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1 Introduction

If T said to you 2,4,6,8, then you might reply to me in any of the following
ways.

1. The next value is 10.
2. The formula is f(z) = 2z.
3. Who do we appreciate?!

Let us assume you made the second response. More generally, your goal
is to find out what function I am giving you. What if I now continue the
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In America, if children wanted to praise (say) Frank Stephan for showing that there
is a low set A such that REC € BC[A], they might say, “2,4,6,8, who do we appreciate?
Frank, Frank, yea, Frank!”



sequence with 8,8, 8 (so the entire sequence thus far is 2,4,6,8,8,8,8). Then
you might change your mind and guess that the function I am giving you is

flz) = {2:1: if x =1,2,3,4;

8 otherwise.

It turns out that you are correct. The only data you will see from now on
are 8,8, .... However, note that you are not sure that you are correct.

If T had told you ahead of time that the function I am giving you will
eventually be constant, then you can be somewhat confident (but not totally)
of your final guess. If I told you that the first number you see repeated is
the function value from that point on, then you are totally confident in your
final guess. If I had told you nothing about the function ahead of time, then
I can foil any guess you make.

Informally, 1 have a class of recursive functions S that I will tell you
something about (I cannot lie). 1 will then show you f(0), f(1),... where
f is some function in §. You will try to figure out the code for f. If you
eventually figure it out, then you are happy. Here are some examples.

1. & is the class of functions that are cubic polynomials with integer co-
efficients. After seeing f(0), f(1), f(2), f(3) you can easily determine
which polynomial it is by interpolation.

S

S is the class of functions f such that f(3) is a program for f. You
think I'm nuts, and there cannot be such a function. I remind you
that by the Recursion Theorem there are infinitely many functions in
S. When you see f(0), f(1), f(2) you do not make a guess as to the
function. But when you see f(3) you guess f(3) and you are right.

3. S is the class of primitive recursive functions. It turns out that you can
tell what the function is from seeing data. But the algorithm takes full
advantage of the phrase ‘eventually figure it out.” See Example 3.3.

In this survey we will formally define many variants of inferring a class of
functions. We emphasize those variants where the learner can ask questions
as well as see data. Our context is recursion theoretic.

In this survey we emphasis the types of mathematical techniques used
in proofs. We include proof sketches but very few actual proofs. The term



‘proof sketch’ is somewhat ambiguous; however, suffice it to say that some
of our sketches are are sketchier than others.

There have been other surveys of some of this material. A survey of
inductive inference that included this material and models that were not
recursion theoretic is [AS83]. A survey concentrating on team inference is
[Smi94b]. A survey that looks at the features of learning that are most similar
to human learning is [GS95].

2 Standard Notation

We use standard notation from recursion theory. For an elementary intro-
duction to recursion theory see [Smi94al. For a more advanced treatment

see [Soa8T].

Notation 2.1 The natural numbers are defined by {0,1,2,...} and are de-
noted by N. We denote subsets of N by capital letters (usually A or B) and
elements of N by small letters (usually a, b, ¢,d,n,m).

Notation 2.2 Throughout this paper My, My,... is a standard list of all
Turing machines, Mé), Ml(), ...1s a standard list of all oracle Turing machines,
Yo, 1, - - - 1s the acceptable programming system, obtained by letting ¢, be
the partial recursive function computed by M.. We refer to e as a program
or indez.

Notation 2.3 The expression M.(z) | means that the computation M.(z)
converges. The expression M.(z) T means that the computation M, (z) di-
verges.

Notation 2.4 Let M, be the machine that, on input z, runs M.(z) for
s steps, outputs M.(z) if the computation has halted within s steps, and
diverges otherwise. Let ¢, ; be the partial function computed by M, ;.

Notation 2.5 A’is the halting problem relative to A, that is, {e : M2 (e) |}.
Ais highif 0" <t A'. Ais lowif A" <t K.



Definition 2.6 RFEC is the class of all recursive functions. RECSET is the
class of all recursive sets.

Notation 2.7 Let o, 7 be strings over an alphabet ¥. || denotes the length
of 0. ¢ < 7 means that ¢ is a prefix of 7. We think of ¢ as being a map
from {0,1,...,]o| — 1} to ¥. If @ € N, then we use oa® to denote the total
function whose characteristic string has initial segment o and then consists
of all a’s. The most common usage of this notation will be to refer to the
function o0%.

Notation 2.8 Let o € {0,1}* and M0 be an oracle Turing machine. M
is the Turing machine that attempts to simulate M0 by answering questions
as though o were an initial segment of the oracle. If ever a query is made
that is bigger than |o| — 1, then the computation diverges. Any divergent
computation that results from running M7 (z) is denoted by M7(z) T.

Notation 2.9 (3*z) means ‘for an infinite number of z.” (V*z) means ‘for
all but a finite number of z;” equivalently, ‘for almost all x.’

The remaining recursion-theoretic notation is from [Soa87].

Notation 2.10 We refer to a set of natural numbers as a set. We refer to
a set of sets of natural numbers as a class. We refer to a set of classes as a
collection.

3 Definitions in Inductive Inference

We briefly review concepts from inductive inference. For a fuller treatment

see [CS83, OSW86b.

Definition 3.1 An inductive inference machine (I1IM) is a total Turing ma-
chine M. We interpret M as trying to learn a recursive function f as follows.
M is presented with the values f(0), f(1), f(2),... and will output conjec-
tures e, (on input f(0),..., f(n)) indicating that A thinks f is computed
by ¢., (based on the data that M has seen so far). Note that ¢, need not
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be a total function. If ¢, is partial, then M’s guess is wrong. The guess
may be L, which indicates that M has no conjecture at this time. (After
at least one ‘real’ guess is made, however, the machine is not permitted to
output L.). M has no other way of obtaining additional information about

f. (See Figure 1.)

f0), f(1),... — I1IM — €0, €1, ..

Figure 1

Definition 3.2 Let M be an I[IM and f be a function. For all n, let M(f(0),

., f(n)) = e,. If there is an e and an m such that, for all n > m, e, = e,
then M converges to e on input f. If, additionally, . = f then M inferred
the function f. Let S C REC. M infers S if it infers every f € S. FX is
the collection of § C REC which are inferred by some IIM. The term EX
stands for ‘explains.” The idea is that we are looking at data and we wish
to explain it by producing an index for a machine that generates the data.

(This motivation is from [CS83, Put75].)

Example 3.3

1. Let PRIMREC be the class of primitive recursive functions. The
class PRIMREC is in KX via the procedure described as follows.
Let ¢1,¢2,¢3, ... be a uniformly recursive enumeration of PRIMREC'.
Upon seeing f(0), ..., f(n) output a program for the least 7 such that
qi(0) = f(0),...,¢i(n) = f(n). Eventually the correct index will be
output forever. Note that the learner does not know when the correct
index is being output.

2. {f @50 = f} € EX. Upon seeing f(0) just output f(0) and never
change your mind. Note that this class of functions is non-empty and
quite large by the Recursion Theorem.



3. {f : (v*z)[f(z) = 0]} € EX. Upon seeing ¢ = 70" output code for
the function that is 70¥. Eventually the correct index will be output
forever. Note that the learner does not know when the correct index is
being output.

Note 3.4 The method of inference in example 1 is called enumeration. The
method of inference in example 2 has no formal name but could be called
coding the program into the function. In nearly all work in inductive inference
these are the only two types of inference used. Barzdins [Bar80] conjectured
that these might be the only types of inference there are (formalizing this
conjecture is non-trivial). The conjecture was disproved [Ful90b]. An exact
characterization of KX (and BC which will be described in Definition 3.6)
is in [Wie78b, Wie78a, FKW95].

