Learning via Queries in [+, <]
by
William I. Gasarch!

Department of Computer Science
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

Mark G. Pleszkoch?
Department of Computer Science
University of Maryland
College Park, MD 20742

Robert Solovay?®
Department of Mathematics
University of California

Berkeley, CA 94720

ABSTRACT

We prove that the set of all recursive functions cannot be inferred
using first-order queries in the query language containing extra symbols
[4+,<]. The proof of this theorem involves a new decidability result
about Presburger arithmetic which is of independent interest. Using
our machinery, we show that the set of all primitive recursive functions
cannot be inferred with a bounded number of mind changes, again using
queries in [+, <]. Additionally, we resolve an open question in [7] about
passive versus active learning.

1) Introduction

This paper presents new results in the area of query inductive inference (introduced
in [7]); in addition, there are results of interest in mathematical logic.

Inductive inference is the study of inductive machine learning in a theoretical frame-

work. In query inductive inference, we study the ability of a Query Inference Machine

1 Supported, in part, by NSF grants CCR 88-03641 and 90-20079.
Also with IBM Corporation, Application Solutions Division, Gaithersburg, MD 20879.
3 Supported, in part, by NSF grant DMS 87-01828.

1

(QIM) to learn a recursive function f that is chosen from a given concept class (i.e. set) of
recursive functions. A QIM is a Turing machine with the ability to ask questions about f
in a particular query language (and magically get the answers). This differs from passive
inductive inference [1], where the inductive inference machine (IIM) is a Turing machine
that is presented with the function values f(0), f(1), f(2),..., one after another, and has
no other way of obtaining additional information about the function. Both query and
passive inductive inference deal with inference in the limit; that is, the inference machines
execute forever, possibly always asking new questions or receiving new function values.
From time to time, the inference machine may make a conjecture (guess) about the func-
tion f, in the form of a program which is supposed to compute f. The guess can be null,
denoted L. If the inference machine guesses the same program from some point on, and
that program is correct, then we say that the inference machine has inferred the function
f. We denote by EX the set of concept classes of recursive functions which can be inferred

in the limit by an IIM.

In what follows, we assume familiarity with [7] and use its notation. A key observation
of Gasarch and Smith [7] was that, for query inductive inference, the query language used
plays an important role in determining which concept classes of recursive functions can be
inferred. For the most part, the query languages studied consist of first-order sentences
containing the standard logical symbols (A,V,=,3,V,=), constant symbols for each natural
number, a function symbol F representing the function to be inferred, and extra symbols
such as [+, x] or [+, <]. If recursive sets are being inferred instead of functions, then a

predicate symbol A is used in place of the function symbol F.

Let L be the extra symbols in a language, and let a,: € IN (IN is the set of natural
numbers). We denote by QEX[L] (resp., Q;EX[L]) the set of concept classes of recursive
functions which can be inferred in the limit by QIMs using the query language L (resp.,
the subset of queries using L that have at most ¢ alternations of quantifiers and begin with
a 3). That is, if C is a set of recursive functions, then C € QEX[L] if and only if there
exists a QIM using the query language with extra symbols L that can infer every function
f € C. We denote by QEX[L] the set of concept classes of recursive functions which can
be inferred in the limit by QIMs using the query language L. which only change their mind

2

at most a times. A machine that is trying to QEX,[L]-infer a function may repeatedly
output L up until, but not after, it has made its first non-null guess. The change from L
to a non-null guess is not counted as a mind change. The class Q;EX,[L] can easily be
defined by combining these two bounds.

Let REC (RECSET) denote the set of all recursive functions (sets). It is known that
REC € QEX[+, x] (in fact REC € Q1EX[+, x] and REC € Q3EX([+, x| by Theorems 9,
10 of [7]), but that REC ¢ QEX[S, <] (Theorem 23 of [7]), where S denotes the successor
function. These facts lead to the conjecture that REC ¢ QEX[L] for any decidable query
language L, using an appropriate notion of query language decidability. This conjecture is
supported by Theorem 13 of [7] which shows that, for any query language whose existential
theory is decidable when the function symbol F is removed, REC ¢ Q;EX[L].

Thus, we would suspect that REC ¢ QEX[+, <], based on the fact that Presburger
arithmetic is decidable (see [3] for a proof of this). However, since the queries in [+, <]
are not strictly a part of Presburger arithmetic (as they contain the additional function
symbol F), it turns out that we require a new and stronger decidability result to show
that REC ¢ QEX[+, <]. This new decidability result plays the same role in the proof of
REC ¢ QEX[+, <] as w-automata did in the proof of REC ¢ QEX|S, <]: To diagonalize
against the QIM (Query Inference Machine), we need to be able to answer the queries in
such a way that we always have an uncountable number of total functions consistent with
the query answers to date. That we can do this for [+, <] is somewhat surprising in light

of the following result from [4].

PROPOSITION 1. It is undecidable to determine, for a general query ¢ in [+, <], whether
or not there are an uncountable number of total functions which make the query true. In
fact, it is undecidable to determine if there exists any total function which makes the query

true.

This proposition still holds if we restrict ourselves to 0-1 valued functions, i.e., sets.
Recall that these problems were decidable for [S, <], using w-automata. Fortunately, the
essential role of decidability in diagonalizing against a QIM is contained in the following

corollary of the main decidability result which we prove below.

3

e (Section 2) It is decidable, for a general query ¢ in [+, <], to select one of g or =g such
that there are an uncountable number of functions which make the selected query
true.

We use the machinery used to prove this theorem, and the theorem itself, to show

e (Section 3) REC ¢ QEX[+, <], and

e (Section 4) for all ¢, PRIMREC ¢ QEX_[+, <], where PRIMREC is the set of all
primitive recursive functions.

Readers who are only interested in the mathematical logic results need only read
Section 2. Readers who are only interested in inductive inference need only know the
statements, but not the proofs, of the results in Section 2.

A language is reasonable if all the extra symbols denote functions and predicates that
are computable. In [7] it was shown that for any reasonable language L, Q1 EX,[L] C EX.
It was an open question to determine for which L the inclusion was proper. Using w-
automata, one can show that, for all ¢, PRIMREC ¢ QEX_[S, <] [7]. As noted above,
the machinery of this paper can be used to show that, for all e, PRIMREC ¢ QEX_[+, <];
since PRIMREC € EX [8], these results demonstrate that Q;EX,[S, <] € EX and
Q1EXy[+,<] € EX. It is doubtful that similar machinery can be developed for [+, X]
since PRIMREC € QiEXy[+, x].

Using an entirely different approach, we resolve the question of how EX and Q;EX[L]
compare by showing:

e (Section 5) For any reasonable language L, and any ¢ € IN, EX .y — Q1EX/[L] # 0,
hence Q1EXy[L] C EX.

The interested reader may consult [1,2,5,10] for further background on recursion-

theoretic inductive inference.

2) Decidability Results

In this section, we present the decidability results, due to Solovay, that are used to
prove REC ¢ QEX|[+, <].

We make two modifications of the standard query inference framework. First, we

extend the domain from the natural numbers to the integers. This does not affect the

4

utility of the final decidability results, since the less than predicate allows us to specifically
restrict the range of any variable to the natural numbers. Second, we use a set symbol A
instead of a function symbol F in the queries. This actually increases the power of the
inference result, as we prove RECSET ¢ QEX|[+, <], instead of just REC ¢ QEX [+, <].

The essential idea in the proofs of the decidability results is that there is an uncount-
able class of sets (which we call k-good sets) for which it is decidable to determine if they
satisfy a given query. The decision procedure itself uses a form of quantifier elimination
to put the queries into a simple form. In our quantifier elimination, the original formula,
1(A) is guaranteed to be equivalent to the quantifier free version (. A) only if a certain
kind of set (a k-good set, where k is determined during quantifier elimination) is the in-
terpretation of A. We define the basic query language, and its interpretation in a set of

models.

Definition: For an infinite set S C IN, the model Zg (of the language L) has universe Z

(the integers), where the non-logical symbols of L are given and interpreted as follows:

Symbol Type Interpretation

0 const 0

1 const 1

+ func 2 Az, y[z + y]

- func 1 Az[—z]

< pred2 {{z,y) :z <y}

predl {z:z €S}

An L-formula is a first order formula (possibly containing free variables) constructed
using the symbols of L and the logical symbols A, V, =, 3, and V. An L-sentence is an L-
formula with no free variables. For example, 3z.A(z) is an L-sentence, and Jz A(2)A(z < y)
is an L-formula, but not an L-sentence. Where convenient, we will occasionally use the
less than or equal to predicate. In this event, we interpret ¢; < t5 as an abbreviation for
t1 <t + 1.

In order to perform quantifier elimination, we need to introduce extra operations to

replace the expressive power that the quantifiers add.

5

Definition: The language L° is an extension of the language L, where the new non-logical

symbols are interpreted in Zg as follows:

Symbol Type Interpretation

] func 1 Az[max ({0} U{y e S:y < z})]
B func 1 Azfmin {y € S :y > z}]

D, pred 1 {z:(Jy)2y = z}

D pred 1 {z:(Jy)3y =z}

D, pred 1 {z:(Jy)dy = z}

We need one more langauge that will serve as an intermediary.

Definition: The language Ly has logical symbols 0,1, 4+, —, and <; and also Dy, D3, Dy,
They are intepreted as indicated in the above tables.

We now define the class of k-good sets, for which we actually decide queries in L and
Le.

Definition: For k > 1, a k-good set is an infinite set S = {sg < 81 < s2 < 83 < +--}
satisfying:

1) (Vi > 0) k! divides s;,

2) k < so,

3) (Vi >0)Fk-s; < Sig1.

