice summary of some
of these results see [5,6].

The focus of this paper is a recursion theoretic version of Angluin’s teacher and learner
paradigm. We compare learning by asking questions to learning by passively reading data.
Although some of our results hold for many query languages, generally the extent of
what can be learned by queries is largely dependent on the particular language which the
inference mechanism uses to phrase its questions to the teacher. Formulating questions
may not consume more of the learner’s computational resources as the query language
becomes more expressive, but in many cases, the teacher must be more computationally
gifted than the learner in order to properly answer the questions. Our own pedagogical
experiences indicate that sometimes students ask questions that their teachers cannot
answer. Analogously, we allow the learning devices considered below to ask undecidable
questions. This means that the “teachers” we employ in what follows cannot always be
emulated by a mechanistic device. Our results are summarized in the remainder of this
section.

Consider a reasonable query language in which all of the function and predicate sym-

bols stand for recursive entities. We prove that the learning potential of machines that ask
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only quantifier-free questions is precisely the same as the learning potential of standard,
passive, inductive inference machines; but being able to ask existential questions enhances
the learning potential. When the inference devices are constrained to output a single
conjecture and ask only existential questions, they do not exceed the power of passive
inference devices. However, if more than one conjecture is allowed, then it is possible to
learn phenomena that are not learnable by passive inductive inference devices.

Using a result of Davis, Putnam, Robinson and Matijasevi¢ [19,29], we prove that
inference machines that are allowed to ask existential questions with plus and times can
learn all the recursive functions. With this in mind, we concentrate on inference machines
that ask questions formulated in weaker languages.

If the language consists of plus and less than and only existential queries are allowed,
then the set of all recursive functions cannot be learned. Since this language is reasonable,
machines constrained to ask existential questions and only make one conjecture do not
exceed the power of passive inference devices. However, if queries with an alternation
of quantifiers are allowed, then it is possible to learn phenomena that are not learnable
passively. This indicates some sort of trade off between alternations of quantifications and
the number of times an inference device may change its conjecture.

If the language consists of successor and less than, then the set of recursive functions
cannot be learned. For this language the classes that can be learned with only one con-
jecture is a proper subset of what can be learned passively. The theory of w-automata
[11,16,30,33,36] is employed in the proof of these results to restrict, without precisely spec-

ifying, the future of some set under construction.

I1. Technical Summary

In this section we formalize our notions and state our results precisely. Our machines
will learn recursive functions which are taken to encode an arbitrary phenomenon, see the
discussion in [14]. An (standard, passive) inductive inference machine (IIM) is a total

algorithmic device that takes as input the graph of a recursive function (an ordered pair
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at a time) and outputs (from time to time) programs intended to compute the function
whose graph serves as input [10,24] (see Figure 1). An IIM M learns a recursive function
f,if, when M is given the graph of f as input, the resultant sequence of outputs converges
(after some point there are no more mind changes) to a program that computes f. This
is denoted by M(f) |. Learning has occurred since we can use the program output by the
ITIM to predict the value of f(z), for all z, after having seen only finitely many examples.
In this case we write f € EX(M). The class EX is the collection of all sets EX (M) (or
subsets thereof) of functions learned by an IIM. If ¢ is an initial segment of some function
f, then M(o) denotes the last conjecture about f made by M, after seeing all of o as

input, but prior to requesting additional input.

f(o)vf(1)7f(2) E— IIM — Po,P1,P2,- -

Figure 1

Each time an IIM outputs a conjecture we say that another learning trial has been
completed. Since it is never known if enough trials have been completed, it is sometimes
desirable to fix an a priori bound on the number of trials that will be permitted. If
convergence is achieved after only ¢ changes of conjecture we write f € EX.(M), for
¢ € IN, where IN denotes the natural numbers. The class of sets of functions identifiable
by IIMs restricted to ¢ mind changes is denoted by EX.. The number of mind changes
needed by an IIM to make a successful inference is a crude measure of the complexity of
performing the inference [17].

A query inference machine (QIM) is an algorithmic device that asks a teacher questions
about some unknown function, and while doing so, outputs programs. In this way, the
QIM learns about some phenomenon, encoded by a recursive function, by asking finitely

many questions. We assume that the teacher always returns the correct answer to any

4



question asked by a QIM. The questions are formulated in some query language L. A
variety of different query languages are considered. The languages that we consider have
different expressive power. The more expressive the query language, the more questions
the QIM can ask. In a sense, giving a QIM a more expressive query language to use makes
the QIM more articulate.

The results we obtain classify the learning potential of QIMs with respect to their
abilities to articulate appropriate questions. Some of the query languages discussed below
are very powerful indeed. The teacher who answers the QIM’s questions must have pro-
found knowledge of the function f to be inferred. Merely having an oracle for f will not
suffice, e.g. consider the query “Jz[f(z) = 0]?” The teacher may need an oracle for the
halting problem. Hence, the teacher’s “algorithm” to answer questions most likely will be
of a higher degree of unsolvability than the recursive QIM. Exactly what the teacher needs
may depend on both the function f and the query language L. In some cases the question
may be effectively undecidable. Note that in logic programming, queries involving negation
and a function symbol (as is the case with our query languages) posed in the presence of a
closed world assumption are also undecidable [40]. The issue of how much (and what type
of) computational resources are needed to answer the questions posed by a QIM are not
investigated in this work.

Formally, a QIM is a total algorithmic device which, if the input is a string of bits
g, corresponding to the answers to previous queries, outputs an ordered pair consisting
of a guess which is a (possibly null) program e, and a question i, see Figure 2. Define
two functions ¢ (guess) and ¢ (query) such that if Af(g) = (e, ) then g(Aff(g)) = e and
q(]\«f(g)) = 1). By convention, all questions are assumed to be sentences in prenex normal
form (quantifiers followed by a quantifier-free formula, called the matrix of the formula)
and questions containing quantifiers are assumed to begin with an existential quantifier.

This convention entails no loss of generality and serves to reduce the number of cases

needed in several proofs. A QIM M learns a recursive function f if, when the teacher
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answers M’s questions about f truthfully, the sequence of output programs converges to
a program that computes f. In this case, we write f € QEX[L](M). For a fixed language

L, the class QEX|[L] is the collection of all sets QEX[L|(M) as M varies over all QIMs

that use the query language L. QEX_[L] is defined similarly.

— 1,92, - (questions formulated in L)
QIM — b1,be,... (answers)
L — p1,P2,y... (guesses)
Figure 2

All the query languages that we will consider allow the use of quantifiers. Restricting
the applications of quantifiers is a technique that we will use to regulate the expressive
power of a language. Of concern to us is the alternations between blocks of existential and
universal quantifiers. Suppose that f € QEX[L](M) for some M and L. If M only asks
quantifier-free questions, then we will say that f € Qo EX[L](M). If M only asks questions
with existential quantifiers, then we will say that f € Q@ EX[L](M). In general, if M’s
questions begin with an existential quantifier and involve a > 0 alternations between blocks
of universal and existential quantifiers, then we say that f € Q41 EX[L](M). The classes
Q.EX[L] and Q,EX_[L] are defined analogously. By convention, if a QIM restricted to ¢
mind changes actually achieves that bound, then it will ask no further questions.