Definition 3.5 Let a € N. If f and ¢ are functions, then f =" ¢ means that
f and g differ on at most a places. We may also say that f is an a-variant
of g. The expression f =* g means that f and ¢ differ on a finite number of
places. We may also say that f is a finite variant of g.

We define several variations on inference that have received considerable
attention in the literature.

Definition 3.6 Let M be an IIM, f be a recursive function, ¢,d,n € N with
¢,d>1,and a € NU {x}.

1. Mindchanges [CS83]. If M infers f and only at most n times outputs
a conjecture that is different from the most recent previous conjecture,
then M infers the function f with < n mindchanges. S € FEX, if
there is an IIM M such that, for every f € &, M infers f with at
most n mindchanges. A change from L to a real guess is not counted
as a mindchange. (The class £ Xy has also been called FIN in the

literature.)

2. Anomalies [CS83]. Let a € N. If M is trying to infer f and, from
some point on, always outputs e where @, is an a-variant of f, then M
a-infers f. It M is trying to infer f and, from some point on, always
outputs e where @, is a finite variant of f, then M x-infers f. In either
case (a € Nora =) S € EX* if there exists an I[IM M such that, for
every f € S, M a-infers f.
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. Teams [OSW86a, Smi82, Smi94b]. Let My, ..., M, be a set of d 1IMs.

If at least ¢ of My, ..., My correctly £ X-infer f, then f is [c,d]-inferred
by {My,...,M;}. S € [¢,d|EX if there exist My, ..., M, such that, for
every f € S, [ is [¢,d]-inferred by {M;,..., M;}. The set of machines
{My,..., M} is referred to as a team. Note that different functions in
S may be inferred by different size-c¢ subsets of { M, ..., My}.

Probabilistic Inference [FreT9, WFK84, Pit89]. Let p be a real number
such that 0 < p < 1. Let M be a total Turing machine that can
also flip coins (this can easily be made rigorous [Gil77]). f is inferred
with probability p by M if the probability that M infers f is at least p.
S € EX(p) if there exists a coin flipping total Turing machine M such
that, for every f € §, M infers f with probability p. (To define this
formally requires talking about sample spaces of infinite sequences of
coin flips. We will not need such detail.)

Popperian Inference [CS83]. S € PEX if § € EX via an I1IM that
only conjectures total programs. (By contrast, the guesses made by a
machine for EX inference may be non-total.) This concept was studied

and named in [CS83].

Neat Value [Pod74, CS83]. S € NV if there is a machine that, given
f(0),..., f(n—1) tries to guess f(n), and is right all but a finite number
of times. This corresponds to the case where if [ say ‘2,4,6,8’, then you
say ‘10.” However, it turns out to be equivalent to PEX (implicit
in [Pod77, Pod75] but see [CS83] for first formal proof). We will not

be mentioning it again.

Behaviorally Correct [Bar74, CS83]. M behaviorally infers f if, when
M is fed f, eventually all of M’s guesses about f are indices e where
we = f. This differs from £'X in that if M F X-infers f, then past some
point all the guesses are the same and compute f, whereas here they
need not be the same, they need only compute f. BC' is the collection
of § € REC which can be behaviorally inferred by some [IM M. The
key difference between EX and BC' is that £X is syntactic (we care
about what the program is) and BC' is semantic (we care about what
the program does ).



8. Combinations. The parameters above can be combined to yield infer-
ence types like [¢,d]EX?. Comparisons between these inference types
have been studied extensively [FSV89]. We will deal with combinations
like PEX,, PEX?, EX}, and [1,d]BC®. For [1,d]|BC" we will not al-
low a = #, since the class of all recursive functions is in BC* [CS83].
(We prove this in Theorem 4.1.)

Definition 3.7 We will refer to EX, BC, etc. as inference lypes.

Example 3.8

1. Let @ € NU {x}. {f : 0 =" f} € EX§. Upon seeing f(0) just

output f(0) and never change your mind.

2. {0} U{0°1% :5 € N} € EX;. First guess that the function is all 0’s. If
a 1 is spotted in position 7 4+ 1 then guess that the function is 0'1%.

3. {01 U{0'1¥ : 2 € N} U {0170 : 4,5 € N} € EX,. We leave this to the

reader.

4. 4f o500 ="' [} € [1,2]EX. We define M; and M, such that [ €
[1,2]EX via My and M,. M thinks that @) = [ and hence guesses
1(0) forever. My is sure that @) ==" f (exactly one mistake). Upon
seeing f(0),..., f(s) My will compute @) ,(z) for every x < s. 1If
there exists ¢ < s such that @y s(¢) |# f(¢) then let 7 be that i.
If no such 7z exists, then let 1g = pzfz < s A pgo)s(z) T] (Such an g
exists under the convention that ¢, (z) diverges on all > s, which
we adopt.) In either case output a program for ¢ such that

o) ={ o I

In the above definitions we were only concerned with learning recursive
functions. There is another field concerned with learning languages (i.e.,
r.e. sets). The scenario is that the elements of the set are given in some
order, and the learner tries to determine a grammar (i.e., r.e. index) for the
set. This study is very different since if (say) 17 has not entered the set
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yet, you do not know if it ever will; by contrast, when learning (say) a 0-1
valued recursive function f, you eventually know f(17). Language learning
was first defined in [Gol67], but was later developed more in [BB75, CL82,
OW82]. Language learning with a team is discussed in [JS90, JS93c, JS95a].
Restrictions on strategies for language learning are discussed in [Ful90a, JS96,
KS95, OSW82]. Restrictions on the type of languages to be learned are
surveyed in [Z1.95]. A book that covers much of this material is [OSW86b].
There are several other bells and whistles one can use to define additional
aspects of learning. We list several here, broken up into several categories.

Change in the Machine Model

1. What if your inductive inference machine could ask queries about the

function being inferred [GH95, GKP95, GPS92, GS92, Ste95]?

2. What if your inductive inference machine could ask queries to an aux-

iliary oracle [FJG194, GP89, JS93b, KS96, Ste95]?
3. What if your inductive inference machine has limited memory [FKS95]7
4. What if the number of mindchanges is allowed to be an ordinal [FS93]?

5. What if you want to infer functions with domain N but range the

rationals [CM95] or the reals [AFS95]?
Variations on the output

1. What if the number of errors allowed is an ordinal [FS93]?

2. What if you allow the number of errors to be infinite [GSSV92, Roy86,
SVa0]?

3. What if you want to learn a minimal (or near minimal) index for a

program [Che82, F.J95, Jai95, JS94b]?

4. If you do not need to learn the function, but merely to classify it in
some way, is this any easier [GPSVar, WS95]?

Variations on the Input



4

. How much does it help learning to be given some additional informa-

tion [BC94, JS93a|?

. What if the information presented to the learner is not quite accu-

rate [FJ89, Jai94]?

Can you learn something by the process of elimination [FKS94]?
Misc.

If T and J are two inference types, and Z 7, then is there a way to
measure the strength of that non-inclusion [Kum94]?

Given a class of functions S, let’s look at the class of all inductive
inference machines that learn it [FS97].

. Is there a way to say that S; is harder to infer than Sy [FKS96, JS94a,

JS95b]?
How do you choose inductive inference machines to form a team [AFS]?

Is there a way to measure the complexity of inference (similar to Blum
Complexity for computation) [DS86]7

Results in Inductive Inference

We first look at how much power is needed before REC' can be inferred.

Theorem 4.1 Leta € N and m > 1.

1.

REC ¢ BC [Bar7/, CS83].

REC ¢ BC® [CS83].

REC ¢ [1,m]BC [Smi82].