As usual, k! denotes the product of the positive integers < k. Notice that there are an
uncountable number of k-good sets for every k. Notice further that if &' > k, then every
k'-good set is also a k-good set.

We give an intuition, and foreshadow, why k-good sets are useful for the decidability
result. Assume that z; > 2z, > -+ > z,, are elements of a k-good set, where k is large.
The number z; is quite large compared to the other elements. Therefore, statements like
Yoiaizi <t, > .a;z; =t,and). a;z; >t may be determined purely by the relation of z;
to t. In this manner, complicated statements reduce to easy ones.

The main decidability result is proved in two pieces, contained in the first two theorems

of this section. The key part of the procedure is contained in the next theorem, which is

6

the quantifier elimination step.

THEOREM 2. There is an effective procedure that, given an L°-formula ¢, produces a
k > 1 and a quantifier-free L®-formula ¢’ such that for all k-good sets S and all variable
assignments v, we have:

Zs = q[v] <= Zs = ¢'[7].

Theorem 2 is a direct consequence of Lemma 3.

LEMMA 3. There is an effective procedure that given an L°-formula of the form Jz6,
where 6 is quantifier-free, produces a k¥ > 1 and a quantifier-free L¢ formula 6’ such that

for all k-good sets S and all variable assignments v, we have:

Zs = (32)b[7] < Zs = 0'[7).

Proof:

To prove Lemma 3 we begin by describing a certain game G, played between two
players I and II. A simple argument will establish that a recursive winning strategy for I
in the game G yields a procedure £ meeting the demands of Lemma 3. The bulk of our
argument will consist in describing such a recursive winning strategy for player I.

The game G starts with player II choosing a formula of L¢ of the form 26 with 6
quantifier-free. At any turn of the game, there will be a “current main formula”. At the
start of the game, it is the formula chosen by II. Intuitively, player I is trying to prove that
there exists a k and a quantifier free formula such that the given formula is equivalent to
the quantifier free formula for all k-good sets; player II is trying to show that this is not
the case.

The game proceeds in rounds. At the start of any round, player I has the following
options. Let ¢ be the current main formula at the start of the round.

1) If the formula ¢ is quantifier-free, the game is over, and player I has won.
2) Player I may elect to write down an integer k and a new formula ¢'. If for all k-

good sets S and any assignment of values in Z to the variables, the two formulae are

7

equivalent, then the round is completed and ¢’ is the next “current main formula”. If
not, player I immediately loses this play of G,

3) The next option is available to player I if the current main formula has the form
v A 6 where 7 is quantifier-free. He simply writes down é as the next “current main
formula” and the round is over.

4) The final option has player I demanding a response from player II. This option is
available if the current main formula ¢ is a disjunction 6; V ---V 6. (Player I will
explicitly present a particular representation of ¢ as a disjunction to player II.) Player
IT will then choose one of the disjuncts #; to be the next “current main formula”

ending this round.

If a play of the game does not terminate at any finite stage, then player II is declared

the winner.

LEMMA 4. If player I has an effective winning strategy for the game G then Lemma 3 is

true.

Proof:

We fix a recursive winning strategy o for player I in the game G. Using o we define an
auxiliary procedure P. Our intention is that P takes as input a position p in the game G
in which player I has played according to o, and supplies an integer k and a quantifier-free
formula ¢’ such that ¢’ is equivalent to the current main formula of position p for all k-good
sets S.

After we describe the algorithm for P we will show that P works as intended by con-
tradiction. That is, on the assumption that P does not “function correctly” we construct
a play of the game G in which player II succeeds in defeating player I’s winning strategy o.
Thus procedure P will be shown to “function correctly”. Using P, we will easily construct
a suitable procedure £ witnessing the truth of Lemma 3. This will be easy since player I
eventually produces a k and a quantifier free formula.

We view the position p as recording the entire history of the game up to that point
including which option I chose at each prior round, and the sequence of “main formulae”

as well as the choices of player II.

Here is a description of the procedure P. If the current main formula ¢ is quantifier-
free, then P returns the value 1 for k¥ and returns ¢ as its quantifier-free answer.

Next suppose that player I, using strategy o, will invoke the option 2 writing down a
number k' and a formula ¢'. Call the resulting position p’. Procedure P calls upon itself
with the input p’. Let us suppose the returned values are k" and ¢"'. (It could happen,
of course, that the call to procedure P with input p' never terminates. In that case, the
call with input p will also never terminate.) Then P returns k := max(k', k") and ¢" as
its number and formula.

Next suppose that player I chooses option 3. So ¢ has the form v A 6 where ~ is
quantifier-free, and for the succeeding position p', the current main formula will be 6.
Procedure P calls upon itself with the input p’ getting the answers & and 6'. P then
returns k and y A €'.

Finally suppose that player I chooses option 4. In this case he specifies a decomposition
of the current main formula as a disjunction 6y V ---V 6,,. Player II gets to choose one of
the 6;’s as the next main formula. Let p; be the position resulting after player II’s choice of
6;. Then procedure P calls itself with the successive inputs pq, ..., p, getting the answers
k; and 6. to its call with input p;. Procedure P then returns k := max{ky,...,k,} and
g =0, v---vel.

This completes our description of procedure P. We next demonstrate that for any
initial position (i.e, the position immediately resulting from player II's writing down a
formula Jz6 with 6 quantifier-free) procedure P returns a correct answer.

Suppose not toward a contradiction. Then one easily constructs a sequence {pn, }n>1
of positions such that:

1) pn is the position at the beginning of the n'" round of a play of G in which I plays

according to o.

2) P does not return a correct answer on input p,.

It follows first, the current main formula in this play of G is never a quantifier-free
formula. (Else P would give a correct answer on input the corresponding position.) Also
the play goes on forever. So II wins. But this contradicts our assumption that o is a

winning strategy for player I.

But now it is easy to construct the desired procedure £. On input ¢ of the form Jz6,
L constructs the beginning position p in the game G that corresponds to ¢. Then £ calls
upon P with input p and gets the answers k¥ and ¢'. It then itself returns k¥ and ¢’ as its
own answers. This completes the proof of Lemma 4. X

We return to the proof of Lemma 3. We shall describe a winning strategy for I in
the game G just described. (Of course, once Lemma 3 is proved, player I has a trivial
winning strategy employing £.) We shall let the game metaphor and player II recede into
the background. After supplying the initial formula, player II’s role is only to pick, from
time to time, one of the disjuncts of the current main formula. We shall say instead that
player I focuses on a disjunct. This should cause no confusion if it is firmly understood
that player I does not himself choose which disjunct will be focused on.

It would be tedious and uninformative to keep track in our notation of the many
different formulae that will occur in the course of the transformation from our initial
main formula ¢ to the final quantifier-free formula ¢’. Thus we speak of performing a
transformation on the formula 6 rather than of replacing the formula 6 by some other
formula #' when we think no loss of clarity results.

We turn now to the details of the description of the winning strategy o for player I
needed to complete the proof of Lemma 3.

Step 1:

Our initial formula ¢ has the form dx6, where 6 is a quantifier-free formula. Our first
step is designed to set things up so that we can apply the usual Presburger elimination
algorithm (see [3] for a presentation of this algorithm). In order to do this, we must
separate those terms involving A, |-|, and [-] from the rest of the formula.

First, we replace every sub-formula of the form A(t') with the formula [¢t'] = ¢'. Next
we eliminate terms ¢ of the form [#'] or [#']. Intuitively, notice that the formula ¢ = |#']
means t € S, t < t', and no element of S lies between ¢t + 1 and ¢'. Informally, we eliminate
t by explicitly defining two new existentially quantified variables zy; and z5;41 such that
z9; < t' < 29441, and z9; and z9;41 are adjacent elements of S; then replace ¢ by za;.
The formula ¢ = [t'] is handled similarly, except that at the end, ¢ is replaced by z3i41.

The above description is not quite accurate because we must also cover the case where no

10

element of S is less than or equal to t', so that [#'| = 0; and because we must make an
extra effort to separate the part of the modified formula involving S from the rest of the
formula. Formally, we proceed as follows. (It is important to specify carefully the order in
which we tackle the terms ¢ and to prove that the procedure converges. We shall handle
these points in a moment.)
For every term ¢t of the form [#'| or [t'| we perform the following steps:
1) Introduce new (existentially quantified) variables zy; and 22,41 (where ¢ is the number
of floor and/or ceiling terms that have been previously processed).

2) Conjoin a formula 1); stating that z9; and 22,41 represent adjacent elements of S, i.e.,
(A(22i) V (220 = 0)) A (22641 = [22: + 1]).

The formula 1); is not considered to be part of the new 6.
3) Replace t with the appropriate new variable, and conjoin to 6 a formula that states

that zy; and 29,47 surround ¢'. That is, if #is [#'], then we perform the transformation:
0 :=(((z2: <t')V(22s = 0)) A (t' < 22i41) A O[22:/1]).
If ¢t is [t'], then we perform the transformation:
0:=(((z2: <t')V(22s =0)) At < 22i41) A O[2z2i11/1]).

Note that special care is taken to allow (z3; = 0) in case we have [t']| = 0 (for t = [¢'])
or [t'—1] =0 (for t = [t']).