Now we introduce the query languages that will be used. Every language allows the
use of A, =, =, V, 3, symbols for the natural numbers (members of IN), variables that
range over IN, and a single unary function symbol F which will be used to represent the
function being learned. Inclusion of these symbols in every language will be implicit. The
base language contains only these symbols. If L has auxiliary symbols, then L is denoted
just by these symbols. For example, the language that has auxiliary symbols for plus and
less than is denoted by [+, <] and is Presburger arithmetic with a function symbol. The

language that has auxiliary symbols for plus and times is denoted by [+, x| and is Peano
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arithmetic with a function symbol. The language with extra symbols for successor and less
than is denoted by [S, <], where S indicates the symbol for the successor operation. This
last language is based on S15 (second order theory of one successor) [11,33]. Presburger
arithmetic, Peano arithmetic, and 5195, have been studied extensively, indicating their
naturalness. Furthermore, these languages display a spectrum of decidability properties:
Peano arithmetic is undecidable, Presburger arithmetic is decidable but its second order
theory is undecidable, and S1S is a decidable second order theory.

We denote languages where quantification over sets is allowed by appending “2"4”

to the list of operators, even though it is not an operator. Such languages have “€” as a

symbol for “element of.” The symbol “x” will be used to denote an arbitrary language
that includes all the symbols common to all the languages we consider and some (possibly
empty) subset of recursive operators, e.g. +, <, x and S. Such a language will be called
reasonable.
Some examples of sentences in [<] without quantifiers are:
(F(7) =13) A =(F(3) < 10)

F(F(3)) = 4.
Some examples of sentences in [+, <] with a single type of quantifier are:

FzIyY[F(z) <y A F(y) = = + y]

VaVy[F(z) =y < F(y) = zl.
Sentences in [+, x] with no alternations of quantifiers include:

JzdyIz[F(z) = Fy) Az =y X 2]

JedyFz[(z xz)+ (y xy xy) =3 x z X z X z|.
An example of a sentence in [S], written informally, is:

Jyly > 100N Fy)=Fly+1)=Fy+2)=Fy+3)=---=F(y+17) =1].
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An example of a sentence with an alternation of quantifiers is:

Vedyly > = A F(y) = 0].

We conclude this section with an enumeration of our major results. Henceforth, C denotes
subset and C denotes proper subset. The first result shows that, for any reasonable query
language, asking quantifier-free questions results in learning procedures that are equivalent
in power to standard, passive inference machines.

1. QEX[*x] =EX.
However, if the QIM is not allowed to change its conjecture, then allowing a quantifier
does not yield a learning paradigm more powerful than traditional inference.

2. )1EX %] C EX.

On the other hand, allowing a single mind change and a single type of quantifier does allow
one to infer sets not in £X. Hence, quantification enhances considerably the ability of a
QIM to articulate queries.

3. Q1EX [x] — EX # 0.

The next result concerns inference by queries formulated in the language [+, x]. Im-
buing QIMs with this query language with quantifiers essentially gives them the ability to
ask undecidable questions. This is not only impractical but, as the next result indicates,
yields an inference paradigm that is not interesting theoretically.

4. W EX[+, x] = Q2EXo[+, X] = Q2EX[+, x] = Qs EX[+, x]..., and each contains

the set of all recursive functions.

The above result shows how important it is to choose an appropriate query language.

The next group of results concerns Presburger arithmetic. A most fundamental result
that, to a large extent, motivates this paper is that the use of quantifiers allows asking
more powerful questions which, in turn, enables a larger class of functions to be learned.



We believe that the above result establishes what will be the base of an infinite hierarchy
defined in terms of alternations of blocks of quantifiers. Subsequent to our work it was
discovered that Q1 EX[+, <] C Q2 EX [+, <] [22].

6. Q1EX[+, <] does not contain the set of all recursive functions.

Subsequent to our work it was discovered that the set of recursive functions is not a
member of QEX [+, <] [23].

There seems to be a tradeoff between the number of mind changes and the number of
alternations of quantifiers in the questions asked by the QIM. This trade off is evidenced
by the next result.

7. Q2EXy[+,<]— EX # 0.

The final section of this paper concerns query machines that ask questions using a
language with a successor symbol. Again, we find that quantifiers enable the posing of
more questions which are beneficial to the inference process. In contrast to the language
[+, <], here we obtain results about query languages that allow an unbounded number
of alternations of quantifiers. The proofs of these results use a deep theorem about w-
automata and their relation to S1S [11,33], and several other lemmas about w-regular
languages.

8. QEX[S, <] C Q1EX][S,<].

9. QEX,[S,<] and EX are incomparable if a > 1. If only the inference of sets is
considered, then QEX, C EX. This can be extended to the inference of functions
with a known finite range.

10. QEX|[S, <] does not contain the set of all recursive sets.

This last result also holds if we allow various enhancements to the language [S, <].

III. Definitions and technical lemmas
Throughout this paper, ¢o, ¢1, ¢2, ... denotes an acceptable programming system
[27], also known as a Gédel numbering of the partial recursive functions [34]. The function

e 1s said to be computed by the program e. Let R denote the class of all recursive
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functions. Throughout this section we assume that L is an arbitrary, but fixed, reasonable
query language.

If f is a total function and v is a sentence (i.e. no free variables) in L then f |= ¢
can be defined in a natural way that corresponds to “if in ¢» we interpret F as f then v

”»

is true.” When a QIM is inferring a function f and makes the query ¢ then the answer
received is YES (NO) if f = ¢ (f | —%). Our definition of “=" is similar to the definition
commonly used in model theory [15].

Throughout this paper we will construct functions in effective stages of finite extension.
At stage s of such a construction we will commonly have fs (a finite function) and ¢ (a
sentence). At this point, we will be trying to find a finite extension fs41 of fs that forces
b or =) to be true. Hence we will define ¢ |= ¢ for a finite function g and certain types
of ¢. Several technical results about |= are proven.

Recall that for our purposes the language L contains the usual logical operators, the
symbol F, relational symbols, and operational symbols. The relational and operational
symbols are to be interpreted in the obvious way (e.g. “+” denotes plus and “<” denotes
less than). It is assumed that any sentence without quantifiers or the symbol F can be
effectively assigned a truth value (e.g., 2+ 2 < 5 is TRUE). A further assumption is that
if a1, ag, ..., ap, € IN and ® represents an n-place operation in the language L, then
@(ay,az,...,a,) € IN and can be found effectively.

The notion of term is now defined. Let L be any language. Then:

1. Any constant or variable is a term.
2. If tq, to, ..., t, are terms and @ represents an n-ary operation symbol in L, then

@(t1,...,tn) is a term.

3. If t is a term then F(¢) is a term.
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A term whose only variables are x1, z2, ..., ¥, will be written t(x1,...,2,). Sup-
pose t(z1,...,xy,) is a term, ay, ..., a, € IN, and f is a partial function. The constant
t(ay,...,an)[f] is defined (if at all) inductively as follows:

If ¢ is a constant ¢, then t[f] = c.

If t(z) is just the variable z, then t(a)[f] = a.

If t = F(s(z1,...,24,)), then

undefined if s(ay,...,ay,) is undefined,;
t(ay,...,an)[f] = { undefined if s(ay,...,a,) ¢ domain of f;
f(s(ai,...,a,)) otherwise.