REC ¢ [1,m]BC* [Smi82].

REC € BC*. (This last resull is credited to Leo Harrington in [CS83].)
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Proof sketch:

REC ¢ BC: Let M be an IIM. We construct a partial recursive function
f such that either (1) f is actually total recursive, and f is not inferred by
M, or (2) f is a finite segment and f0“ (which is clearly recursive) is not
inferred by M.

We construct f in stages. Assume that at the end of stage s we have the
finite initial segment o, (i.e., o5 < f). Look for 7 and x such that o; < 7,
x > |7], and @ar¢-y(x) |. If such is found, then extend o, to some 7’ such
that 7 < 7/, |7'| = + 1, and 7'(z) # om)(2).

If every stage terminates, then f is total recursive and infinitely many of
the guesses made about it by M are wrong, hence f is not inferred by M. If
some stage does not terminate then let o be the finite segment determined
up to that point. If M tries to infer the function 0%, then every guess made
after seeing o will diverge on all points past o, hence M does not infer this
function.

REC ¢ BC®: Similar to the above construction except that we look for
a + 1 points to diagonalize on.

REC ¢ [1,m|BC: Let My,...,M,, be any m [IMs. We exhibit a re-
cursive function f that is not BC-inferred by any of them. We construct f
in stages. At a stage s = ¢ (mod m), if M; has not been eliminated, we
look for a way to diagonalize against machine M, (much like the REC ¢ BC
construction). If we find a way to diagonalize then we do so. If not then we
will nonconstructively go to the next stage (meaning that we use the existing
finite initial segment as a ‘new’ starting point in constructing a function);
however, we know that any recursive function that extends the segment we
have at this point cannot be inferred by M;, so we eliminate M; from con-
sideration at all later stages.

We end up either constructing a recursive function f not inferred by any
of My,..., M,, or we end up with a finite segment ¢ such that any function
that extends o (e.g., 00%) is not inferred by any of My,..., M,,. In either
case we have a recursive function that is not inferred by any of My,..., M,,.

REC ¢ [1,m]BC* Combine the last two constructions.

REC € BC*: This proof exploits a ‘loophole’ in the definition of BC*. If
S € BC*via M then, if f € S, M can infer f by making guesses py, p2, ps, . . .
such that, for almost all ¢, ¢,, = f. Note that the programs could be getting
worse and worse. (The programs must get worse and worse. That is, it is
known that if REC' € BC™* via M then there will be recursive functions f
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for which the number of errors grows without bound [Che81].)

Here is the inference scheme. Given o = f(0)f(1)--- f(s), output a
program that does the following. On input z, run each of gg,...,p, on
{0,...,s} for x steps. Let e < s be least such that, for all t <s, . .(t) |=
f(t). (For small values of s, such an e may not exist.) If no such e exists,
then diverge. If e exists, run the computation of ¢.(x) until it halts. (This
computation may not halt). If it halts, output ¢.(z). For large enough s, z,
a correct e will always be found, and this program will output f(z). 1

The following hierarchy results are not surprising.
Theorem 4.2 ILeta € N and m > 1.
1. EXo CEX; CEXy; C--- C EX [CS83].

2. EX° Cc EX' Cc EX? Cc --- C EX* C BC Cc BC' c BC?... C
BC* [CS83].

3. EX C[1,2]EX C[1,3]EX C --- [Smi82].
4. [L,m+ 1]EX € [I,m]BC* [Smi82]. (This strengthens part 3.)

Proof sketch:
1) The class in EX; — E X is

{0} U {0'1¥ : i € N}.
This can easily be generalized to obtain classes in K X,11 — FX,. The class
in EX — U2, EFX, is

{f:(v=2)[f(z) = 0]}
2) The class in EX*t! — EX* is

{f o500 ="" T}
The class in EX* — U2, EX" is
{1 res0 =" f}

The class in BC — EX* is

{f(V2)[ese) = 11}

12



The class in BC*t! — B(C'* is

{f (V) o) ="*" 1}

The class in BC* — 22, BC™ is REC (see Theorem 4.1).
3,4) The class in [1,3]EX — [1,2]BC* is

{f : e=max{f(0), f(3), f(6),...} exists and f = p.}U
{f e=max{f(1), f(4), f(7),...} exists and f = p.}U
{f re=max{f(2), f(5), f(8),...} exists and f = ¢.}.

This can easily be generalized to obtain classes in [I,m 4+ 1]EX — [1, m]BC".
If you just want result 3, then note that the class {f : @) =" f} is in
[I,m + 1|EX — [I,m]EX. This class is in [1,m + 1]EX by having [IMs
My, ..., My, where machine M; thinks that ¢ differs from [ on exactly
¢ — 1 points, and tries to patch up the guess f(0) appropriately.

In all three proofs sketched above, the result that the given class of func-
tions is not in the appropriate inference type proceeds by diagonalization.
Items 2.3, and 4 use various forms of the Recursion Theorem. |

More interesting questions arise if we mix and match parameters. First
we will look at mindchanges, anomalies, and teams.

Theorem 4.3 Let a,b,c,d €N, m > 1, andn > 1.

1. EX’CEX? iffa<candb<d [C583]. (We can also let a,b,c, ord
be %, and stipulate that, for allt € N, ¢ < *.)

2. Assume d > 2(m —1). Then the following are equivalent [FSV89].
(a) [1,m|EX; C EXS.
() ¢>at |25

3. Assume ¢ > a. Then the following are equivalent [F'SVE9]

(a) [1,m|EX] C EX.
(b)

dZ{MJ(Zy—I—l)—I—me—Fl

b+ 2 —1).
c—a-+1 J —I—(m )

c—a-+1

13



4 [Lm]EXS C[1,n] EXO iff a > [22] — 2 [FSVSY].
Proof sketch:

The inclusion in 1 is obvious. The inclusions in 2 and 3 are proved by
complicated simulations where a single machine looks at the < m possible
guesses and combines them in various ways. The inclusion in 4 is proved
similarly, except that n machines look at and combine the guesses. We
discuss the non-inclusions.

1) Use classes similar to those used in Theorem 4.2.
2) To prove the necessity of condition b one shows that, if d < 2(m — 1) or
c<a+ [ alm—1) J, then the following class is in [1,m]EX§ — EXJ.

d—(2m—3)

{f: f(x)is odd for no more than m distinct values of z, and
(Fz, ) (2) =25 +1 Ap; =" [}
3,4) Use classes similar to that in the proof of part 2. 1

By part 1 of the above theorem, there are no tradeoffs between mind-
changes and anomalies for £X. The next theorem states that there are such

tradeofls for PEX.

Theorem 4.4 [CM79, CJM94, GVI3] Let a,b,c,d € N and m,n > 1.

1. PEX{ C PEXS if and only if d+1> (b+1)(| 2| +1).

2. [1,n]PEX} = PEX%,.)_,

3. There is an algorithm to determine when [1,n|PEXy C [1,m]PEXJ.

We now combine probabilities and teams. We will obtain that every
probabilistic inference type is actually equal to some team inference type.

Theorem 4.5 [Pit89] Let 0 < p < 1. Lel n be the unique positive natural
number such that # < p < LI Then EX(p) = [1,n]EX and BC(p) =
[1,n]BC. (See Definition 3.6 for the definition of Probabilistic inference.)
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Proof sketch: ~ We show [I,n]EX C EX(L). (A similar proof shows
[1,n]BC C BC(L).) Assume S € [1,n]EX via {My,..., M,}. The following
probabilistic IIM will infer § with probability % First flip an n-sided coin.
If it comes up ¢, then use M;. The reverse simulation is somewhat complex.