We now spell out the order in which the terms ¢ are to be processed. Call the box
rank of a term ¢ the number of occurrences of the floor and ceiling function symbols in
t. We always pick to be processed a term t of maximal box rank in the current version
of 8. Suppose that this term has box rank r. Inspection of the step that eliminates this
term will show that no new terms of box rank greater than r are introduced, and that
the number of terms of box rank r is actually decreased. Thus as our procedure runs the
terms of box rank r and above will eventually all be eliminated. Then all the terms of box
rank r — 1 will all be eliminated, and so forth. Eventually, the procedure will terminate in

a formula 6 not containing any floor or ceiling function symbols.

11

At the end of this procedure, the entire formula has the form:
ElZOElZl e ElZQnElZQTH_lElJ? [1/)0 A A @Z)n A 9]

We define 1 to be g A -+ A ¢, and write the formula as 32’3z [A 6].

It will be convenient later to know that the set of variables Z' is non-empty. We
can always arrange this by replacing, if necessary, the formula 8 by 6 A (0 = |0]) before
commencing Step 1.

Step 2:

Since the variable x does not appear in the formula ., our current formula is equivalent
to the formula 32'[¢) A Jz60]. Moreover, we have arranged matters so that neither the
predicate A nor the function symbols |-| or [-| appear in 6. Hence we can apply the
standard quantifier elimination procedure for Presburger arithmetic to replace 4z 6 by a
quantifier-free L;-formula (which we again call).

Step 3:

Our next task is to transform the formula 6 so that it remains an L;-formula, but
contains none of the predicates D;. For the transformations of the current step to be
valid, we must require that k¥ > j for any j such that D; occurs in 6. It follows that if S
is k-good, and z € S U {0} then z = 0 mod j.

Let (32)[¢) A 6] be our current “main formula”. The formula 6 is a quantifier-free
Lq-formula. We put it in disjunctive normal form. Thus 6 is logically equivalent to a
disjunction ' V - -V ™ where each of the €’ is a conjunction of atomic L;-formulae and
negations of atomic L;-formulae.

It follows that the main formula is logically equivalent to the disjunction:

(326 A6V -V (3D A 67 (+)

We shift our focus to one of the disjuncts of (x) and change our notation so that 6
refers to one of the formulae 7. What we have gained by this is that 6 is now a conjunction
of atomic formulae and negations of atomic formulae of L.

Let us call two Li-terms equivalent if they take the same values in Z for every assign-

ment of values in Z to the variables of L;. Clearly up to equivalence, every term can be

12

represented as a linear combination ag + aq - vy + -+ 4+ a, - v, where vy, -+, v, are distinct
variables of L; and the coefficients a; are elements of Z. We shall speak loosely from here
on out and act as if the Li-terms are such linear combinations (though clearly this is not
literally true).

Consider a conjunct of € in which some D; appears. The requirements we have
imposed on k together with the formula 1 insure that the values of the variables of Z
must be chosen = 0 mod 5. Thus we can find an equivalent formula to this conjunct in
which none of the variables of Z appears. But then we can move the conjunction of all
the conjuncts of § in which a D; appears past the block of quantifiers 32. The resulting

formula has the form:

(RN ERINN

where ~ 1s quantifier-free and now 6 is a quantifier-free L;-formula containing none of the
predicates D;.

For the remainder of our discussion, we can focus our attention on the second conjunct
of this formula. The net result is that our current formula now has the form (32)[¢) A 6]

where 6 is a quantifier-free L;-formula not containing any of the D; predicates.

Step 4:

Before beginning this step, we have to handle a technical point. A finite conjunction
of L°-formulae can be rendered in several tautologically equivalent forms because of the
different possibilities for ordering and grouping the conjuncts. The reader should fix on
some convention to eliminate this ambiguity (which we shall ignore in the future). One
approach that works is to always use the rendering of minimal Godel number.

Let x1,Xx2,---,Xxm be all possible orderings of the 2" variables, including their relation
to 0. Examples of such orderings are 0 = z9 < 2z = 21 < 23 and 0 < z3 < z3 < 29 < 27.
Only orderings which are consistent with ¢ should be included. For example, any ordering
with z3 = z3 is impossible (since z3 = [22 + 1]), as is the ordering 0 < zg < 22 < 21 < 23,
since no element of the k-good set can occur strictly between zy and z;.

Here is a precise statement of the conditions we impose on the y;’s:

1) Let T be the set of all terms that are either 0 or one of the variables of 2. Then y;

13

will be a conjunction of formulae of the forms ¢t < ¢ and ¢+ = ¢’ where ¢ and t' are
members of T'.

2) Let t and t' be elements of T. Then exactly one of the formulae t < ¢/, ¢t = ¢/, and
t' <t is a conjunct of y;.

3) (32)x; is consistent with Presburger arithmetic.

4) Let zy; and 2241 be variables of Z. Then the formula z9; < 22,41 is a conjunct of ;.

Moreover, for no t € T are the formulae z;; <t and ¢ < 22,41 both conjuncts of x;.

It is clear that we can effectively generate the list of formulae y1,..., xm satisfying
the conditions just enumerated.

The formula (32)[1) A 6] is equivalent to
\/ G2 A6 A ()
j=1

We focus our attention on one of the disjuncts of (xx). We shift notation and denote
the formula x; by x. The effect of this transformation is that we now have complete
information on the ordering of the terms in 7.

Step 5:

Our next step is to reorganize the information contained in ¥ A x into a particularly
transparent form. The formula y defines an equivalence relation on 7' as follows: terms ¢
and t' are equivalent iff “¢ = ¢'” is a conjunct of y. Since we have arranged matters so that
T contains at least the variables zy and zq, it is clear that T has at least two equivalence
classes. We order the equivalence classes of T' in the evident way: The equivalence class of
t is less than the equivalence class of ' iff the formula y contains a conjunct “t < ¢'”.

Let the number of equivalence classes of T' be r + 1. We have already remarked that
r > 0. Let wy,...w, be fresh variables (not appearing in our current main formula). Let
W be the set of terms {0, wy,...,w,}.

To each term of T we associate a term of W as follows: If “4 = 0”7 is a conjunct of
X, then the term associated to t is 0. Otherwise, let the equivalence class of ¢ be the i"
largest equivalence classes of T. Then we associate the term w; to t.

Let ©»* be the conjunction of the following formulae:

14

1) For 1 < <r —1, the formula “w; > w;yq”.

)

2) The formula “w, > 0”.

3) The formula “A(w;)” (for each ¢ such that 1 < <r).

4) Let zy; be one of the z variables. Let w € W be the term associated to z;; and let
w' € W be the term associated to zz;41. Then the formula “w' = [w + 1]” will be a
conjunct of *.

This completes our description of ¢*.

Let 8* be obtained from 6 by replacing each variable z; in 6 by the associated term
in W. Then it should be clear that the formula (32)[t) A x A 6] is equivalent to the formula
(35[0 1 6],

We make two cosmetic changes to complete this step. First we replace each of the
variables w; by the variable z;. Second, we drop the % from our notation for 8* and instead
call the resulting formula 6. Note that it is no longer the case that zy; and z5;41 are
necessarily adjacent.

Thus at the end of this step, our current formula has the form: (32)[¢p* A 6]. 6 is a
quantifier-free L-formula, which is a conjunction of formulae that are either atomic or the
negations of atomic formulae. Moreover, none of the predicates D; appear in 6.

Step 6:

This step is a relatively minor one. We wish to organize the formulae in 6 in a slightly
more useful form.

Recall that we are viewing Lq-terms as linear combinations of the variables and the
constant 1 with integral coefficients. We replace the various atomic formulae of 6 by
equivalent atomic formulae so that the left-hand side of each new atomic formula is either
0 or a linear combination of the variables in Z, while no variable from 2" appears on the
right hand side of any new atomic formula. (It may be necessary to multiply an inequality
by —1 to achieve this migration of the z’s to the left hand side, since > is not a basic
predicate of our language.)

We sum up what we have achieved in this step. We may assume that € is a Boolean
combination of atomic formulae whose left-hand side is either 0 or a non-zero linear com-

bination of the variables from 2z and whose right-hand side contains no variables from Z.

15

Each of these formulae has as its predicate one of the symbols < or =.
Step 7:
We will produce a formula €', and a value of k, such that for all & good sets, (32)[p* A
0] = (32)[* A€'] and ' is a quantifier-free L°-formula of a very simple form: every atomic
formula in 8’ either contains none of the Z variables or is of one of the forms: z; < #, ¢ < z;,
or z; = t, where t does not involve any of the Z variables.
For the course of the processing involved in this step we introduce a new predicate
> to the language L°. (We have the obvious semantics for this new predicate: “z > y”
is equivalent to “y < z”.) This will make it possible for us to maintain our desire that
the 7' variables remain on the left of our atomic formulae. At the end of this step we will
eliminate > (in favor of <) in the obvious way.
The following are the inductive assumptions that we will preserve about 6 during the
course of this step.
1) 6 is a Boolean combination of atomic formulae.
2) Let « be one of the atomic formulae appearing in 6. Then the predicate of « is one
of <, =, or >.
3) Let a be as above. The left-hand side of a will be either 0 or a linear combination
of the variables z. The right-hand side of «a contains no variables from 2. (It may

however contain the function symbols |-] or [-].)

Define the rank of an atomic formula meeting the conditions imposed on « above as
follows. Let the left-hand side of « be equivalent to a linear combination Z;Zl aj - Zn;
where the a;’s are non-zero, and ny < --- < n,. (r could be zero, in which case this sum
is just 0.) If r > 1, we say the rank of a is r. If r =1 and ay # 1, we say the rank of « is
1. Otherwise, we say the rank of « is 0.