Ift =&t (z1, .. 2n, )y ytm(@1,. .., Tn,,)), then let

tlar,...,an)[fl = @1 (ar,...;an)fl - s tm(ar, ... an,)[f])

if all the subterms are defined, and undefined otherwise.

LEMMA 1. If t(ay,...,an)[f] is defined then there exists a finite function f' C f such

that t(a1,...,a,)[f'] is defined.

X

Proof: By induction on the structure of t.

Let f be a total function and ¢ be a sentence in L. We define f | ¢ for quantifier
free ¢ and then extend to the quantifier case by induction. This defines f |= v, for all ¢,

because we have assumed that @ is in prenex normal form.

1. If ¢ is quantifier free then we can write ¢» = ¢(t1,...,tm ), where ¢ contains only
predicates and logical connectives, but no variables. Then, f = ¥ iff ¢(t1[f], ..., tm[f])

1s true.

2. If ¢ = Jzq,...,2,60(x1,...,2,) then f | ¢ iff there exist ay, ..., a, € IN such that

fE6a,... an).
3. Ify =Vaq,...,2,6(z1,...,2,) then f = iffforallay, ..., a, €N, f E8(a1,...,ay).
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Next, we define (f, p) = ¢ for f a finite function, p € IN and, ¢ an existential sentence
or the negation of one, as follows:

1. If 4 is quantifier free then we can write ¢» = ¢(t1,...,t,) where ¢ contains only
predicates and logical connectives, but no variables. Then, (f,p) = ¢ iff every t;[f] is
defined and ¢(t1[f],...,tm[f]) is true. Note that since f is total, each t;[f] must be
defined.

2. Ify =3zq,...,200(21,...,2,) then (f,p) = ¢ iff thereexists ay, ..., a, € {0,1,...,p}
such that f = 6(a1,...,a,).

3. If v = —=3xy,...,2,0(x1,...,2,) then (f,p) E ¢ iff for every finite extension f' of f

it is not the case that (f',p) = Jz1,...,2,0(x1,...,20).

If f is a finite function and @ is an existential sentence then f |= ¢ iff there exists
a p such that (f,p) = . If f is a finite function and ¥ is the negation of an existential
sentence then f |= ¢ iff for all p it is not the case that (f,p) = —. If f |= ¢ then, even
though f is finite, there is enough information in f to validate .

The reason that f = ¢ can be defined for f finite and ) existential is that if an
existential formula is true, there must be a finite witness to its truth. Since this is not the
case for harder formulas, there is no clearly sensible definition of f |= ¢ for f finite and ¥

of the form (Fz1,...,20)(My1, .., Ym )O(T1, . Ty Y1y ooy Ym)-

LEMMA 2. If f is total and ¢ is an existential sentence then f |= v iff there exists a

finite function f' C f such that f' | .

Proof: By induction on the structure of ¢ using the definition of f |= ¢ and Lemma 1. X
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LEMMA 3. Suppose L is such that the problem of deciding the truth of existential
sentences formulated in L, without using the function symbol F, is decidable. Then the
set of all pairs (f,) such that:

i. f 1s a finite function, and

1. 1 1s an existential sentence of L, and

ii. there exists a finite function f' O f such that f' =

is decidable.

Proof: Input (f,¢) where f is a finite function and ¢ is an existential sentence of L. The
following algorithm reduces the problem for sentences i) with nested occurrences of F to

the problem for sentences without nested occurrences of F. Assume

77/; = 3,%1,...,1”[9(3717---7:En)]‘

Repeat the following process iteratively until there are no nested occurrences of F.
For each term F(s) where F(s) is a subterm of a term ¢ such that F(¢) appears in 1,
replace ) with a sentence obtained as follows:
a. replace all occurrences of F(s) in the matrix of ¢ with a new variable z,
b. insert the conjunct “F(s) = z” in the matrix of ¢, and
c. add a “dz” to the front of .
d. if the term F(a) appears, where a is in the domain of f, then replace “F(a)” with the
value of f(a).
After the process is complete, let F(t1), ..., F(tm) be a list of the occurrences of F

in ¢». Note that the terms #q, ..., t,, do not contain F. The final version of ¢ is

=321,z 1, 20021, 2 Ty Ty F(t)y e Fltm))]-
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Let ¥ be
!
321,...,,2'“3:1,...,xn,wl,...,wm[e (Z1y ey Zry Ty e ey Ty Wy e oy Wiy JA

/\ ti =7 =>w; = f(jA

1 j€domain( f)

/\ ti:tjiwi:wj].
1<i,j<m

m
1=

Note that the sentence ¥ has no occurrence of F in it and so it can be decided. It is

>

easy to show that ¥ is true iff (f, ) satisfies conditions i, i and .

IV. Comparison with passive inference

In this section we compare EX to classes of the form @Q; EX,[#]. Recall that the “x”
indicates that these results hold for any reasonable query language. Comparison of EX to
inference with specific query languages appears in subsequent sections. Recall that AJ(E)

=

is an ordered pair of a guess, ¢(b) (a program), and question, q(g)

PROPOSITION 4. QyEX[x] = EX.

Proof: Let S be in QyEX[x| as witnessed by the QIM M. Note that M can only pose
queries involving constants and F applied to constants. An IIM can simulate M by waiting
for enough input to answer the query. With sufficient data, the IIM can deduce the answers
to such queries.

On the other hand, suppose that S C EX(M), where M is an IIM. Let f € S. A
QIM can simulate M on input from f by asking “F(0) = 07” “F(0) = 1?” until the value

of f(0) is known. The QIM then outputs M((0, f(0))). In a similar fashion, the QIM can

>

discover f(1), f(2), ... and simulate M on larger and larger initial segments.
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THEOREM 5. Q1 EX,[x] C EX.

Proof: Suppose M is a QIM and f € Q1 EXy[*](M). Let fs be the restriction of f to
domain {0,...,s}. Since M, when inferring f, can only output a single conjecture, there
is a sequence of answers = {0,1}* such that the 7*% bit of b correctly answers the ‘P
query and g(j\:{(g)) is defined and is a correct program for f. Once the correct b is found,
the IIM will output a correct guess for f. A key point is that, by Lemma 2, if ¢ is an
existential query, then f |= ¢ iff 3s((fs,s) = ).

We now describe an algorithm for an IIM that infers f. During each stage of the
construction a vector g, which approximates the vector of true answers, is constructed and
used. We later show that, in the limit, b is correct.

Stage s. Set b= A, the empty string.

For z :=1 to s, do the following

-

b = o(M(E))
If (fs,s) E ¢ then b:= bl else b:= b0

Output g(]\ff(g)).

End stage s.

Let s be so large that

(¢) the number of distinct queries made by the QIM M while trying to infer f is 5o < s,
and

(42) if the queries made by M while trying to infer f are ¢, 3, ..., ¥, then for all ¢ < s
such that ; is true, (fs,s) | ¥i.
By Lemma 2, such an s exists. It is easy to see that for all ¢ > s the vector of answers

gproduced in stage t 1s correct. Hence, the output produced at stage ¢ 1s the index for f

X

that M produced. This index was assumed to be correct.

The following theorem shows that Theorem 5 cannot be improved to one mind change.