Theorem 4.6 [Pit89] For all n > 1, EX(%> C EX<$> and BC’<%> C

BC (7))

Proof: This follows from Theorem 4.5 and Theorem 4.2. 1

For a nice overview of probabilistic learning in the limit, and its relation to
teams, see [PS88]. We now combine probabilities, teams, and mindchanges.
We only consider 0 mindchanges. Theorems are known about @ mindchanges,
but the overall picture is less clear.

The first theorem we state is about the case when the probability is over
1/2. In this case virtually everything is known. In addition, the results about
probabilistic inference types yield results about team inferences types. The
second theorem we state is about the case when the probability is < 1/2. In
this case far less is known.

Theorem 4.7 Lel k,n,r,s >1 (r<s)and 3 <p<1.
1. If0 < Z_l_il <p <1 then EXo(p) C[r,s|EXo [DPVWYI].

2

21 % < p < g then (1) EXo(p) = EXo(55) [Fre9] and (2)

[n,2n — 1]EXo C[n+1,2n + 1]EXy [DPVWI1]. (Hence the EXo(p)

inference types change at the breakpoints %, %, %, o)

3 If 2L <2 < then [r,s]|E Xy = [n,2n — 1]EXy [DPVWI1].

2n+1 s — 2n—1

4. If £ > £ then [r,s|EXq = [kr, ks]EXy [DPVWY1].

5. n,2n — 1|EXo = EXo(s2=~) [DPVW9I].

2n—1

[tem 4 of the last theorem is particularly interesting. It is easy to see that

[r,s]EXo C [kr, ks]EXo. (EXo could be replaced by any inference type.) It

is not at all clear that [kr, ks]EXy C [r,s]EXo. This was proved for £ > 1

by using probabilistic inference types. The next theorem shows that this
equality does not hold if = = 1/2.
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Theorem 4.8 Let ¢,d,r,k > 1 with ¢ < d.
1. [1,2|EXy C [2,4|EXy [JSV95, Vel89]

2. [1,2]EXO = [3,6]EXO = [5, 10]EXO =y and [2,4]EXO = [4,8]EXO =
[6,12]EXo = --- [JSV95].

3. If0<p < ]Z’Tt_ll < p2 <1 then EXo(p2) C EXo(p1) [DPVWY1]. Note

that these bounds are not necessarily best possible.

4. Let p,e,d be such that 35 < p =5 < :. Then (1) EX(p) = [2,4|E Xy,
(2) [e,d|EXo = [2,4]E X0, and (3) [2,4]F Xy C [24,49]E X, [DKV95].

Proof sketch:  One feels a moral obligation to comment on the numbers
24 and 49. Efim Kinber commented (jokingly) that they are ‘nonrecursive
numbers’ meaning only that they seem unnatural. The authors of the paper
obtained them by trial and error, with the help of a computer program. |

The fraction % is called a breakpoint for £ Xy. We leave it to the reader

to define this term rigorously. A few of the breakpoints for £ Xo(p) less than

% are known, but each one requires a new proof and no pattern is known.

If only total functions can be output then the following stunning result is
known.

Theorem 4.9 [Amb96]

1. The set of breakpoints for PEXq has order type ey. (eo is the ordinal
that is the limit of the sequence xg = w, T4 = wW".)

2. The problem of, given p,q € [0,1], determining if PEXy(p) C PFEXo(q)
is decidable.

(For all p € [0,1], PEXo(p) is called PFIN (p) in [AmbI6].)

Open Problem 4.10 Find an algorithm that will, given a, b, ¢,d > 1 (where
a < b and ¢ < d), determine if [a,b]F Xy C [¢,d]FXo. The problem for
[a,b]PE Xy C [¢,d|PFE Xy has been solved [Kum94].
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5 Query Inference: Asking About the Func-
tion

The scenario so far has been (roughly) that of a learner receiving f(0), f(1),
f(2), ... and trying to infer f. What if the learner could also ask questions
about f7

If T said to you ‘2,4,6,8” and you got to ask a question about the function
[ am presenting, then you might ask ‘(Va)[f(z) = 2z]?" If [ answer YES then
you could, with confidence, claim that f(z) = 2z was the function. If T said
NO then you could wait for more data. Say I extend the data to 2,4,6,8, 8, 8.
Then you could ask ‘(Vz)[z > 4 = f(x) = 8|7 If I answer YES then you
could output that the function is

flz) = {2;{: ifx=1,2,3,4;

8 otherwise.

Note that you are fully confident of your guess.

We will formalize what it means to be able to ask questions about the
function. We picture a teacher who is trying to teach you a function f by
answering certain questions about f. In a later section (Section 7) we will
be asking questions to a fellow student who may be very bright but does not
know anything about f.

If you can ask questions then can you learn more than otherwise? Can
you learn REC? This may depend on both the kind of questions you are
allowed to ask and the kind of learning you wish to do.

We will define a query inference machine as one that makes queries in
some language about the function to be learned. We first define carefully
what a query is. We define queries about functions; however the analogous
notions for sets are easy to define.

Definition 5.1 A query language consists of the usual logical symbols (and
equality), symbols for number variables and set variables, symbols for every
element of N, symbols for some functions and relations on N, and a special
symbol F denoting a function we wish to learn. A query language is denoted
by the symbols for the functions and relations in the language. We will use
a superscript 2 to indicate that we allow quantification over set variables.
For example, we refer to ‘the query language [+, <]” or ‘the query language
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[Suce, <)%’ A well-formed formula over a query language L is defined in the
usual way.

Convention 5.2 Small letters are used for number variables, which range
over N. Capital letters are used for set variables, which range over subsets of
N. In all languages considered here, the symbols in the language represent
recursive operations.

Definition 5.3 Let L be a query language. A query over L is a formula
#(F) such that the following hold.

1. ¢(F) uses symbols from L.

2. F is the special function symbol.
3. ¢(F) has no free variables aside from F.

We think of a query ¢(F) as making a query about an as yet unspecified
function f: N — N. For such an f, ¢(f) will be either true or false.

Notation 5.4 Let b > 2. We will be using the following symbols in some of
our query languages

1. Swuec stands for the successor function Suce(z) = » + 1.

2. POWjy is the unary predicate that determines if a number is in the set

{b":n € N}.

3. POLY} is the unary predicate that determines if a number is in the set
{n®:n € N}.

4. FAC is the unary predicate that determines if a number is in the set

{n!':n € N}.

5. If MODy is one of the auxiliary symbols in [ this means that L has
b unary predicates that determine membership in the following b sets.

U={n:n=1¢ (modb)}for0<s<b—1.
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Definition 5.5 A query inference machine (QIM) is a total Turing machine
that can make queries about the recursive function f in a particular query
language (and magically get the answers). Note that a QIM gets all of
its information from making queries and does not see any data; however
it can request whatever data it wants (e.g., the QIM can ask ‘f(0) = 07’
‘f(0) = 17°,... until a YES is encountered). During every stage it makes a
query, gets an answer, and then guesses an index for f. (See Figure 2.)

Note 5.6 We will often restrict to the case where we are learning a class
of recursive sets instead of functions. In this case our query language has a
special set symbol X, and a symbol €, instead of a special function symbol

F.

— o, 91, . .. (questions)

QIM —— bg, by, ... (answers)

LI —epen,... (programs)

Figure 2

Definition 5.7 QFX|[L] is the collection of all S C REC that are inferred
by some QIM that makes queries in the query language L. For ¢ € N,
QiFEX[L] is the collection of all S € REC which can be inferred in the limit
by a QIM that makes queries in the query language L, where the queries are
well formed formulas over L that are expressed in prenex normal form and
the formulas are restricted to at most z ‘blocks’ of quantifiers. Each block is a
string of either finitely many existential quantifiers or finitely many universal
quantifiers, and adjacent blocks have opposite quantifier types. (Note that
queries made in Qo X[L] are quantifier free, and, for all > 0, queries made
in Q;FEX[L] have at most ¢ — 1 alternations of quantifiers.)