We shall describe a transformation that achieves the following. If the maximal rank
of any atomic formula appearing in € is r > 0 and the number of atomic formulae of rank
r is s, then after the transformation, the maximum rank will be < r, and the number of
atomic formulae of rank r will be < s. Clearly by iterating such transformations (always
tackling an atomic formula of maximal rank) we will eventually transform 6 so that it has

no atomic formulae of rank > 0, thereby completing the goal of this step.

16

So we turn our attention to an atomic formula, «, of 8 of maximal positive rank. To
ease the notation, we shall consider the case when n; = j for 1 <j <r. The general case
is handled similarly.

Keep in mind that, for this transformation, formulae are called equivalent if they are
equivalent under the assumption that the ordering on the z;’s is that described in ¢*. We
will find a formula 3 that is equivalent to a (for k-good sets for an appropriate value of k),
but where every atomic formula in # has summands with fewer than r terms. Applying
this recursively, we eventually get a formula, all of whose atomic subformulae are of the
desired form. As it happens, we can also apply case 1 of the transformation when r = 1
to get rid of the constant multiplier in single term summands.

We may assume that a; > 0. (If necessary, multiply both sides of @ by —1.) To
insure the validity of the transformations of this step, we impose the requirement that &
be greater than). |a;l.

The intuition about the transformations is that since (1) S is a k-good set, (2) for
all 7 z; € S, and (3) 21 > 29 > -+ > z,, we know that z; is much bigger than the other
z-terms; hence its relation to t should be the only important factor in determining (say)
whether ZZ a;z; < t. This will allow us to (almost) get rid of all the other variables. The
following calculations help to pin down this intuition.

Zam =(a1 —1)z1 + 21 + Zam
i i>2

>(a1 — 1)z + 21 — Z |ai|z2
i>2

>(ay — 1)z + kzg — Z lailza (since kzy < z1)

i>2

> (ar — Dzr + (k=Y lai])z
i>2

> (a1 —1)zy (since k >). |a4))

Zam <arz + Z |a;|z;

{ 122
<ayz1 +kzg (since). |a;| < k)

<(a; + 1)z (since kzy < z1)

17

Combining the above calculations, one obtains
(a1 — 1)z < Zaizi < (a1 + 1)z

We now exhibit a concrete example of the z; term determining the relation between). a;2;

and ¢.
z1 < [t] = kz < [t] (since z; and [t] are both in)

= (a1 + 1)z; < [t] (since ay < k)

= Zaizi < [t] (since), aiz; < (a1 +1)z)
= Zaizi <t (|t] #0since z; < [t])

We now proceed to transform every atomic formula. There are three cases, depending
on the magnitudes of a; and a;. Within each case we must deal with three types of atomic
formulae, namely . a;z; < t, > .a;z; = t, and), a;z; > t. We examine one type of
atomic formula under one case in detail, and then state what happens for the other cases
and atomic formulae. The omitted details consist of calculations similar to the above.
Case 1: (a1 > 1)

Consider the atomic formula) a;z; < t. It is true iff the following formula is true:

((21 <[tHhA) aiz <t))v (z1 = [t Aar [t] +) aizi <) \/((21 >[N aiz <t)> .
i i>2 i

Since z1 < [t] = >, a;z; < t, the first disjunct is equivalent to z; < [t]. Using

(a1 —1)z1 < Y, aiz;and aq > 1, weget > a;2; <t = (a1 —1)zg <t =2z <t =2z < |t].

(The last implication follows from z; € S and the definition of |-].) This implies that the

third disjunct is identically false. Therefore the original formula is equivalent to

(1 <tV [(zr= DA [ar[t] +) aizi <t
i>2
In turn, this is equivalent to

(21 <LtV [(21 = DA D aizi <t—ar|t)

i>2

This is of the desired form. In the other cases discussed we leave to the reader the massaging
needed to bring the non-z terms to the right.

Thus, the atomic formula) . a;z; = t is equivalent to

(1=t A [aalt] +) aizi =t

i>2

Likewise, the atomic formula). a;z; > t is equivalent to

(1>t V [(= [EDA [arlt] +) aizi >t

i>2
Case 2: (a3 = 1) and (az > 0). All subcases have identical outcomes to those of Case 1.
Case 3: (a1 = 1) and (a2 < 0).

>, aizi <t is equivalent to

(1 <t) V [(s =TDA [aa[t] +) aizi <t

>, aizi =t is equivalent to

(z1 =D A [ar[t] +) aizi =t

i>2

>, aiz; >t is equivalent to

(2> Vv [z =TDA [a[t]+) aiz >t

i>2

Step 8:

Transform 6 into disjunctive normal form. Now replace each negation of an atomic
formula by a disjunction of atomic formulae. (For example, replace x # y by ¢ <y Vy <
z.) Put 6 into disjunctive normal form again. Thus at this point 6 is a disjunction of
conjunctions of atomic formulae.

Now move the disjunctions out past the existential quantifiers and focus on one of the

disjuncts. The effect is that we are left with a € that is a conjunction of atomic formulae.

19

Moreover, each of these formulae either contains none of the 2" variables, or has a single 2’
variable occurring as the term on one of its sides.

Step 9:

We say that ¢ is a high level term of 6 if:

1) t appears on the left or right side of one of the conjuncts of 6;

2) None of the variables of 2" appear in t.

We next arrange that every high-level term in 6 is a floor or ceiling, as follows. Replace
every atomic formula in 6 of the form z; < ¢t with z; < [t]. Replace every atomic formula
in 6 of the form z; > t with z; > [t]|. For every atomic formula in 6 of the form z; = ¢,
replace it with z; = [t], and add the conjunct ¢t = |t] outside the quantifier block. All
these transformations are valid via z; € S and the definitions of |-| and [-]. (E.g. if z; <,
then ¢ < [¢] implies z; < [t|. Conversely, if z; < [t]| then z; < t, since t < z; and z; € S
implies [t] < z;, a contradiction.)

After this is done, our main formula has the form v A (32')[¢o* A 0] where v is quantifier-
free and contains no variables from 2. We focus on the second conjunct of the main formula.
This achieves our goal that every high level term of 6 is either a floor or a ceiling.

Let U be a non-empty set of L® terms and x a formula of L®. We say that y gives an
ordering of U if the following conditions are met:

1) x is the conjunction of a set of atomic sentences.

2) Let a be a conjunct of y. Then « has the form sRt where s and ¢t are members of U
and R is one of the relation symbols “=" and “<”.

3) There is a surjective map f : U — k (where k is a non-negative integer and hence is
equal to the set of integers less than k) such that for s, ¢ elements of U: (a) “s < ¢”
is a conjunct of x iff f(s) < f(t); (b) “s =7 is a conjunct of x iff f(s) = f(¢).

It is clear that we can effectively determine, given U, the finite set of y’s that give an
ordering of U.

We let H be the set of high level terms of 6 together with terms for 0 and the least
element of S, namely [0+ 1]. Let V = {z1,...,2,.}.

Let x be a formula that gives an ordering of V' U H. We say that y is compatible with

f if every conjunct of 6 is a conjunct of .

20

Let x be as above. We say that y is compatible with * if the following conditions
hold:
1) Whenever a formula of the form sRt is a conjunct of ©* (where s, ¢t € (V U H) and
R € {=,<}) then sRt is a conjunct of x.
2) Suppose that t = [s+ 1] is a conjunct of ¢*. Then for no term v € (VUH) are s < u
and u < t both conjuncts of y.
Let x1, ..., xs be those formulae giving orderings of V' U H which are compatible with
6 and ¢*. Then it is clear that the formula (32)[¢)* A 6] is equivalent (for any 1-good set
S) to the formula:

V @0 A (%)

It could conceivably happen that s = 0. Le., there are no orderings of VUH compatible
with 6 and *. In that case, the current main formula is easily seen to be equivalent (for
all 1-good sets S) to the quantifier-free formula “0=1" and we are done.

We focus on one of the disjuncts of (x * x) and refer to the corresponding x; as x.

Step 10:

We are finally ready to eliminate the quantifiers from our current main formula.

Step 10 proceeds in several stages, and we first describe the inductive assumptions
that we will maintain during this process.

1) H is a set of terms each of which has one of the forms [t| or [t] for some term t in
which none of the variables 2" appear. (As Step 10 proceeds we will add terms to H
but never remove terms.)

2) V is a subset of {z1,...,2,} (As Step 10 proceeds, variables are deleted from V but
never added.)

3) x gives an ordering of H U V.

4) ** is a conjunction of atomic formulae whose conjuncts are precisely those clauses
of ¥* in which only z;’s from V appear.

5) The current main formula is (3V)[¢** A y] where V is the elements of V in some order.

6) Let s and ¢ be terms such that ¢t = [s+ 1] is a clause of ¥»**. Then for no term v € H

are the formulae s < v and u < t both conjuncts of y.

21

At the start of this step, H, V and y have the values they had at the end of Step 9.
Yp** is the formula ¢*. It is clear that all our inductive assumptions are met.

We indicate various processes which we can sometimes apply. When one of the pro-
cesses applies, it removes some variables from V', maintains our inductive assumptions and
replaces the old main formula by one which is equivalent (for any 1-good set S). We shall
show that one of these processes applies unless the set V' is empty. But when V is empty
we have succeeded in converting the current main formula to a quantifier free formula, and
we are done with the quantifier elimination.

Case 1: For some term t € H and some variable v € V, x contains the conjunct ¢t = v.

In this case, the basic idea in eliminating v is clear. We will delete all the clauses in
x involving v. This almost works but there is one extra wrinkle.