The proof uses a set S which is a baroque variation of a set used in [14].
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THEOREM 6. Q1EX;[x] — EX # 0.

Proof: We define a set S € Q1 EX [x] — EX. Let S be the set of all recursive functions f
such that there exists an e € [N such that
1. for infinitely many z, f(z) = e, and
2. if f(z) = a # e, then z is the unique number that maps to a, and
3. either
ge =1, or
f(z) = e for all but finitely many z.
A QIM witnessing that S € Q1 EX;[%] is defined as follows. First find e by asking:

Jz,ylz #y A F(z) = Fly) = 0]

Jz,yle #y A F(z) = Fly) = 1]

Ja,ylz #y A Flx) = Fly) = €]
until a YES answer is encountered. Output that value of e as the first guess. Then

determine if the range of f is finite by asking;:

Ja[F(z) # €]
Jz[z 0 A F(z) # €]

Jz[z 0Nz #1AN---Nax#bANF(x) # €]

until (if ever) a NO answer is encountered. If a NO answer is never encountered, then
e, the QIM’s first conjecture, is correct. If a NO answer is encountered, then, using the
techniques of Proposition 4, find the values of f(0), f(1), ..., f(b) and output a program
that matches those values and has value e thereafter.

Now we show that S ¢ EX. Suppose M is an IIM. We construct an f € S— EX(M).

A function ¢, 1s constructed in effective stages of finite extension. Either ¢, is the desired
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f or ¢, is a finite function with an extension that will serve as the desired f. The finite
initial segment of ¢, determined prior to stage s is denoted by ¢?. By implicit use of the

recursion theorem, we know the index e of the function we are about to construct.

Initialize ¢? = {(0,¢)}. Execute the following stages in their natural order.

Begin stage s. For convenience, let 0 = ¢?. Let = be the least number not in the domain
of o. Simultaneously execute the following two substages.
Substage 1. Try to diagonalize against the current guess. Simulate the compu-
tation of wpr(py(z). If it converges before a mind change is found in the next

substage, choose the least y & ({0(2)]z < 2} U {¢n(s)(2)}) and set

Pt =t U{(z,y), (z + 1,0},

and go to stage s + 1.

Substage 2. Try to force M to output a new conjecture. Look for a 7 D ¢ such
that

the domain of 7 i1s an initial segment of [N, and

Vz > a, if 7(z) is defined, then 7(z) = e, and

M(7) # M(o).
If such a 7 is found before /(5 (z) converges in the first substage, then set

" s+1

o7 =7 and go to stage s + 1

End stage s.
If every stage s terminates, then ¢, 1s a recursive function. If not, then ¢, is a finite
function whose domain is an initial segment of the natural numbers. The two cases are

considered separately.
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Case 1. ¢, is a recursive function. Let f = ¢.. If the first substage extends ¢, at stage
s then this extension defines f(z) = y # e and f(z + 1) = e for some values of z and y
unique to stage s. If the second substage extends ¢, at stage s then only e’s are added
to the range of ¢, at stage s. Hence, f € S. Suppose that M(f) |= M(yp?) = i, for
some s, as otherwise M cannot possibly infer f. Then at every stage t > s, ¢, 1s extended
by the first substage. Each such extension defines f(z) # ¢;(x) for some z, which is a
contradiction. Hence, f ¢ EX(M).

Case 2. For some s, p. = ¢2. Let = be the least number not in the domain of ¢?. Let f

be defined by:

_ Jpely) fy<a,
f(y)_{e 1fy2x

It is easy to see that f € S. By the failure of the second substage to extend ¢?,

M(f) |= M(p?) = j. By the failure of the first substage to extend ¢}, ¢;(z) does not

>

converge. Hence, f ¢ EX(M).

It remains an open question whether or not Q2 EXy[x] — EX # (.
COROLLARY 7. EX C Q1 EX[+].

Figure 3 summarizes all the results in this paper about query inference using a rea-

sonable language.

QlEXO [‘k] g EX = Q()EX[*]
U|
QEXo[x] C QiEXi[x]

Figure 3 Summary of [x]

V. Asking questions using plus and times
The ability to ask questions with plus and times is very powerful. The following
theorem of Davis, Robinson, Putnam and Matijasevic [18,19,29] will be used to show that

R, the set of recursive functions, is a member of @y EX[+, x].
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THEOREM 8. [18,29] If A is an r.e. set, then there exists a polynomial p such that

r € As I [p(Z,z)=0].

Moreover, given a program e, the polynomial p corresponding to the domain of ¢, can be

found effectively.

PROPOSITION 9. R € Q1 EX [+, x].

Proof: Using the language [+, x| questions of the type “3Z[p(Z) = 0]?” can be formulated
for an arbitrary polynomial p. By Theorem 8, such questions can be used to solve the
halting problem. Next we describe the operation of a QIM M that can infer all the
recursive functions using knowledge about solutions to the halting problem. Suppose M
is trying to learn a recursive function f. Initially, M conjectures program 0. Then M asks
questions to find the values of f(0), f(1), --- (by Proposition 4) and while doing so checks
to see if ¢o(x) is defined (requiring queries to the halting problem) and is equal to f(z).
If not, then program 1 is conjectured and tested similarly. This process continues, testing

each program in turn. Suppose e is the least index such that ¢, = f. Then programs 0

>

through e — 1 will be rejected by M. M will then converge to program e.

The machine M in the above proof uses a modification of the enumeration technique
due to Gold [24]. Gold’s technique only serves to infer effectively enumerable sets of
recursive functions. Starting with an enumeration of programs for the functions to be
inferred, Gold’s technique eliminates incorrect programs one by one without having to
appeal to the halting problem.

The proof of the above theorem leads to a generalization: if L is a language such that
the halting set (HALT) can be solved with queries to L, then R € QEX[L]. Blum and
Adleman [1] (see also [32]) have shown that if A is high (i.e., the halting problem relative to

oracle A is Turing equivalent to the the halting problem relative to oracle HALT, in symbols

19



A" =7 0") then the problem of passively inferring a function can be solved recursively in
A. Hence if L is a language such that some high set A can be solved with queries in L,
then (even if A is incomplete, i.e. A <pHALT) R € QEX[L]. We do not know of any
natural languages with this property, but an artificial one can be constructed. Let A be
an incomplete r.e. high set. Such A’s are shown to exist in [42]. By Theorem 8 there exists

a polynomial p(z1,..., 2k, ) such that

r € Aiff Iz,.. ., zk[p(z1, ..., 28, 2) = 0.

The question “z € A?” is equivalent to the question “Jzy,...,zx[p(z1,...,2k,2) = 0]7”
Hence it is easy to see that R € Q1 EX|[p).

Inference via the enumeration technique gives no bound on the number of mind
changes required to converge to a correct program. Since R ¢ EX, by Theorem 5,
R € Q1EXy[+, x]. The question of whether or not R € Q1 EX_.[+, x] is open for ¢ > 0.
However, if questions using an alternation of quantifiers are allowed, then all the recursive
functions can be inferred by a single QIM that never changes its mind. This indicates some
sort of tradeoff between mind changes and alternations of quantifiers. Other tradeoffs with
the number of mind changes, in the context of anomalies and teams, have been previously

noted [13,14,20,41].