Definition 5.8 If 7 is any of the inference types from Definition 3.6 then the
corresponding query inference types QZ[L] and Q);Z[L] can easily be defined.
We will denote team-query inference types by (say) [¢, d]QFEX rather than

Qle, d|EX.
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6 Results about Query Inference

6.1 Trying to Learn REC

The question of whether you can infer REC using queries to L has been
answered for several L.

We consider learning REC with the query language [+, x]. Under cer-
tain conditions REC can be learned with this query language. In the next
two theorems, we investigate how much power suffices—and how much is
needed—to infer REC. We look at both the number of alternations of quan-
tifiers in the queries and the number of mindchanges the QIM is allowed to
make.

Theorem 6.1 ([GS92]) REC € Q1EX[+, x]. REC € Q:EXo[+, x].

Proof sketch:  Both proofs use the following theorem (proved in [Mat70],
but builds on work from [DPR61]): If A is any r.e. set, then there exists a
polynomial p(x,z1,...,z;) (with integer coefficients) such that

A=Az (Fxq,...,z0)plx,z1,...,25) = 0]}.

This theorem was an outgrowth of work done on Hilbert’s 10th problem (see
[Mat93] for more on Hilbert’s 10th problem).

As we will see in Section 7, REC can be inferred by using an ordinary
IIM together with queries of the form ‘y € K7’ (for y € N). Letting A = K
above, we see that we can make existential queries over [+, x| in place of
making queries to K; hence REC € Q1 EX[+, x]. The proof that REC €
Q2E Xo[+, x] is left to the reader. |

Theorem 6.2 ([GPS92]) If every symbol in L represents a recursive rela-
tion or function then EX;11 € Q1EX;[L]. In particular, for any 1, REC ¢
Q1 EX;[L].

Proof sketch: We describe the class used that is in £X; but not in
Q1EXo[+, x]. A function f has a cycle of length d if there exists a such
that f(a) =a+1, fla+1)=a+2,..., fla+d—1)=a+dand f(a+d) = a.
Let S be the class
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{f 1 @50 = f and f has no cycles }U
{f : (3d)[f has exactly one cycle, its length is d, and f = p4]}.

The intuitive reason that S is not learnable in Q1 F Xo[+, x| is that, while
you can ask ‘does there exist a cycle of length d?” it is impossible to ask ‘does
there exist a cycle?” |

We now consider the language [Succ,<]?. There are two reasons for
considering this language: (1) queries in [Succ, <]? can be interpreted as
Biichi automata (to be defined later), hence we have the mathematical tools
to prove sophisticated theorems, and (2) other languages can be ‘reduced’ to
this one (see [GH95] or Definition 6.11), hence results about this language
imply results about other languages.

For this study we will consider inferring sets instead of functions. This

will not affect any of the results because if (say) RECSET ¢ QFEX|[Suce, <]?
then REC ¢ QEX|[Suce, <]

Definition 6.3 A Biichi Automaton [Bilic62] is a nondeterministic finite au-
tomaton A = (@, X, A, s, F) where @ is the set of states, ¥ is the alphabet,
A maps Q x X to 29, s € Q (s is the start state), and F C Q (F is the
set of accepting states). The reason we have a new name for a familiar de-
vice is that Biichi Automata are used on elements of ¥ (i.e., on infinite
strings of elements of ¥). Let © € ¥*. A run of A on ¥ is a sequence
¢ € Q¥ such that ¢[0] = s and (Vi)[q]: + 1] € A(qle], 7]z])]. A accepts &
if there exists a run ¢ such that (3¢)[q]¢] € F|. A accepts a set A C X¥
if (V& e X¢¥)[7 € Aiff Aaccepts @ ]. If A C X¢ and there exists a Biichi
automaton that accepts all the strings in A and no others, then A is called
w-reqular.

By representing sets of natural numbers via their characteristic sequences
(which are elements of {0,1}*), we can think of an w-regular set over the
alphabet ¥ = {0,1} as a subset of P(N) (the power set of N). Thus we can
represent a k-tuple of sets of natural numbers via an element of ({0, 1}%)~,
and an w-regular set over the alphabet ¥ = {0,1}* as being a subset of
P(N) x -+ x P(N) (there are k copies of P(N)). We denote the input to a
Biichi automaton over the alphabet ¥ = {0,1}* by (A, ..., Ax) where A; is
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the set of natural numbers whose characteristic sequence is the projection of
the input onto the zth coordinate. By using singleton sets, we can also code
numbers. The following theorems from the literature link Biichi automata
with formulas over [Suce, <]%.

Lemma 6.4 ([Biic60, Biic62, Cho74]) If ¢(x1,..., 2%, X1,...,Xk,) is a
formula over [Succ, <]?* then the set

{(ar, ..., ap, A1,y Agy) s Plan, .. ar, A1y Ay}

is w-reqular. Furthermore, there is a recursive procedure to transform any
formula into the appropriate Bichi automaton. (One can also, given an
automaton, find an equivalent formula. We do not use this.)

Proof:  This proof is by induction on the formation of a formula. Atomic
formulas are easy. The A and V of formulas is handled by using closure of
w-regular sets under intersection and union (proved with cross-product con-
structions). Existential quantifiers are handled easily, since Biichi automata
are nondeterministic. The only real hard step i1s showing that w-regular
sets are closed under complementation. This was first shown in [Biic62].
See [ChoT4] for a good exposition and see [Saf88] for a more efficient proof.

Lemma 6.5 If ¢(X) is a query in [Succ, <|* then the sel {A: q(A)} is w-
reqular. Furthermore, there is a recursive procedure to transform any query
into the appropriate Biuchi automaton.

Note 6.6 Here are two facts of interest that we will not be using. (1) Given
a Biichi automaton, one can effectively construct a corresponding formula
in [Suce, <]? (in fact, with only four quantifiers). (2) It is decidable to test
whether there is some set (of infinite strings) which is accepted by a given
Biichi automaton. This, together with Lemma 6.4, enables one to prove
that the theory of one successor (which also includes <), denoted S1S, is
decidable. This was Bichi’s original motivation.

Definition 6.7 If A is a Biichi automaton then L(.A) is the set of (infinite)
strings that are accepted by it.
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Theorem 6.8 ([GH95, GS92]) Leta € N and d > 1. Then
1. REC ¢ QEX|[Suce, <]*.
2. REC ¢ QEX*[Succe, <]*.
3. REC ¢ [1,d]QBC*[Suce, <]?.

Proof sketch:

The proof that REC ¢ QFEX[Succ,<]? is analogous to the proof that
REC ¢ EX, except that it is much harder. Let M be a QFEX|[Suce, <]?
machine. We construct a recursive, 0,1-valued function f such that f is not
inferred by M. (Note that f is equivalent to the characteristic sequence of
some set of natural numbers.) We build f in stages. At stage s we have an
initial segment f; of f (f, € {0,1}*) and a Biichi automaton A,. We intend
that the final function f is accepted by A;. We also need that, for all s,
L(A,) is uncountable.

During stage s we look for (1) a convergence of the current guess on a
point x (chosen so that both L(A;)N{B:z € B} and L(A;)N{B:z ¢ B}
are both uncountable) so that we can diagonalize, and (2) a finite sequence
of queries—and accompanying answers—that causes a mindchange. At the
same time we build a default function f’. Either (1) convergence is found, so
we can diagonalize, throw out the default function, and proceed to the next
stage, or (2) a mindchange is found, so we answer the queries to go that way,
and proceed to the next stage, or (3) neither convergence nor a mindchange
is found, in which case [’ is total recursive and not inferred by M.