The variable v may appear in ™ in clauses of the form “y; = [yz + 1] (where
y1,y2 € VU {0}, and one of them is v.) In that case we proceed as follows.

If, for some term s, the formula s = [v+ 1] is a conjunct of ¢**, add the term [t 4 1]
to H. Add the clause [t + 1| = s to x. (Note that from the definition of ¢* there is at
most one such s.)

There 1s at most one way of prolonging y to give an ordering of the “new” V U H.
(Since we have added a single term to the set being ordered and required that the new
ordering make it equal to the old element s.) If there is no such way (since [t + 1] was
already in H, and the old x made s = [t + 1] false), then the current main formula is
clearly equivalent to 0 = 1 and we are done.

If not, we continue. There might be a formula of the form v = [s + 1] which is a
conjunct of ¢**. (Again, this is true for at most one term s.) If so, add the term |t — 1]
to H and the clause [t — 1] = s to y. Again prolong x to give an ordering of H UV if
possible. If it is impossible to so prolong y, the current main formula will be equivalent to
“0 =17 and we will be done with the quantifier elimination process.

The justification for the maneuver of the proceding paragraph is as follows. Let = and
y be elements of SU {0} with y > 0. Then the formulae y = [z 4+ 1] and |y — 1] = z both
say that z and y are consecutive members of S U {0} with = < y.

Finally we delete v from V', and redefine ¢»** so as to meet clause 4 of our induc-

22

tive requirements. We leave to the reader to verify that if we do this all our inductive

requirements are met, and that the new main formula is equivalent to the previous one.

Case 2: Case 1 does not hold but there are consecutive terms a and b of H (with
respect to the ordering of H given by x) such that for some variable v € V| x decrees that

a<vandv <b.

In that case, fix such an a and b and let W = {v € V| x decrees that a < v and
v < b}.

We claim that if the clause t = [u + 1] appears in ¢** and one of u and ¢ appears
in W, then both u and ¢ appear in W. There are several cases to consider in seeing this.
First, we cannot have u the term 0 and ¢ € W, since then Case 1 would apply. (Recall
that [0+ 1] € H.) Similarly, since Case 1 does not apply, x does not decree that v = a
or that b = ¢. So if, for example, t € W and u ¢ W, then we must have x decreeing that
u < a and a < t. But this contradicts clause 6 of our inductive assumptions.

We let s be the cardinality of W. For 0 < < s we define a term a;, by induction on
i, as follows. The term ag is just a; a;41 shall be [a; + 1].

Let H = HU{as}. Let V' be V. — W. Let x' be the formula that orders V' U H' by
an ordering that prolongs the ordering on V' U H given by y and which places as between
a and b. There is at most one y' meeting these requirements since a and b are adjacent
elements of V' U H in the ordering given by x. The only way there could fail to be such a
X' is if a; € H. In that case, it will result from the following discussion that the current
main formula is equivalent to 0 =1 (since x decrees that b < as) and we will be done.

We define ¢’ to be the conjunction of those clauses of »* which only contain variables

from V'. Then for any 1-good S we have:
AN Ax] & GV A X (+4)

Let {w1,...,ws} be the members of W arranged in increasing order. (Le., for 1 < <
J < s, w; < w;j is a conjunct of ¢*.)

We first argue the direction from left to right in (%4). Let an interpretation be given
to the variables appearing in ¢»** A y. We have to argue that ' A X' is true as well. For

' this is trivial since every conjunct of ¢’ is a conjunct of ¢»** as well. From the way that

23

x' was defined, it will be true provided that as; < b. In turn, from the definition of a, this
will be true iff there are s elements of S between a and . But y guarantees that there are;
they are given by the values of wq, ..., w;.

Next we argue the direction from right to left in (x4). Let an interpretation be given
to the variables appearing in ¢’ A x'. We show how to prolong this interpretation so as to
make ¢p** A y true. For 1 < < s, we assign to the variable w; the value of the term «;.

We need to know that a < wy < --- < wg < b. But this is insured by the clause a5 < b of

!

X'

We have to see that all the clauses of ©)** come out true. The only problematical ones
are those that do not appear also in x or in ¢'. These have the form v = [u + 1] where at
least one of u, v is in W. If both v and v are in W, this clause will come out true (since
aj41 = [a; +1] for 1 < j < s.) u cannot be the term 0, since we threw [0 + 1] into H,
and Case 1 does not apply. If, for example, v ¢ W and v € W, we would have u < b < v
contradicting clause 6 of our inductive assumptions. The remaining case (that v ¢ W,
v €V, and w € W is dismissed similarly.) This completes the proof of the right to left
direction of (4).

But now we simply set ¢»** := ', y := x', H := H and V := V'. We take as our new
main formula (3‘7)[?7/}** A x]. Tt is clear from the proceding that the new main formula is
equivalent to the old one, that the cardinality of V' has decreased and that our inductive

assumptions have been maintained. This completes the discussion of Case 2.
Case 3: Cases 1 and 2 do not obtain, but the set V' is non-empty.

The treatment of this case is similar to that of Case 2, but easier. Let ¢ be the largest
element of H with respect to the ordering given by x. (H is certainly non-empty since
0 € H.) Then y must put all the elements of V' larger than t. Let the cardinality of V' be

s, and let the elements of V in increasing order be wy, ..., ws.

Let x' be the formula obtained from y by dropping all the conjuncts which mention

variables of V. Then for any 1-good set S, we have:

AN A & Y (+5)

24

Of course, the left to right implication of (¥5) is trivial. For the right to left direction,
we merely tell how to instantiate the variables in V' to make the left hand side true. For
0 < < s, define terms t;, by induction on ¢, as follows: tg = ¢; t;41 = [t; + 1]. Then we
will interpret w; by ;. That this works is left to the reader to verify.

But granted this, we have shown how to replace the current main formula, by a
quantifier-free formula, so if Case 3 ever arrives, we will be done. But Cases 1 and 2
can hold only finitely often since each time we pass through one of them the number of
variables in V' drops. So we will eventually succeed in eliminating all the quantifiers from
our main formula. The treatment of Step 10, and with that the proofs of Lemma 3 and
Theorem 2 are complete. X

Once the quantifiers have been eliminated, we need to be able to decide the quantifier-

free matrix. Thus, we have the following theorem.

THEOREM 5. There is an effective procedure that, given a quantifier free L°-sentence ¢,

produces a k > 1 and a truth value b such that for all k-good sets S, we have:

ZsEqeb.
Proof:

Let S = {59 < $1 < 82 < ---}. We first express each term ¢ of ¢ as a linear combination
of 1, s¢, s1, ..., Inposing requirements on k as we proceed to insure the correctness of these
representations. Note that since ¢ is a quantifier-free sentence, we do not have to worry
about variables occurring in gq.

We proceed by induction on the structure of ¢. The only non-trivial cases are where
t is of the form [¢'| or [¢']. By the induction hypothesis, suppose that t' = a +). a;s;
(finite sum), where a and the a;’s are numeric constants. We impose the requirement that
k> lal 4+ Y, |a;|. We have the following cases:

1) All the a;’s are zero. In this case, [t'| =0 and [t'] = 0.

For cases 2 through 6, let n be the largest index such that a, i1s non-zero.

2) We have a,, < 0. In this case, [t'| = 0 (recall that the floor of a negative number is 0

by our definitions), and [t'] = sy.

25

We have a, = 1, but a1 =---=a; =0. If @ <0, then |[t'| = s,_1 (unless n =0,
in which case [t'] =0), and [t']| = s,. If a = 0, then [t'| = [t'] = s,. If @ > 0, then
|t'] = sy and [t'] = sp41.

For cases 4 through 6, let m < n be the next largest index such that a,, is non-zero.
We have a,, =1 and a,, < 0. In this case, |t'| = s,—1, and [t'] = s,.

We have a,, =1 and a,, > 0. In this case, |t'| = s,, and [t'] = sp41.

We have a,, > 1. In this case, |[t'| = s,, and [t'] = sp41.

Once we have expressed all the terms of ¢ in this fashion, we can determine the truth-

value of the predicates using these terms by imposing further requirements on k. We have

the following cases for atomic formulae:

1)

A(t), where t = a +). a;s;. We impose the requirement that ¥ > |a| 4+ 3", |a;|. This
formula will be true iff the following three clauses are true: a = 0, there is exactly one
non-zero a;, and the value of that a; is 1.

Dj(t), where t = a4+), a;s;. We impose the requirement that j < k. This formula
will be true iff 5 divides a.

t1 = to. We rewrite this as t; — t; = 0, where t; — t; = a + ZZ a;s;. We impose the
requirement that k& > |a| + >, |a;|. This formula will be true iff @ = 0 and all the a;’s
are zero.

t1 > ty. We rewrite this as t; — t; > 0, where t; — t; = a + El a;s;. We impose the
requirement that & > |a| + >, |a;|. This formula will be true iff the non-zero a; with
the largest index is positive, or no such a; exists and a > 0.

Once all atomic formulae have been decided, it is trivial to decide the entire sentence.

By combining Theorem 2 and Theorem 5 we obtain the main decidability result.

THEOREM 6. There i1s an effective procedure that, given an L°-sentence ¢, produces a

k > 1 and a truth value b such that all k-good sets S satisfy Zs = g < b.

Proof:

Use Theorem 2 on the L¢-sentence ¢ to obtain a quantifier free L¢-sentence ¢’ and a

number k’. Then use Theorem 5 on ¢’ to obtain a truth value b and a number k. Take

26

k := max(k', k") and let the truth value desired be b. X

COROLLARY 7. There is an effective procedure that, given an L-sentence ¢, produces a

k > 1 and a truth value b such that all k-good sets S satisfy Zs = g < b.