THEOREM 10. R € Q2 E X[+, X].

Proof: Let (-,-) denote the pairing function from IN xIN — IN found in [35]. The important
feature of this particular pairing function is that the value of (z,y) can be expressed as a
polynomial in # and y. By Theorem 8, there is an effective list of polynomials pg, p1, ...

such that, for all ¢,

pi(x) converges to y & 37 [pi(Z, (z,y)) = 0].
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Let M be a QIM that asks:

V$35[p1(57 <$7‘F($)>) = 0]

Va3 [pi(, (o, F())) = O
until (if ever) the answer is YES. If the question that produced the YES answer involved

>

pi, then M outputs ¢ and halts. Clearly, R € Q2 E X[+, x|(M).

Figure 4 summarizes all the results in this paper about query inference using the
language [+, x].
R € QzEXoH—, X]

EX = QOEX[+7 X] C QlEX[—I_v X] = QZEX[+7 X]

Figure 4 Summary of [+, x]

VI. Asking questions using plus and less than
The ability to ask quantified questions using plus and less than allows the inference
of sets not in EX, but not the set of all recursive functions. The language [+, <] is based

on Presburger arithmetic.
ProrosiTION 11. EX C Q1 EX[+,<].

Proof: By Corollary 7 with [] = [+, <]. X

The set S € Q1EX,[+,<] — EX, given by Theorem 6, is inferred with one mind
change. This cannot be improved since, by Theorem 5, ()1 EXy[+, <] € EX. However, if
we allow an alternation of quantifiers, then the S of Theorem 6 can be inferred with no

mind changes.
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THEOREM 12. Q2 EXo[<] — EX # 0, hence Q2 EXy[+,<]| — EX £

Proof: Let S be as in Theorem 6. By the proof of Theorem 6, S ¢ EX. Hence, it suffices
to show that S € Q2E X[+, <]. For this purpose we describe a QIM M. Suppose f € S.
First, M mimics the QIM of Theorem 6, and finds a value e that appears twice in the

range of f. Unlike the QIM of Theorem 6, M does not output this e. Instead, M asks:
JzVyly > = = Fly) = ¢€]?

If the answer is NO then output e. If the answer is YES then ask:
Velz > 0= F(z) =€]?

Vel > 1= F(z) =€]?

Velz > b= F(z) =¢]?
until a b is found that produces a YES answer. Using the techniques of Proposition 4,

discover {f(0), f(1),..., f(b)} and output a program for the function
g(x) = {f(z) if 1 < b,

e otherwise.

>

Subsequent to our work, it has been shown that EX — QEX,[+,<] # 0 [23], so
EX — Q2EX,[+,<] # 0. Hence, EX and Q2 EX[+, <] are incomparable.

THEOREM 13. R & Q1 EX[+,<].

Proof: Let M be a QIM that asks questions using the query language [+, <] restricted to
sentences with only existential quantifiers. We construct a recursive function f in effective
stages of finite extension. The finite amount of f determined prior to stage s is denoted by
f?. The least number not in the domain of f° is denoted by z°. By way of initialization,
f° = 0. At every stage, a default function, h, is constructed. It will turn out that either
f or one of the default functions will be a recursive function not in @y EX[+, <|(M). The

function f is determined by the execution of the following stages in their natural order.
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Begin stage s. Suppose that so far in the construction M has asked m questions and
received answers by, bg, ..., by. Let e = g(M(by1by...by,)), M’s most recent guess. As
in other diagonalization arguments in inductive inference, we simultaneously look to make
the current guess wrong or force a mind change [14]. In addition, a default function
is constructed in case these efforts are not successful. The construction of the default
function below is more intricate than usual.

Let b = (b1,...,bm). This vector of responses will be lengthened during stage s. To
reduce notation, the various, larger and larger vectors will not be indexed. Consequently,
galways denotes the current vector. Initialize the default function by setting h = f°. In
a similar fashion, & will also be extended without indexing. Simultaneously execute the

following two substages.

Substage 1. Diagonalize against the current guess. If ¢.(z*®) converges before a
mind change is found in substage 2, then set f*t! = f* U {(2*,1 = pc(z*))} and

go to stage s + 1.

Substage 2. Force a mind change or extend the default function. Let ¢ = q(]\f(g)),
M’s most recent query. Define ¢g = ¢ and ¢y = —1. For ¢ € {0,1}, use Lemma
3 to effectively find out if there is a finite sequence 7; extending / and an n € IN
such that (r;,n) = ¢;. By Lemma 2, for some 7 € {0,1}, 7; exists.
If there exists ¢ € {0,1} such that g(ﬂff(gi)) # e and 7; exists
then choose the least such ¢ and the least such 7; and set f*t! = 7;, b= gé,
and go to stage s + 1, (this forces M to change its mind at stage s + 1)
else let ¢ be the least number such that 7; exists, set b= gi, h=1U{(z0)},
for z the least number not in the domain of 7;, and repeat substage 2 for
these new values of h and b.

End stage s.
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If every stage of the construction terminates, then f(z) is defined for all  and hence
f 1s a recursive function. If substage 2 causes termination of infinitely many stages, then
M outputs infinitely many changes of conjecture and hence does not converge. In this
case, M cannot infer f. If M converges to e when trying to infer f, then, by the failure of
substage 2 to extend f past some point, . (since it is extended by substage 1 infinitely
often) is wrong on infinitely many arguments. Hence, f & Q1 EX [+, <|(M).

If some stage s never terminates, then substage 2 is executed infinitely often. Conse-
quently, h eventually becomes defined on every argument. We show that M does not infer
h. Let b denote the value of b on entry into stage s and let e = g(]\/f(g)). By the failure of
substage 2 to terminate stage s, when M tries to infer A, it will converge to e. By the fail-

ure of substage 1 to terminate stage s, ¢ (z®) is undefined. Hence, h ¢ Q1 EX [+, <](M).

>

The only property of [+, <] that is used in the proof is that the existential theory of
[+, <] is decidable. (This was used while invoking Lemma 3 during substage 2.) Hence we
have the following generalization: if L is any language such that the theory of existential
sentences associated with L is decidable, then R ¢ Q1 EX[L]. A natural example of such
a language is [+, D], where D is the three place predicate D(z,y,z) which is true iff z is
the greatest common divisor of z and y [28].

The notions of anomalies, behaviorally correct inference [14], and teams [41], can be
naturally combined with our notion of query inference. Once these notions are understood,
it is easy to define the classes [1,n]Q; BC*[L]. Using the techniques of Theorem 13 with
those of the above referenced papers it is possible to show that for all n,a € IN, R ¢
[1,n]Q1BC*[+, <]. Subsequent to our work, using additional techniques, it has been shown
that R ¢ QEX[+,<] [23]. In fact, these new techniques can be used to show R ¢
[1,n|QBC*[+, <].

Figure 5 summarizes all the results in this paper about query inference using the

language [+, <].
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EX = QOEX[+7<] - QlEX[+7<]

R & QEX[+,<]

Figure 5 Summary of [+, <]

VII. Asking questions involving successor and less than

In this section we examine QIM’s that are trying to infer functions by asking questions
in the language whose only additional symbols are S (for successor) and < (for less than),
i.e. in the language [S, <]. This language is based on the decidable second order theory
S1S (second order theory of one successor) which contains the symbol S. The symbol <
can be written in terms of S using second order variables. We include < explicitly and do
not use second order variables. The ability to ask questions using successor and less than

allows the inference of functions not in £X, but not the set of all recursive functions.