To obtain the results for Q£ X® and [1,d]|QBC®, we combine the proof
above with the proofs that REC ¢ EX® and REC ¢ [1,d|BC*. 1

We now define a notion of reduction that will enable us to obtain the
result REC ¢ QFEX[L] for many L. For some of these L (e.g., L = [+, <])
there were already proofs in the literature of REC ¢ QQ EX|[L]; however, the
new proofs are easier. For other L (e.g., [ = [Succ, <, FAC]?) the results
are new.

Definition 6.9 If F is any set, then E* is the set of all finite sequences over
E.
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Notation 6.10 Let £ be an infinite subset of N, and f be a bijection be-
tween F and N. We extend the definition of f to P(E) (the power set of F)

and E* by f(A) = {f(n) :n € A} and f(ni,...,n.) = (f(n1),..., f(n.)),
respectively. Note that f is a bijection between £ and N, and that the exten-
sions of f to P(F) and E™ are bijections between P(E) and P(N), and E*
and N*, respectively). We will use f to denote all three of these functions.
The meaning will be clear from context.

Definition 6.11 [GH95] Let L, L% be query languages and E be an infinite
recursive subset of N. Let f be a recursive bijection from £ to N. Formally
everything in this definition is parameterized by £ and f; however we will
not make this explicit. L is reducible to L*, written L < L%, if there exists a
recursive function with the following properties.

1. The input is a query ¥(X) over L and the output is a query ¢%(X)
over L. (This is called the domain condition.)

2. (VA C E)[o(A)iff %(f(A))]. (This is called the equivalence condition.)
(What we denote by < was denoted by <y in [GH95].)

The following lemma has a straightforward but tedious proof. The hard
part of using reductions was coming up with the right definition.

Lemma 6.12 [GHI95] If L < L® with parameters (E, f) then the following
hold.

1. Let T be any of the inference types discussed in Section 3. Let Q1 be
the corresponding query notion. For all AC RECSETN{X : X C K}
the following hold.

(a) AT iff f(A)eT.
(b) A€ QI[L]= f(A) € QI[LY.
(¢) REC € QI[L] = REC € QT[L?).

2. If UV C E then [U =*V iff f(U) =" f(V)]. (This is trivial, and is
independent of the condition that L < L%.)
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Lemma 6.13 ([GH95]) Lel b > 2.
1. [+, <] < [Suce, <]

2. [+, <, POW,, MOD,] < [Suce, <]?.

Proof sketch: The proof is similar to the proof that Presburger arith-
metic is decidable by reduction to the weak second-order theory with one

successor (often called WS1S) [Rab77]. |

From Lemmas 6.12 and 6.13 we easily obtain the following.
Theorem 6.14 ([GH95]) Lel a,b,d > 2.

1. REC ¢ [1,d|QBC"[+, <].

2. REC ¢ [1,d|QBC"[+,<,POW;, MODy].

The result REC ¢ QE X[+, <] was initially shown [GPS92] using a device
called k-good sets.

6.2 Comparing Classes

Here are some interesting theorems comparing the power of I[IMs to that of

QIMs.

Theorem 6.15 Let a,d,n € N and b > 2. The following hold.
1. For any query language L, EX, 1 € Q1EX2[L] [GH95, GPS92].

2. For any query language L, Q1EXo[L] C EX [GS92]. (This can be
generalized to Qa1 EX,[L] C [1,n + 1]Q.EX[L] [GKPt 95].)

3. Let L be any of [Suce, <|?, [Suce, <, FAC)?, [Succ, <, POLY], [Suce, <
,POW,], and [+, <, POW,, MOD,]. Then

(0) Q1EX,[L) C [1,n + 1|EX [GKP*95, GHY5].
(b) d>1= EX: ¢ [1,dQEX[L] [GHI5].
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Proof sketch:
1) See Theorem 6.2.

2) We show that Q1FEXo[L] C EX. Whenever a query is made, assume
that the answer is NO, but always be on the lookout for evidence that the
answer is YES. If such evidence is found, then restart the simulation with
that information (note that this may affect the set of questions the query
machine asks). Note that every query can be put into existential form, so if
the answer to a query really is YES, this fact will eventually be discovered.
Since no mindchanges can be made by this QIM, there exists some point
(which will not be known by the simulator) at which all the queries made
have been given the correct answer, a guess has been made, and this guess
is correct.

3) For all of these we first prove the result with I = [Succ, <]* and then use

reductions like the one in Definition 6.11. |

Here are several examples of when a query machine with a restriction
on its behavior (e.g., at most one mindchange) can still do things that a
standard machine cannot do.

Theorem 6.16 Leta €N andc>1.
1. For any L, Q1EX [L] € EX [GS92].
2. QEXo[<] € EX [GS92].
3. Q1EX [Succ] Z [1,c]BC* [GKPT95].
Proof sketch:

1) Let

S=A{f:es0=STU{S: (V72)[f(z) = O]}
S ¢ EX by an easy diagonalization that uses the Recursion Theorem.
S € Q1EXq[L] as follows. Output the value f(0) as the first guess. Then

determine if f is almost always 0 by asking:

(Va) [z #0= F(z)=0]
(V) [e#0ANz#1 = F(z)=0]
(V) [x#0Nz# 1Nz #2= Flz) =0
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until (if ever) a YES answer is encountered. If a YES answer is never en-
countered, then f(0), the QIM’s first conjecture, is correct. If a YES answer
is encountered, then output the appropriate program.

2) The class S defined in part 1 isin Q2 F Xo[<]. First ask whether (3z)(Vy)[y >
r = F(y) = 0]. If the answer is NO, then output f(0). If the answer is YES,
then ask a series of questions to find out at which point the function is al-
ways 0. Output the appropriate program. By part 1, S ¢ FEX. Hence

Q.EXo[<] Z EX.

3) We consider the case of ¢ = 3. The general case is similar. For 0 <¢ <3
let f; be defined as f;(z) = f(4x + ¢). Hence f; captures all the information
of f restricted to {z:z=1¢ (mod 4)}.

Let § be the union of the following four classes, S1, 83, S3, and S;.

fesif
1. There exists e; such that (Vaz)[fo(z) = 1] and f = ., .
).
).
).

5. There are no y € N and j > 1 such that f;(y) = es.

)Lfol
2. There is no y such that (V*z)[fi(x
)Lfa(
)f3(

3. There is no y such that (V*z)[f:(x

y
y
y

)
)
)
4. There is no y such that (V>°z)[fs(z)

(Note that all these conditions must hold for f to be in S;. The same will
be the case in the definitions of Sy, S, and S4 below.)

fesyif

1. There exists e; such that (Vz)[fo(z) = ei]

2. There exists ey such that (V°z)[fi(z) = €] and [ = ¢, .
3. There is no y such that (V>z)[f2(z) = y].

4. There is no y such that (V*°z)[fs(z) = y].

5. There are no y € N and j > 2 such that f;(y) = es.

fesSsif
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1. There exists e; such that (Va)[fo(z) = e1]

2. There exists e, such that (V°z)[fy(z) = e3].

3. There exists e3 such that (V°z)[f2(z) = €3] and [ = o,

4. There is no y such that (V*z)[f3(z) = y].

5. There is no y € N such that f5(y) = es.

fedqsif

1. There exists e; such that (Va)[fo(z) = ei]

2. There exists e, such that (V°z)[fy(z) = e3].

3. There exists es such that (V°z)[fa(z) = 3] and (V*°z)[f5(z) = e3].
4.

We show S € Q1 EX5[Suce]. At all times we will have an index for a can-
didate that we will keep on outputting until a better candidate is discovered.