COROLLARY 8. It is decidable, for an arbitrary L-sentence ¢, to select one of ¢ or —¢ such

that there are an uncountable number of sets which make the selected sentence true.

Proof:

By Theorem 6 one can effectively find k and b such that for all k-good sets ¢ has truth
value b. If b = TRUFE then pick ¢, else pick —¢q. Since, for any k, there are an uncountable
number of k-good sets, the sentence chosen will be true for an uncountable number of sets.
X

A similar result applies for queries with a function symbol F in place of the set
symbol A, since any set can be interpreted as a 0-1 valued function. Thus, if there are an
uncountable number of 0-1 valued functions satisfying some sentence, there are certainly

an uncountable number of functions that satisfy that sentence.

3) REC ¢ QEX[+, <]

We need to extend Theorem 6 slightly to apply it to query learning. As it turns out,
once we have been diagonalizing against a QIM for a while, we will have an initial prefix
of the set which must be maintained, even though no extension of it is a k-good set. Thus,

we define the corresponding sets which are k-good except for an initial prefix.

Notation: {0,1}* is the set of all finite sequences of 0’s and 1’s. If ¢ € {0,1}* then for
i >0, o(7) denotes the (: + 1) bit of o, and |o| denotes the length of o.

Definition: For k > 1 and o € {0,1}*, a (k,0)-good set is a set S C IN satisfying the
following two conditions:

{r € S:2>|o|}is k-good,
(Ve < |o])[z € S & o(z) =1].
We now define the operation of “splicing” a given prefix on a set.

27

Definition: For S CIN and o € {0,1}*,
oS={z:o0(zx)=1}U{zx e S:a>|o|}.
For the record, we state the following obvious lemma.

LEMMA 9. Let £ > 1, S CIN, 0 € {0,1}*, and SN{0,1,...,|o| -1} = 0. Then S is k-good
iff 05 is (k,o0)-good.

As Theorem 2 and Theorem 5 were proved for k-good sets, and not (k, o)-good sets,

we must first eliminate the prefix o.

THEOREM 10. There is an effective procedure that, given an L-formula ¢ and a o €
{0,1}*, produces an L-formula ¢’ such that for all infinite sets S C IN and all variable

assignments v, we have:
Zys Eqlv] <= Z,s = [V] = Zs E {[V].
Proof:

In ¢, replace each sub-formula of the form A(¢) with

((t= o)A AD) v\ (t=1).

o(i)=1

Note that |o| and ¢ are meta-symbols in the above formula, representing constant symbols

of the appropriate values. X

THEOREM 11. There is an effective procedure that, given an L-sentence ¢ and a o €

{0,1}*, produces a k > 1 and a truth-value b, such that all (k,o)-good sets S satisfy:
Zs = qeb.
Proof:

Use Corollary 7 and Theorem 10. X

28

To apply this result in inductive inference, we need to make a slight modification.
Recall that the queries made by a QIM have variables that range over the natural numbers,
whereas the variables in the above result range over the integers. However, since we have
the less than predicate in the language, we can map any QIM query to an equivalent
L-formula by explicitly requiring that each variable be non-negative.

In the following theorem, recall that RECSET is the concept class consisting of all

recursive sets.

THEOREM 12. RECSET ¢ QEX|[+,<].

Proof:

The proof mirrors that of RECSET ¢ QEX|[S, <] (Theorem 23 of [7]), where the
part of the w-automata is taken over by the values of k¥ and o. These values will be such
that any (k, 0)-good set will satisfy our responses to the queries issued by the QIM so far,
and will thus restrict the rest of the set without pinning it down precisely.

Given a QIM M that asks questions in the language [+, <], we construct a recursive
set A such that either A is not inferred by M, or A is finite but another set B ends up
being constructed that is not inferred by M. The construction is in finite stages of effective
extension.

At any stage s, we will have the following objects:

o A value of o, € {0,1}* which represents the prefix of A that has been determined by

stage s.

e A value of kg such that any (ks,05)-good set will satisfy the responses we have given

to the QIM M for the first s queries.

CONSTRUCTION
Initially, we take ky := 1 and oy empty.
At stage s + 1, we perform the following three steps:
1) Simulate M to determine the (s + 1)%* query and guess.
2) Use Theorem 11 to find k and truth value b. Answer the query with b.

29

3)

Set ksy1 := max(ks - |os], k) Finally, we must determine o,11. First, we extend o,
by adding a string of 0’s followed by a 1, such that the resulting prefix is consistent
with the (ks41,05)-good requirement. We do this at every stage to insure that A is
infinite.

Next, we add another string of 0’s to skip to the next place where we can add a 1 and

still be (kst1,05)-good. Let x be this place. We seek to diagonalize against the current

guess, while constructing a default function in case the current guess diverges at .

da)

4b)

Let g be the current guess of QIM M. Perform the following in parallel:

Diagonalize against current guess. Run ¢4(x). If this computation terminates before
a mind change is found in (4b), then extend the prefix to 0,41 by adding 1 =~ ¢4().
Look for a mind change; construct a default set. Without permanently making any
changes to A, continue simulating the QIM M on larger and larger prefixes, using
Theorem 11 to answer the queries and determine the appropriate values of k. In
between queries add a string of 0’s followed by a 1 such that the resulting prefix is
consistent with the appropriate goodness constraint. We do this to ensure that, if
this substage goes on forever and a default set i1s constructed, it will be infinite. If
this process causes M to change its mind before (4a) terminates, then actually use
the sequence of answers to M’s queries and the extensions to A that were needed to
insure the correctness of those answers to extend the set A, and adjust k& appropriately.
Otherwise, if (4a) terminates before we find a mind change, then none of the actions
in this sub-stage take effect: the extensions to A are not made, and the answers to

the M’s queries are not given.

END OF CONSTRUCTION

If neither (4a) or (4b) terminates at some stage s, then the infinite computation in

(4b) gives us a recursive set B for which the QIM’s guess diverges on x. Hence, M does

not infer B.

If either (4a) or (4b) terminates at all stages s, then we have two cases. If (4b) was

encountered an infinite number of times, then the QIM does not converge to a guess on

recursive set A, which is the limit of the o4 prefixes. Otherwise, the QIM converges to a

30

guess which is wrong infinitely often on A.

Note that in either case the set constructed has the necessary (o, k)-good properties
to insure that all the answers to queries that were given are valid. X

The notions of anomalies, behaviorally correct inference [1], and teams [10], can be
naturally combined with our notion of query inference. Once these notions are understood,
it is easy to define the classes [1,n]Q;BC*[L]. Using the techniques of Theorem 12 with
those of the above referenced papers it is possible to show that for all n,a € IN, REC ¢
[1,n]QBC*[+,<].

4) PRIMREC ¢ QEX,[+, <]

In this section, we do a “primitive recursive version” of the construction in Theorem
12, to obtain that for any a, PRIMREC ¢ QEX,[+,<]. It is not hard to show (by
a “delay till ready” argument) that we may assume that all QIM’s compute primitive
recursive functions. By analyzing the proofs given in Section 2 (and using the fact that
the decision procedure for Presburger Arithmetic is primitive recursive) one can show that
the effective procedure proven to exist in Theorem 11 is primitive recursive. However, it
is not primitive recursive to run ¢4(z) (step 4a of the construction in Theorem 12). We
get around this by being nonconstructive: we will construct 2%*! sets, one of which will
work. Intuitively, each set constructed will have preset guesses as to what to do where, in
the construction of Theorem 12, a Turing machine would be simulated.

Let PRIMRECSET be the concept class consisting of all primitive recursive sets.

THEOREM 13. For any a > 0, PRIMRECSET ¢ QEX, [+, <].

Proof:

Let M be a QIM that makes queries in the language [+, <|. We may assume that M
computes a primitive recursive function.
For every 7 € {0,1}°"! we construct a primitive recursive set A,. Recall that 7(¢) is

the (i + 1) bit of 7.

CONSTRUCTION of A,

31

Initially, we take kg := 1, 0g empty, NUMMC = —1, (NUMMC is Number of Mind
Changes), and go =L (the first guess is L).

At stage s + 1, we perform the following three steps:

1) Simulate M to determine the (s + 1) query and guess.
2) Use Theorem 11 to find k and truth value b. Answer the query with b.
3) Set ket1 := max(ks - |os], k).

Finally, we must determine o,41. First, we extend o, by adding a string of 0’s followed
by a 1, such that the resulting prefix is consistent with the (ks41,04)-good requirement.
We do this at every stage to insure that A is infinite.

Next, we add another string of 0’s to skip to the next place where we can add a 1 and
still be (kst1,05)-good. Let x be this place.

Let ¢ be the current guess of QIM M, and let ¢’ be the guess in the previous stage.
If ¢ = ¢' then go to the next stage. If ¢ # ¢’ then NUMMC := NUMMC + 1. If
NUMMC > a then let A, be some primitive recursive set which is (ksy1,05)-good and
stop the construction. If NUMMC < a then set o4(z) = 7(NUMMC).

END OF CONSTRUCTION.

It is easy to see that A, is primitive recursive. We show that there exists 7 such that
either M does not infer A, or M changes its mind more than a times while trying to infer
A

Note that for all 7 the construction of A, is identical until M outputs a non-null
guess. Let sy be the stage where M outputs its first non-null guess ¢y, and let =1 be the
z in the construction at stage s;. Let by € {0,1} be such that ¢4(z1) # by. (This is
nonconstructive.)