ProrposiTION 14. EX C Q1 EX]|S, <].

X

Proof: By Corollary 7 with [x] =[S, <].

The above theorem indicates that allowing a quantifier gives enough power to the
query language [S, <] to infer all sets in EX, and then some. Next we will show that if the
QIM is restricted to output a bounded number of conjectures, then not even unbounded
quantifier alternations will enable the inference of all sets in EX.

For the rest of this section we only consider the inference of sets. This convention will
not lead to weaker theorems (with one exception noted below) and will allow us to use the
theory of w-automata. The language 1s adjusted as follows. The variable A" will be used to
denote the set that some QIM is trying to infer. As a consequence, we will write “t € X"
(“t ¢ A7) instead of “F(t) = 1" (“F(t) =07). Every question asked using this language is
a formula in the Second Order Theory of one successor. This theory 1s commonly referred

to as S15.
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The proofs of most theorems in this section depend on the relationship between S15
and w-automata theory. This relationship is reviewed before presentation of the main
result. If V' C {0,1}* then let V¥ be the set of all infinite sequences of elements chosen
from V. If N = (Q,X,A,s, F) is a nondeterministic finite automaton and B € {0,1}¥,
then N accepts B if there exists some computation path that visits members of Finfinitely
often. F is called the set of favorable states. The set of all B € {0,1}* accepted by N is
denoted by L(N). A set A C {0,1}“ is w-regular if there exists a nondeterministic finite
automaton N such that L(N) = A. There are many equivalent definitions [11,16,30,36] of
w-regular languages. Biichi [11] showed that the class of w-regular languages is closed under
union, intersection, and complementation. If A C N, then the characteristic sequence of
Ais agajay ... wherea; =0if ¢ € Aand a; =11if 7 € A.

By representing sets of natural numbers via their characteristic sequences we can think
of an w-regular language as a class of sets. On occasion, we will unambiguously identify
a set with its characteristic sequence. Suppose ¥ is a formula in S1S with one free set
variable (X') and no other free variables of any kind. If U is a set, U |= ) means that ¢ is
true when X is interpreted as U. Formally, the definition of U |= 1 is similar to that of

f E v in section III. Biichi [11] linked S15 with w-regular languages as follows.

THEOREM 15. [11] If ¢ is a formula in S1S with one free set variable and no other free
variables of any kind, then the set {U|U = v} is w-regular. Moreover, there is an effective

procedure to pass from ? to the nondeterministic finite automaton.

Suppose that i is a formula within the scope of Theorem 15. The set {U|U k& ¢}
is denoted by L(v) and N(¢) is the nondeterministic finite automaton that accepts the
w-regular language L(v). If N and N' are two nondeterministic finite automata, then
N N N' denotes the nondeterministic finite automaton accepting L(N) N L(N'). Biichi
[11] also showed that one can effectively test for emptiness and infiniteness of an w-regular

language presented as a nondeterministic finite automaton.
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A string x € {0,1}* is periodic if there exist u,v € {0,1}* such that = = u(v)¥. A
set 1s periodic if its characteristic string is periodic. We extend the definition of primitive
recursiveness to infinite strings by defining a string = € {0, 1}* to be primitive recursive if
its characteristic set is primitive recursive. We use the term “string” to refer to both finite

and infinite strings; the meaning will be clear from context.

LEMMA 16. If V is a regular set such that |V*| > 2, then
a) V* contains two distinct strings y and z of the same length,
b) V* is uncountable, and

¢) V* contains an infinite number of nonperiodic primitive recursive strings.

Proof: Let w and z be two distinct strings of V“. Since w # z, there exists w',z' € V*
such that w' is a prefix of w, but not of z, and z' is a prefix of z, but not of w. Let
|z'| times

—_—
o !
y=ww ---w

|w'| times

The strings y and z satisfy a). The set {y, z}* is an uncountable subset of V¥, so V* is

uncountable. The strings
YZYZZYZZZY . ..

YYZYZZYZZZY . ..

>

are all nonperiodic primitive recursive elements of V'*.

LEMMA 17. Every w-regular set that contains a nonperiodic string contains an infinite

number of nonperiodic primitive recursive strings.

Proof: Every nonempty w-regular set is of the form



where m € IN and the U;’s and V;’s are nonempty, e-free regular sets [16]. Suppose w is a
nonperiodic string in the w-regular set depicted above. Assume without loss of generality
that w € u-(V7)* where u € U;. Choose v € V; and let # = u-(v)“. Since w is nonperiodic
and z is periodic, w and z are two distinct elements of u-(V7)¥. Hence, V}* has two distinct

strings. By Lemma 16, V| contains an infinite number of nonperiodic primitive recursive

X

strings, so u - (V1)“ does as well.

THEOREM 18. For any a € N, EX — QEX,[S, <] # 0.

Proof: By the enumeration technique, the set of all primitive recursive sets is in EX [24].
We show that if M is a QIM using the query language [S, <] that changes its conjecture
at most a times, then there exists a primitive recursive set that M does not infer. The
proof is nonconstructive. We start with the set of all primitive recursive sets and remove
members that M may infer, and show that a nonempty set remains. Let by = A (the
empty string), eg ;=L (the null guess) and A; := the set of all primitive recursive sets.
Fori:=1toa+1do
A; := some primitive recursive set in 4; that is not periodic. (Later we will
show that A; always contains such a set.)
Z;i := the least element of {0, 1}* (if it exists) such that Z;l extends gi—l, Aff(gi) #
]\f(gi_l), and b; supplying correct information about A; in reply to M’s
queries.If there is no such vector, then bi = bi_1. (This step is noncon-

structive.)

P, := the conjunction of all the formulas that the run of ]\«I(gi) discovers A;
satisfies. Formally, ¥; is the conjunction of the formulas ], ¥4, ..., ¥,
where s is the length of b; and Py, b, ..., L are defined as follows:
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For j :=1to s, if g(M(by...bj—1)) =1
then ¢; := ¢(M(by...b;_1))
i =y if by =1, = if bj = 0;
else ¢; := TRUE.
N; := N(V¥;) Note that N; is the w-automaton that accepts the intersection of
the w-regular languages associated with the formulas ¢}, ¥4, ..., ¥.. Since
N; accepts the set A;, and A; is nonperiodic, by Lemma 17, N; accepts

an infinite number of nonperiodic primitive recursive sets.

-

ei == g(M(b;)).

Aiy1:= (Ai N L(N;)) — X where X = 0 if ¢, is not total or not {0,1} valued,
and X is the singleton set containing the infinite string that represents
the set associated with function ¢, otherwise. (Later we show that A;4+q
contains an infinite number of nonperiodic primitive recursive sets.)

It is easy to see that for all 7, L(N;) € L(N;—1), and L(NN;) accepts an infinite number
of primitive recursive strings. An induction argument shows that each of the A;11’s contain
all but a finite number of the nonperiodic primitive recursive strings in N;. Hence, each of
the A;’s contain an infinite number of nonperiodic primitive recursive strings.