The value of e; can easily be found. Output this value. To find ey (if it
exists), ask the following question for all values of a and b:

Vy[ly#Oandy#1and ... andy #a) = (Fly) =e1 = Fy+ 1) =b)]?

If a “YES” answer is received, then e; = b. Output e;. By a similar process,
find es (if it exists). If es is found we do not know if we are in S5 or S.
Output e3. To discover if we are actually in &4 ask the following question for
all values of a:

Vy[ly#Oandy# 1 and ... andy £ a) = (Fly) =es = Fly+ 1) = e3)]?

If a “YES” is ever encountered then we know the function is in S;. From the
information gathered so far, and a few more questions, we can determine a
program for f.

To show that S ¢ [1,3]BC*, we use the Operator Recursion Theorem
[Cas74] and diagonalization. For an easier use of the Operator Recursion
Theorem in inductive inference, see [CS83].
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Open Problem 6.17 We conjecture that for I < [Suce, <]? the following
hold.

1. QEX'[L] C QEX?[L] C QEX®[L]---.
2. QBC[L] C QBC?L] C QBC3[L]---.
3. QEX|[L] C [1,2]QEX[L) C [1,3]QEX]L] - -
4. QBCIL) C [1,2]QBC|L] C [1,3]QBC|L] - -

More generally we conjecture that whatever relations hold between [¢, d]E X"
and [¢/, d]EX® also hold between the corresponding query inference types.
We do not actually believe this conjecture; however, we think it would be
of interest to see which theorems for £ X hold here. The same goes for
BC'. The classes in Theorem 4.2 may be good candidates to help solve these
conjectures.

Open Problem 6.18 Do more alternations of quantifiers help? Conjec-
tures:

1. Q1EX[Suce, <] C QaEX[Suce, <] C Q3EX[Suce, <] --.

2. QIEX[—I_v <] - QQEX[—I_v <] C Q3EX[+7 <] T

It is known that the Q;F X [Succ, <]? hierarchy collapses, since every query
is equivalent to a Biichi automaton, which is in turn equivalent to a (second-
order) formula with four alternations of quantifiers. It is also known that,
for all © > 1, Q;EX[+, ] = Qix1 EX[+, x] since REC € Q:EX[+, x].
Therefore, if the conjecture is true, the proof will have to use particular
properties of [Suce, <] and [+, <].

7 Query Inference: Asking an Oracle

Our first scenario was (roughly) that of a learner receiving f(0), f(1), f(2),...
and trying to infer f. Our second scenario was (roughly) that of a learner
asking questions about f. Our third scenario is that of a learner receiving
F(0), f(1), f(2),... and also querying an oracle A. This oracle is independent
of f. Our mental picture is that the learner is asking a fellow student for help.
The student does not know f but might know information that is useful.
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Definition 7.1 An oracle inductive inference machine (OIIM) MO is an
Oracle Turing machine M0 such that, for all ¢ € {0,1}* and all sets A
of natural numbers, M4(s) |. We interpret M# to be trying to learn a
recursive function f similarly to our interpretation of an IIM M trying to
learn a recursive function f. We define M4 EX|[A]-identifies f similarly to

our definition of M F X-identifies f. For any inference type Z, the notation
Z[A] can be defined.

Definition 7.2 Let S be a class of recursive functions. § € K X[A] is defined
similarly to § € KX. If 7 is any inference type, then & € Z[A] is defined
similarly to S € 7.

Note that in the definition of K X[A] (and the other inference types) we
are inferring indices for recursive functions, not indices for recursive-in-A
functions.

Example 7.3 REC € EX[K]. Upon seeing initial segment o, output the
least e such that (Va < |o])[pe(x) |= o(x)]. Note that even after the correct
index is found infinitely many queries to K are made to keep verifying that
the index 1s correct.

Note 7.4 Using REC € FEX[K] we can give an alternative proof that
REC € BC* (Theorem 4.1). Let MO be the OIIM such that M* infers
REC. Let N be the IIM that operates as follows: @n()(5) = prrxs(s)(s). It
is easy to show that N BC™*-infers REC.

Example 7.5 Recall the notation of A" from Notation 2.5. Let

S={f:/(0) € A Ngpay=fU{f: f(0) & A"A [ =" Az[0]}.

Note that S € EX[A] by using a recursive-in-A approximation to A’, which
exists by the Limit Lemma (see [Soa87, p. 57]).

30



Definition 7.6 Let S be a class of recursive functions. § € E X [Ax] if there
exists an OIIM MO such that (1) S is EX[A]-identified by M4, and (2) for
every [ € 8, during the inference of f by M#, only finitely many queries to
A are made. BC[Ax] is defined similarly. (The notion of £ X[A[¢]], where at
most ¢ queries to A are made, was studied in [FJGT94]. We will not discuss
it here.)

Example 7.7 REC € EX[TOTx]. Upon seeing f(0), ..., f(s), output the
least index ¢ such that : € TOT and, for all t <'s, ¢;(t) |= f(¢). Note that
if y is least such that ¢; computes f, then at most j + 1 queries to TOT" will
be made.

Example 7.8 Let

T=A{1:@)SO), J(1);... J()) € YN[+ 1) & A)A(psi) = D)}

It is easy to see that T' € EFX[Ax].

Definition 7.9 A <; B if EX[A] C FX[B] (the i’ stands for ‘inference’).
A= Bif EX[A] = EX[B]. An EX-degree is an equivalence class under
=i, A<I Bif EX[Ax] C EX[Bx|. A= Bif EX[Ax]| = EX[B*]. An EXx*-
degree is an equivalence class under =f. The BC-degrees and BC'x-degrees
are defined similarly. More generally, these definitions would make sense for
any of the inference types defined in Definition 3.6. These degree structures
are spoken of informally as the degrees of inferability.

Definition 7.10 An E X-degree is trivial if for every A in that degree,
EX[A] = EX. An EX-degree is omniscient if for every A in that degree
REC € EX[A]. The notions trivial and omniscient can be defined for other
types of degrees of inferability.
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7.1 Extremes in the Degrees of Inferability

Which oracles help you learn REC (e.g., REC € EX[A])? Which oracles do
not help at all (e.g., FX[A] = FX)? The answers depend on your model of
learning. The following table tells (almost) all. TRIV means that the oracle
does not help at all. *TRIV means that if we only allow finitely many
questions, then the oracle does not help at all. OMNI means that the oracle
helps to learn REC. x-OMNI means that the oracle helps to learn REC and
that the OIIM makes only finitely many queries to the oracle. We will need
another definition.

Definition 7.11 A set (G is i-generic if for every ¥; set W (of elements of
{0,1}*) either (1) (3o < G)[o € W], in which case we say that G meets W,
or (2) (o <X G)[(Vr = o)[r ¢ W]]. (For more on 1-generic sets see [Joc80].)

Definition 7.12 If A is a set of natural numbers, then G(A) means that one
of the following holds.

1. A is recursive.

2. A<y K, and A is in a 1-generic degree.

In Table 7.1, Uy,...,Us are open questions. U; and Us may depend on
the parameters a,b,n. The results for £X being omniscient are in [AB91,
KS96]. The results for £ X being trivial are in [SS91, KS96]. All the rest are
in [FJG194]. We know more than what is in the table [FJG*94].