Inductively assume that for y < a+41, there exist stages s1,s2,...,5;, guesses g1,..., g;,
bits by, by, ..., b;, and numbers xq,...,z;, such that if 7 begins with b; - - - b;, then in the
construction of A,, for all ¢ such that 1 <12 < j:

a) At stage s; guess g; is made. No other non-null guesses are made at any stage s < s;.

b) At stage s;, the number z used in the construction is z; and ¢4, (z;) # b;.

If j < a and there exists a stage s;41 > s; such that ¢g;41 # g;, then let z; be the

32

number z used in that stage of construction. Set b; 1 € {0,1} such that ¢y (z;41) # bj11.
(This is nonconstructive.) It is easy to see that this value of b;4; satisfies the conditions
above.

If j = a+ 1 and there exists a stage s;41 > s; such that ¢g;41 # ¢;, then while M is
trying to infer Ap,...p;, M changes its mind more than a times.

If j <a+1 and no such s; exists, then M fails to infer Ay, ...p; because M’s guess is
g; which is wrong at z;.

Hence, there exists 7 such that M fails to infer A, with < a mind changes. XI

5) Q:EX,[L]CEX
We show that for any reasonable language L, and any ¢ € IN, EX,.11 — Q;EX/[L] # 0.
The key intuition used in the proof is that an existential query can only ask about a finite

number of function values. In particular, we will see that the query
(e, B)[Fz)=axz+1ANFla+1)=z4+2N- - ANFla+k—-1)=2+kNF(x+ k)= 2]
cannot be phrased as an existential query in any reasonable language.

Throughout this section, let L denote an arbitrary but fixed reasonable language. Any

query mentioned is an existential query in the language L.

Convention: If 6 is an existential query then, by introducing new variables, we can rewrite

0 so that the only terms that appear as arguments to F are variables. For example,
(Jzq, 22)[F(27? + F(z1)) =2 AN F(8) < z2]

becomes

(Fz1, 22,23, 24, 05)[ws =272 ANy =3 + Flr1) AN xs =8 AN Flaa) =2 N F(as) < x3].

Hence, we assume that all queries are of the form (Fx1, ..., 2m)[¢Y(21,. .., Tm, F(21), ..., F(2m))]-

Definition: A finite function is a cycle if it is of the form
{la+i,a+i+1)|0<i<k}U{(a+k,a)},

where a,k € IN and k > 1. The cycle above has starting point a, and length k. It is denoted

by C(a,k).

Definition: A partial function contains a cycle if it has a cycle as a subfunction. A

function is cycle free if it does not contain a cycle.

33

LEMMA 14. Let 8 be an existential query, o be a finite initial segment such that o(0) = 0,
and a be the least number where ¢ is not defined. Assume that for all functions kA such
that h extends o and (h — o) is cycle free, h does not make 6 true. Then there exists k > 1
with the following property: if ¢ extends o and the only cycles in (¢ — o) are of length

> k, then ¢ does not make 6 true.

Proof: Let 6 = (Jx1,...,xm)[¢(21,. .., 2m, F(21),..., F(2m))]. We claim that k =m + 1
will suffice. Assume not. Then there exists a function ¢ that extends o such that the only
cycles in (g — o) are of length > k and ¢ makes 6 true. Hence, there exist dy,...,d,, such
that ¢(dy,...,dm,g(d1),...,9(dm)) is true. We use these dy,...,d,, to define a function

h that violates the premise.

Let h be

o(xz) if z is in domain(o);
h(z) = g(d;) if x = d;;
0 otherwise.
Note that h extends o, and (h — o) is cycle-free (o(0) = 0 is used here). Since for all ¢,
g(d;) = h(d;), and ¥(dy,...,dm,g(d1),...,9(dm)) is true, ¥(dy,...,dm, h(d1),..., h(dm))
is true. Hence, h makes 6 true, which violates the premise. X
In the proof below we will be simulating a QIM M that asks existential queries. We

will answer these queries as best we can, but could be wrong. The definition below will

help us approximate the answers.

Definition: Let o € IN* let § = (Fz1, .. zm) (21, oy, Flr), ..., Fxm))]. We say
that o believes 0 is true if there exist dy,. .., d,, such that o(dy),...,o(dy) are all defined,
and ¥(dy,...,dm,0(dr),...,0(dy)) is true. We say that o believes 6 is false if it is not the
case that o believes 6 is true. Note that if o believes 6 is true, then for any function f that
extends o, f makes 6 true, but an analogous statement for falsity does not hold. Also, note
that since L is a reasonable language, one can, given (o,), recursively determine whether

o believes 0 is true or believes 8 is false.

THEOREM 15. Let L be a reasonable language and let ¢ € IN. Then EX .1 — Q{EX_[L] #
0.

34

Proof. Let

C ={f | é¢¢2) = f AN(f contains no cycles)}U
{f1(3d)[(1 <d<c+1)A(f contains exactly d cycles)

A (if C(a, k) is the cycle with the largest starting point, then ¢ aq 141y =)]}

We show that C € EX .1 — Q:EX [L].

We show that C' € EX 41 as follows. Assume f € C. To infer f with < ¢+ 1 mind
changes, initially output f(2); if one or more cycles are found in an initial segment of f,
then let C(a, k) be the cycle with the largest starting point, and output f(a+k+1). Since
there are < ¢ 4+ 1 cycles, there will be at most ¢ + 1 mind changes.

We show C ¢ Q;EX/[L]. Let M be a QIM that asks existential queries in language
L and changes its mind < ¢ times (by convention we assume that if it changes its mind ¢
times, it stops asking questions). We construct a function f € C that M does not infer.
The finite initial segment of f determined prior to stage s is denoted f°. The least number
not in the domain of f° is denoted a®. As M asks queries, we supply answers that may
later turn out to be incorrect. The sequence of responses given prior to stage s is denoted
b* € {0,1}*. A sequence b* is called correct if it is the sequence of correct answers to the
first |gs| queries made by M while trying to infer f. We will be building, on the side,
a set D® of numbers, which intuitively have been disqualified before stage s from being
indices for f. If we discover that the answer to the ¢th query is incorrect, then the vector
of responses is shortened to length ¢ and the simulation is continued from the (z + 1)5t
query. We need to do this since the queries asked from that point may be different from
what we had previously thought. If b* is correct, then for all ¢+ > s, the first |gs| bits of b
are the correct answers to the first |gs| queries made by M while trying to infer f.

Our strategy for supplying an answer to an existential query is to assume that it is
false until there is a stage s such that f° believes it, at which point we supply the answer
true. Since the queries to which we answer false may change status, it is important to keep
track of them. The disjunction of all the queries we are claiming are false prior to stage s

1s denoted 6°.

35

During nonzero even stages, we will check if the answers supplied still appear valid.
This is the only time we perform checking. During odd stages, we attempt to either diago-
nalize against the most recent guess of M, or force M to change its mind. The construction
may have some nonconstructive stages, but at most ¢+ 1 of them, so the resulting function

is recursive. Stages that are not nonconstructive will be called constructive.

We will make at most ¢+ 2 attempts at constructing the recursive function f. Each of
these attempts will be a recursive construction, and so may be assumed to know (via the
recursion theorem) its own Godel number. If, for example, the first construction bogs down
(and so does not produce a total recursive function) we will start the second construction
with a (carefully and non-constructively chosen) finite extension of the finite function with
which the first construction terminated. In this case, the number that, by the recursion
theorem, was thought to be an index for the function being constructed, ends up being an

index for a finite function.

CONSTRUCTION

Stage 0: By implicit use of the recursion theorem, assume we know ej, an index for the
function being constructed. (If the construction has a nonconstructive stage, and s’ is
the least such stage, then ey will be an index for the finite initial segment f*'. See the

commentary immediately proceding the construction.)

Let

fo ::{(07 0)7 (17 1)7 (27 60)}7
DY :={.

(We map 0 to 0 and 1 to 1 so that if we map other numbers to 0 or 1, a cycle cannot be

created.)

Stage s (s nonzero and even): Let b = byby -+ by, where b; € {0,1}. Let ¢; be the query
M makes on input biby ---b;—1, so b; is the alleged answer to ¢;. If there exists an ¢,

1 <12 < m, such that b; = 0 and f° believes that ¢; is true, then let 7y be the least such ¢,

36

and set .
bs+1 = blbz e bi0—117

If this does not occur, then b*+1 = b* and 65T := 6°. In either case, set f5T1 := f*.

Stage s (s odd): Let e and ¢ be the guess and conjecture that M makes on input byby - - - by,
(where b; € {0,1} is interpreted as the answer to the 't query). If e € D?® then let
bt = 5°0 and 6°T! = 6% v q, T = f* U {(as,0)}, and go to stage s + 1. (The
assumption that ¢ is false will be checked during the next even stage.) If e ¢ D*® then we
try to either diagonalize and make f(a®) # é.(a®), or make the vector b* incorrect. (If
neither is possible then we will take a drastic nonconstructive step.)

We simultaneously execute the following substages.

Substage 1: (Try to diagonalize.) Compute ¢.(a®). If this computation converges at or

before substage 2 terminates, then let
f8+1 = fs U {(a87 1 - ¢€(a8))}7
b3l = ESO,
6t .= 6% v g,

D*tt .= D* U {e}.

Substage 2: (Try to invalidate Z;S) Look for a cycle free finite function 7 such that the
domains of f° and 7 are disjoint, f° U7 has domain an initial segment, and f® U7 believes
0° is true. If such a 7 is found before substage 1 terminates, then let z be the least number

where f° U 7 is not defined and let

= furu {(2,0)}.