The class A; is defined such that the answers given to M do not distinguish any set
in A; from any other set in A;. Furthermore, M’s current conjecture is not a set in A;.
Hence, the set A; satisfies all the answers given to M thus far and is not the set currently

-

conjectured by M. If b; = b;_; then M has stopped changing its conjecture and A; is the

>

desired set that M cannot infer.

The set of primitive recursive sets is contained in a strict subset of EX called PEX,

where all conjectures must be programs computing total functions [7]. Hence, the above

proof actually shows that, for any a € IN, PEX — QEX,[S,<] # 0. By Theorem 6

Q1 EX1[S,<]— EX # (). Combining this result with Theorem 18 we obtain the following.
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THEOREM 19. For all a > 0, QEX,[5, <] and EX are incomparable.

If we are restricted to inferring sets, then this is not true for the a = 0 case. The

analogous question for functions remains open.
THEOREM 20. When restricted to sets, QEX,[S, <] C EX.

Proof: Let M be a QIM using the query language [, <]. We define an IIM M’ such that
QEX,[S,<|(M) C EX(M'"). M' simulates M’s behavior on some set A assumed to be
in QEX,[S, <](M). The simulation is carried out in effective stages. At stage s > 0, a
sequence be {0,1}* is sought such that b “approximates” the correct sequence of answers
to the first s queries made by M while inferring A. Recall that in the proof of Theorem 5
we also had to look for an appropriate b.

Stage s: First we determine, for each sequence b="by...b, € {0,1}®, what the implications
of using b as input to M are. Define ¢}, ..., . as follows:

Fori¢:=1to s, if g(M(by...bi—1)) =1

then ; := q(M(by...b;—1))
L= i by = 1,y i by = 0
else ¢! := TRUE.

Let Ny be a nondeterministic finite automaton (interpreted as an w-automaton) that
recognizes all strings in {0,1}“ that satisfy ] A - - A L. M' accepts data until it has
as input o, the length s initial segment of A. Run Ny on o, following all possible nonde-
terministic paths. Note which path maximizes the sum total of all visits to all favorable
states. Associate this maximum number with b and call it numg. Choose b with numg
largest. In case of a tie, choose the lexicographically least qualifying b. Output g(Aff(g)).
End stage s.

The proof is completed by showing that the set A is inferred in the limit by M'. Since
M does not change its mind, there exists a finite sequence b such that (a) g(]\ff(g)) = e,

a program for A, (b) g(]\ff(g’)) = ¢ for all ¥ extending g, and (c) gsupplies the correct
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answers to questions posed by M about A. There is a constant ¢ such that for all b
different from g, but with the same length, N; on input A never visits a favorable state
more than c times. Let s be such that N; on the initial segment of A of length s visits a

favorable state more than ¢ times. Such an s exists because num is increasing with s. For

X

all t > s, M' at stage t will output e. Hence, A € EX(M").

Theorem 5 and Theorem 20 are similar in that both involve approximating the correct
answers. A general theorem could be stated that has both theorems as corollaries, but we

do not pursue this in the present paper.

LEMMA 21. The problem of testing if an arbitrary w-regular language is uncountable is

decidable.

Proof: By [16], given any of the standard descriptions of an w-regular language L, one can

effectively find nonempty, e-free regular sets such that

For every 7, determine if V.* contains two distinct strings, y and z, of the same length. If

for some 1, such a y and z exist, then U; - {y,z}¥ C L, so L is uncountable. If not, then

>

by part @) of Lemma 16, for all 7 (1 <: < m), || <1, so L is countable.

In the following lemma, we consider the behavior of NDFA’s on finite prefixes of
infinite strings. A NDFA accepts a finite string o, if when started in the initial state and

receiving o as input, the NDFA ends up in a favorable state.

LEMMA 22. Suppose N is an NDFA such that the w-regular language L(N) is uncount-
able. Then there exists a finite string o such that the subsets of strings from L(N) with
prefix 00 and ol are both uncountable, and there exists 7, a prefix of o, such that N

accepts 7 as a finite string.
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Proof: Suppose the hypothesis. Let D be all the finite strings that N accepts (as an NDFA)
without repeating a state on the accepting path. For some 7 € D, 7-{0,1}* N L(N) is
uncountable. Suppose by way of contradiction that for every finite string o that extends 7
one of ¢0{0,1}* N L(N) or ¢1{0,1}* N L(N) is countable. For b € {0,1}, b denotes 1 — .
Choose by such that Uy = 76;{0,1}* N L(N) is countable. Inductively define b,, € {0,1}
such that U, = 7biby -+ bypn_16,{0,1}* N L(N) is countable. Let w denote the infinite

string 7b1by - -+ If w € 7-{0,1}* N L(N) then
70,1} NL(N) = | J U U {w}.
m=1

Otherwise,

7 {0,1}*NL(N) = | | Up.

1

e

>

In either case, 7-{0,1}* N L(N) is countable, a contradiction.
THEOREM 23. QEX]|S, <] does not contain the set of all recursive languages.

Proof: Let M be a QIM that asks questions using the language [S, <]. We construct, in
effective stages, a recursive set A € QEX[S, <](M). At the beginning of every stage s we
will have:
1) Ay € {0,1}*, an initial segment of A.
2) Formulae 1, t3, ..., ¢y, of S1S with one free set variable and no free number
variables and bits by, by, ..., by € {0,1} such that for all 7, 1 < i < m, ¢; is the
" question asked by M, and b; is its answer. (Our intention is that for 1 < i < m,
bi=1& AEY;,and b, =0& A |E i)
3) A nondeterministic finite automaton N, which (7) accepts an uncountable subset of
As-{0,1}* and (u)for every B € L(Nj),
a) b =1= B |=1;, and
b) bi =0= B | ;.

32



The strategy of the construction is to extend A in such a way that N, will accept
A. This will mean that when A is constructed all the answers M received in response to
its queries are consistent with A. The crucial aspect of the use of w-automata theory is to
restrict the as yet unspecified part of A without determining it precisely. We make implicit

use of Lemma 21 and Lemma 22.

Begin construction of A. Initialize by setting Ay = A, the empty string. Let Ny be
a nondeterministic finite automaton accepting {0,1}¥. Execute the following effective

stages in their natural order.

Stage s. Let x be the least number whose membership in A is not yet specified. Suppose
that so far in the construction M has asked m questions and received answers by, by, ...,
b . Let e be the most recent conjecture by M as to a program to decide membership in
A.

Remark: Most diagonalizations in inductive inference attempt to extend the construc-
tion by making the current guess wrong or by forcing a mind change. If neither of these can
be accomplished, some default extension suffices. These components are also present here.
©e(x) must be defined in order to decide whether to place z in A or to keep x out of A.
Finding an As4; that forces M to change its mind entails answering another question that
may influence infinitely many values potentially in A. Hence, another automaton, Nsiq
will be determined. This device is used to guarantee that the set constructed is consistent
with the answers given to M about the nature of A. The construction of the default set
proceeds simultaneously with the simulation of ¢.(z) and the search for a mind change.