(The proper resetting of answers to queries will take place at some later even stage. The

pair (z,0) ensures that if stage s+2 also uses substage 2, a cycle is not created by accident.)

37

If neither substage 1 nor substage 2 ever terminates, then we proceed nonconstruc-
tively. Since substage 1 never terminates, ¢.(as) T. Since substage 2 never terminates,
the triple (f°,6°, as) satisfies the premise of Lemma 14. Let k& be an integer at least as
large as the value that Lemma 14 guarantees. (Also make k larger than any k value used
in previous nonconstructive steps). We will ensure that the cycles in (f — f°) will be of
length > k, so the final f will make 6° false. Hence, the sequence b* is correct. So e is a
real conjecture made by M while trying to infer f (as opposed to a conjecture based on
false answers to queries.)

There are two cases. Informally, either e is the (¢ +1)5* conjecture made, so we define
a total f such that f # ¢, (and end the construction), or e is not the (¢c+1)%* conjecture in
which case we define f**! such that no extension of f**! is equal to ¢., and f**! contains

a cycle and a new index for the rest of the construction.

Case 1: This is the (¢ + 1)St nonconstructive stage. (We will later see that in this case, e
is M's final conjecture, and no more queries are going to be made.) If ¢, is almost always

0, then set

fi=f UC(as k) Uf{(as+k+1,e) U{(z,1) | 2> as+k+2},
where ¢!, is the index of this f; else set

Fi=f UC(as k) U{(as+k+1,e) U{(2,0) |z > as+ &+ 2},

where e}, is the index of this f. The indices e, and e, ; both exist via the recursion

theorem.

Case 2: This is the i*"* nonconstructive stage, where ¢ < ¢+ 1. If ¢.(as + k+ 2) | then
let d =1= ¢e(as + k +2), else let d = 0. (Since d € {0,1}, mapping a number to d will
not accidentally cause a cycle.) Let e; be the index of the function to be constructed in
subsequent stages. (If the construction has a nonconstructive stage past s, and s' is the

least such, then e; will be an index for the finite initial segment fsl. See also our remarks

38

immediately proceding the construction.) Let

= fPuC(as, k) U {(as +k+1,¢),(as + k+2,d)},
bl = 1;80,
6t = 6° v ¢,

D*tt = D® U {e},

and go to stage s + 1.

We put e into D*T1, so that there will never be another nonconstructive stage where
e is the index of interest. Since b° is correct for any function that extends f571, all later b
agree with b* on the first |gs| bits; hence, the next time a nonconstructive stage is entered,
the index of interest will be a conjecture that appears later than e in the sequence of
conjectures that M makes while trying to infer f. It will follow that the true computation
of M on f will make a mind change before any further nonconstructive stage.

END OF CONSTRUCTION

The number of nonconstructive stages in the above construction is < ¢ + 1. If there
are ¢+ 1 nonconstructive stages, then the function f is defined in the last of them. If there
are less than ¢+ 1 nonconstructive stages, then the function f is defined as the limit of all
the initial segments f°. In either case, f is easily seen to be recursive.

We show f € C. By the nature of the construction (helped by f(0) =0, f(1) =1, and
almost all elements mapping to 0 or 1), the only cycles in f are those that we insert during
a nonconstructive stage. If no nonconstructive stages are executed, then f(2) is an index
for f and there are no cycles; hence, f € C. If d nonconstructive stages are executed, then
there are d < ¢+ 1 cycles, and if C(a, k) is the one with the largest starting point, then
fla+k+1)is an index for f; hence f € C.

We show that M does not infer f.

If there are ¢ 4+ 1 nonconstructive stages, then the last one was entered with e being
the final conjecture made by M while trying to infer f. There are two points involved in
seeing this. First, whenever we enter a nonconstructive stage s all the guesses recorded
in b° are correct. Second, each time we enter a non-constructive stage after the first one,

there has been a mind change of M between the preceding nonconstructive stage and the

39

present one. So by the time we enter the ¢ + 1% nonconstructive stage, M has made ¢
mind changes and will never change his mind again. Since M cannot change its mind, and
we made sure f # ¢., M cannot infer f.

If there are < ¢ nonconstructive stages, then there are an infinite number of stages.
Claim: There exists an infinite set T' = {s; < sy < ---} such that |ES"| = n and b°" is

correct.

Proof: We assume $1,...,5, exist and show that s, exists. Let ¢ be the query that M

makes on input ES", and let

g=Fx1,....zm)[Y(x1, . s, Flx1),... . Flam)))]

By the nature of s,, for all s > s,, the (n + 1)%* bit of b* will be concerned with q.

If ¢ 1s true of f, then there exists an m-tuple of numbers that satisfy ¢». Let dy,...,dn
be the least such m-tuple (for definiteness) such that (dy,...,dm, f(d1),..., f(dn)) is
true. Let t be the least number such that for all i, f(d;) is defined. During the least even
stage sp41 > max{t,s,}, the existence of dy,...,d,, will be noticed, and b+t will be set
to b*»1 which is correct.

If ¢ is false of f then let s,,41 be the least odd stage greater than s,,. This will suffice,
since the (n + 1)%* bit of b*n+1 will be correctly set to 0, and never have any reason to
change. Xl(end of proof of claim.)

Let A be the set of constructive stages in T'. It is easy to see that A is infinite. For
all s € A,

1) € is the conjecture made by M on input gs, and hence is a conjecture that M will

make about f;

2) b® is correct, so during stage s substage 2 will not be executed;
3) stage s is not nonconstructive.

Hence, either substage 1 is executed, which forces ¢.. # f, or it is observed that

e € D? which implies that it is known that ¢., # f from a previous stage. In either case,

Ll

e’ is not an index for f. Hence, in the attempted inference of f by M, an infinite number

of incorrect conjectures are made. Therefore, M does not infer f. X

40

Note: The above proof also shows that Q2EX[S, <] — Q1 EXy[L] # () since the set C' €
Q2 EX,[S, <]. The above proof can be modified to show that EX .41 —[1, ¢+ 1]Q1EX[L] #
0, where [1,c + 1] means ¢ + 1 teams of that type of machine (see [10] for first definition

of team inference, [9] for the [1,n] notation, and [6] for its use with query inference).

COROLLARY 16. Q1EX[L] C EX.

Proof: In [7] it was shown that for any reasonable language L, Q;EXy[L] C EX. By

Theorem 15, with ¢ = 0, we obtain a proper inclusion. X
COROLLARY 17. Q1EXy[+, x] C EX.

THEOREM 18. EX — [J22, Q1EX.[L] # 0.

Proof. Let

C ={f | é52) = f N (f contains no cycles)}U
{f1(3d)[(1 <d)A(f contains d cycles)

A (if C(a, k) is the one with the largest starting point, then ¢ poq141) = f)]}-

The proof is similar to that of Theorem 15. X

6) Open questions

In this paper, we have shown that for queries ¢ (with one free set variable and no
other free variables) in the language [+, <], the problem of choosing one of ¢ or —¢ such
that there is an uncountable number of sets that make the chosen query true, is decidable.
The same question can be raised for other languages. In particular, we would like to know
what happens if L = [+, <, P2|, where P2 is the predicate that tests if a term is a power
of 2.

Although, it is known that EX = QuEX[+, <] C Q1EX[+, <] C Q2EX[+, <] (the first
two relationships were established in [7] and the last one in [6]), it is not known if this
hierarchy extends any further. Omne candidate for a set in Q3EX[+, <] — Q:EX][+, <] is
{f | 500y = f A(f has a finite number of cycles)}U

{f | (f has an infinite number of cycles) A

41

(the least cycle length that occurs infinitely often is an index for f).}

7) Acknowledgments

We would like to thank John Guthrie and Kathleen Romanik for proofreading.

REFERENCES

1.

Casg, J. anp SmrTH, C.H. Comparison of Identification Criteria for Machine Inductive

Inference. Theoretical Computer Science 25 (1983), 193-220.

. Davrey, R.P. AnD SmrTH, C.H. On the Complexity of Inductive Inference. Information

and Control 69 (1986), 12-40.

EnpeERTON, H.B. A mathematical Introduction to Logic. Academic Press, New York,

1972.

Ersnov, Y.L., Lavrov, I.LA., Tammanov, A.D., aND TarrsuiNn, M.A. Elementary

theories. Russian Math. Surveys 20 (1965), 35-105.

FurLk, M.A. Saving the Phenomena: Requirements that Inductive Inference Machines

Not Contradict Known Data. Information and Computation 79 (1988), 193-209.

Gasarcu, W.I., KiNBER, E., PLEszkocH, M. G., SmMiTH, C.H., AND ZEUGMANN, T.
Learning via Queries, Teams, and Anomalies. Submitted to Machine Learning

in 1990. Shorter version appeared in Third Annual Conference on Computational

Learning Theory 1990..

GasarcH, W.I. aNnD SMmiTH, C.H. Learning via queries. Journal of the Association
of Computing Machinery (To appear). Shorter version appeared in the Proceedings
of the 29" Annual IEEE Symposium on Foundations of Computer Science, 130-137,
1988..

GoLp, E.M. Language Identification in the Limit. Information and Control 10 (1967),
447-474.

Prrr, L. aND SMiTH, C.H. Probability and Plurality for Aggregations of Learning
Machines. Information and Computation 77 (1988), 77-92.

42

10. SmrtH, C.H. The Power of Pluralism for Automatic Program Synthesis. Journal of

the Association for Computing Machinery 29, No. 4 (October 1982), 1144-1165.

43