Suppose p is a finite string of 0’s and 1’s (representing a finite set) and N is a non-
deterministic finite automaton. We define EXT(p, N) to be o, the lexicographically least

string of 0’s and 1’s (if it exists) such that:
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1) o is a proper extension of p, and
2
3

4

)
) L(N)N (o -0-{0,1}¥) is uncountable, and

) L(N)N (o -1-{0,1}) is uncountable, and

) There exists 7 such that p is a prefix of 7, 7 is a prefix of o and N accepts 7 as a
finite string.

By Lemma 22, if L(N) N p-{0,1}* is uncountable, then EXT(p, N) is guaranteed to
exist. Whenever we use EXT(p, N) it will be the case that L(NN) is uncountable and

L(N)Cp-{0,1}*, so EXT(p, N) will exist.

Let b = (b1,b2,...,bny). This vector of responses will be lengthened during this stage.
To reduce notation, the various, larger and larger, vectors will not be indexed. Therefore,
galways denotes the current vector. Initialize the default set B by setting B,, = A,. Let
M(b) = (e, ).
The following three substages are iterated for t = m + 1, m + 2, ... until (if ever)
conditions for commencing the next stage are satisfied.
Substage 1. Diagonalize on x. If ¢.(x) is not convergent in < ¢ computation
steps then go to Substage 2. Otherwise, let ¢» = q(]\f(g)) and let diag denote the
S1S formula “X(z) =1 = pe(x).”
If L(Ns N N(diag) N N(2))) is uncountable then
Nuwr = N, 1 N(diag) N N (),
Asy1 :=EXT(As,Not1),
bmt1 =1,
b:=byby . ..bmy1, and
Go to stage s + 1.
Else
Nots = N, 1 N(diag) 0 N(~),
Asy1 :=EXT(As,Ngt1),
bt1 := 0,
b= boby ... bm+1, and

Go to stage s + 1.
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Substage 2. Find a mind change. If we find a mind change (details below) then
go to stage s + 1 as indicated. If not, go to substage 3. Let ¢y = q(]\f(g)). The
formulae ¢}, m + 1 <7 <t — 1, are defined in the next substage before their use

below. Define .
N =N, 1 A Aby_q Aiy)

N =Ny Ao Ay A=y).
(If t =m + 1 then N = N(¢¢) and N = N(=¢).)
If g(]\f(gl)) + e and L(N, N N) is uncountable then
Nyp1:=N,NN,
Asy1 :=EXT(As,Not1),
b= Z;l, and
Go to stage s + 1.
If g(JW(Z;O)) # e and L(N, N N) is uncountable then
Neyq1:=NgN N,
Asy1:=EXT(As,Not1),
b= Z;O, and
Go to stage s + 1.

Substage 3. Extend the default set B. Let N and N be as in Substage 2.
If L(Ns, N N) is uncountable then
By := EXT(B;_1,N, N N),
v =1 A AZ) (X(i) = B(i)), and
b:=bl
Else
B;:= EXT(B;_1,N, N N),
U= mueh N2y (X(0) = B()), and
b := b0.
End Stage s.

End Construction.
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If every stage s of the construction terminates, then every z is placed either in or out
of A. Hence A is recursive. Moreover, if M’s sequence of output programs converges then
by substage 1, M’s final conjecture is incorrect infinitely often. Substage 1 could force M
to never converge. In either case, M does not infer A.

If some stage s never terminates, then substage 3 of stage s creates a recursive set
B. Let b denote the value of b on entry into stage s. By the failure of substage 2 to
terminate stage s, M when attempting to infer B will converge to e = g(g’). By the failure

of substage 1 to terminate stage s, p.(z) is undefined for some x, hence M cannot infer

B.

>

As noted in the discussion of results concerning the query language [+, <], the notions
of anomalies, behaviorally correct inference 14, and teams 41, can be naturally combined
with our notion of query inference. Once these notions are understood, it is easy to define
the class [1,n]Q;BC*[L]. Using the techniques of Theorem 23 with those of the above
referenced papers it is possible to show that for all n,a € IN, R ¢ [1,n|QBC*[S, <].

The language that allows second order quantifiers and [S, <] is so powerful that two

quantifiers suffice to ask any question in any “w-automata” type language.
THEOREM 24. QEX[2", S <] = Q,EX[2"4, S, <].

Proof: By [12] all w-regular languages can be written as the set of solutions to a two

>

quantifier formula in the language [279, S, <].

Figure 6 summarizes all the results in this paper about query inference using the

language [5, <|.
QEX (S, <] CEX = QuEX[S, <] C Q1EX[S,<]CQEX[S,<]CR
nu
QEX,[S,<],a>0
Figure 6 Summary of [S, <]
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VIII. Conclusions

We have examined machines that learn by asking questions and have compared this
notion to that of machines that learn by passively examining data. The intuition that
asking questions aids the learning process was formally verified in a recursion theoretic
model. Our results corroborate Angluin’s [5] in that we found that the language used to
formulate queries has great impact on what can be learned. The undecidable language
[+, x] was found to be too powerful for use as a query language. The language [S, <] is
somewhat limited in what it can express as evidenced by Theorem 20. The most interesting
query language for future investigations is [+, <].

Several open problems remain. For the languages discussed in this paper is there an
infinite hierarchy of learnability based on alternation of quantifiers? For [+, <], we believe
so. In light of Theorem 24 we believe not for [S, <]. For the base language, if recursive sets
are being inferred, QEX[] = Q1 EX[] # EX [23]. What about other languages? It would
also be of interest to look at anomalies, mind changes [14], teams [41], and behavioral
correctness [14] in this context. Some preliminary results have been obtained [22].

Recall that Q1 EXy[x] € EX. In this paper we proved that Q1 EX,[S, <] C EX by
showing that the primitive recursive sets are not in Q1 EX[S, <]. Furthermore, as shown
in [23], the primitive recursive sets are not in Q1 EXy[+, <], hence Q1 EXy[+,<] C EX.
The question “Is Q1 EXy[+, X] properly contained in EX?” is particularly interesting
since the primitive recursive sets are in Q1 E X[+, x]. Determining the exact relationship
between EX and @y EXy[+, X] may require fundamental insights into the nature of EX
along the lines of [21].

As mentioned in the technical summary, the teacher answering the questions of a QIM
may require an oracle for an undecidable set. This undecidable set may depend on the
function being inferred and the query language. For example, questions in [+, x| using
¢ alternations of quantifiers will require at least a X;-complete oracle, perhaps stronger,

depending on the function to be inferred. Even with the base language there are recursive
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functions f such that answering existential questions about f in this language requires
the halting set. For example, if the range of f is the halting set, then queries of the form
“Jz[F(x) = a]” require knowing whether or not « is in the halting set. Characterizing
the needed oracle strength, in terms of the query language and function to be inferred,
remains an open problem.

A possible interpretation of our results is that a more powerful query language allows
more complicated questions and enhances learning ability qualitatively. If the human
brain is a computer, albeit biological, then our results apply to human learning as well. Of
course, at least in some cases, for humans to take advantage of learning enhancement by
queries, they would need access to question answering oracles surpassing the computable.
Nonetheless, one interpretation of our results is that increased ability to articulate questions
enhances learning potential. The results concerning questions with quantifiers compared
with quantifierless questions points out the utility of being able to ask questions about a

phenomenon’s global behavior rather than its local behavior.
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