1. If A<t K or Aisin a hyperimmune-free degree then U;(A) holds.
2. There are low sets A such that Us(A) and Us(A) hold.

3. For all sets X there exists a set A such that X <t A” but neither
Usy(A) nor Us(A) holds.

4. If A is r.e. then the following are equivalent: (1) Uy(A), (2) Us(A), (3)
@// ST A/.

5. For all A, Us(A) = Us(A) = G(A).
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TRIV *TRIV OMNI *-OMNI
PEX U(A)  Th(A) V"<t A K ("<t Aq K
EX,, A=1r0 A=r0 Never Never
X G(A) A<t K ("<t A (0"<rA@K
EX" G(A) A<t K ("<t A (0"<rAdK
EX” G(A) A<t K ("<t A (0"<rAdK
BC G(A) A<t K Uy(A) "<t A K
BC” Us(A) A<t K Uy(A) "<t A K
BC* Always Always Always Always
[a,B|EX" | A=r0) A=r0 Never Never
[a,))EX* |A=r 0 A=r0 Never Never
[CL, b]EX Q(A) A §T K @H §T A/ @” ST A G K
[CL, b]EXn Q(A) A §T K @// §T A/ @” ST A G K
[CL, b]EX* Q(A) A §T K @// §T A/ @” ST A G K
[a,b]BC | G(A) A<t K Us(A) "<t A K
[a, 0] BC™ | Us(A) A<t K Us(A) "<t A K

Table 1: Characterization of the sets A such that, for the various inference
types 7 listed in the far-left column, Z[A] = Z (TRIV), Z[A%] = T (x-TRIV),
REC € I[A] (OMNI), REC € I[A%] (x-OMNI), respectively.

7.2 Structure of the Degrees of Inferability
If B is high then REC € EX[B]. Hence all the high degrees are of the

same degree of inferability; thus we are only interested in the structure of
the degrees of inferability of sets that are not high.

Theorem 7.13 ([KS96])

1. If A, B are non-high r.e. sets then A <; B iff A <¢ B. (This also works
if instead of KX inference we used BC' inference, E X -team inference,
or BC-team inference.)

2. If A, B are sels such that B is not high then A <; B = A" <r B'.
(Note that this holds for all sets, not just r.e. sets.)
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3. Fvery non-omniscient KX -degree contains infinitely many Turing de-
grees.

If K" <t B& K then REC € EX|[Bx]. Hence all such Turing degrees
are of the same *-degree of inferability; thus we are only interested in sets B

for which K’ L1 B& K.

Theorem 7.14 Let A, B be sets such that K' £ B&® K. A <! B iff
A® K <t B® K. (This also works if instead of EX inference we used BC

inference, KX -team inference, or BC-team inference.)

Open Problem 7.15 Find a nice characterization of when A <; B.

7.3 Strength of Non-inclusion

How strong is the non-inclusion BC' € EX? There are several ways this
question can be phrased. One of them is to ask how powerful a set A would
have to be such that BC' C EX[A]. In this section we investigate several
theorems in inductive inference in this light. Before we proceed we need the
following definition.

Definition 7.16 Let PA denote the class of all Turing degrees containing
a complete and consistent extension of Peano Arithmetic. See [Odi89, p.
510 ff.] for background information. It is known that PA coincides with
the degrees of functions in {g:N — {0,1} | (Vi)[g(2) # @i(2)]} (see [Joc89,
Proposition 2]). By the Low Basis Theorem [JS72] there exist degrees in PA
that are low.

The following theorem measures how ‘strong’ some known theorems in
inductive inference are.

Theorem 7.17 [Kum9/, KS96] Let a € N and n > 1.
1. There is no oracle A such that EX,41 C EX,[A].
2. EX™Y C EX"[A] iff A is high.
3. BC C EX*[A] iff A is high.
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4. [Lin+1]EX C[1,n|EX[A] iff A is high.
5. In+ 1,2n+ 1]EXy C [n,2n — 1|EXo[A] iff K <t A.
6. [2,4|EXo C[1,2]EXo[A] iff K <t A.

7. [24,49]E Xy C [2,4]FEXo[A] iff the Turing degree of A is in PA. In
particular there is a low oracle A such that [24,49]E Xy C [2,4]FE Xo[A].

Proof sketch:
1) The class in EX; — EXo[A] is

{0“} U {0°1¥ : i € N}.

2,3,4) One can construct a family & = {¢y) tiew (¢ € REC) with the fol-
lowing properties:

(a) 10 < ¢y

(b) @) is defined for all 2 with at most one exception a; > 1.

(c) If wyiy € wj, w; is total, and W; is finite, then 7 > |W;|.

The class S = {f € RECo; : (31)[f extends py;]} is obviously in EX'.
One can then show that if S € FX[A] then that A is high.

5) Consider the class
S=1{i0*:i¢ K}U{i0'j i€ K, — Ki1 Aj <nb.

We show S € [n+ 1,2n + 1]EXy. Upon seeing the first input ¢, output
programs po, . .., p, such that program p; will do the following: Keep out-
putting 0’s until you spot that ¢ € K; (if this never happens then ¢ ¢ K and
the n+1 programs already defined suffice). If ¢ € K; then program p; will be
i0'k“. Note that one of these programs is correct. There are still n programs
that have not been started yet. These all know that + € K and they know
the correct value of j. They all produce 70" 5.

Since S € [n+ 1,2n + 1]E X, we have § € [n,2n — 1]E Xo[A] via OIIMs
M2, ..., M3 . We use this to obtain K <1 A. Given i we determine if
i € K (recursively in A) as follows. Find the least ¢ such that on input 70"
at least n of M{,..., M3 | output an index. It is easy to see that : € K iff
e K.
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6) Let ag,aq,..., be a recursive 1-1 enumeration of K. Let

S = {ij0*:i,j ¢ K}U
{ij0°1%,ij0° : (i=a, Aj & K) V(j=a;Ai¢ K)}U
{i50°1°0%, 5071, 150°0°1%, 30 : {i,j} = {ar,as} AL < s}.

It is not hard to show that S € [2,4]E X, and hence it is in [1, 2] £ X,[A].
From this one can show that K <t A. The proof is unusual in that it is not
a direct algorithm. It uses the following notions.

Definition 7.18 [BGGO093] Let X and Y be sets and a,b > 1. CX is the
function CX(z1,...,2,) = X(21)--- X(2,) (€ {0,1}*). A function [ is b-
enumerable if there is a Turing machine M that will, on input z, output
(over time) at most b numbers such that one of them is f(z). It is easy to
see that CX is 2%-enumerable. A function f is b-enumerable-in-Y if there is
an oracle Turing machine MY that will, on input z, output (over time) at
most b numbers such that one of them is f(z).

It is known [BGGO93] that if CX is a-enumerable then X is recursive.

This easily relativizes to show that if Cf is a-enumerable-in-Y then X <t Y.
One can show that if § € [1,2]E X, then CX is 2-enumerable-in-A, hence
K <1 A.
7) The proof that [24,49]E X, C [2,4]EXo[A] = deg(A) € PA is a clever
and complicated modification of the proof that [24,49]F X, Z [2,4]E X,
from [DKV95]. It should be noted that the original proof used the Recursion
Theorem, while this proof does not.

The proof that deg(A) € PA = [24,49]E X, C [2,4] F Xo[A] uses the fact
that every partial recursive 0-1 valued function has an extension recursive in

Al
Theorem 7.17 can be interpreted as follows.

1. The result EX,y1 € FX, is very strong in that it is impossible to
break it with an oracle.

2. The results EX"*' ¢ EX" BC € EX, and [1,n + 1|EX € [1,n]EX
are all very strong since in order to break them you need to supply an
oracle that already allows REC to be inferred.
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3. The result [2,4]E Xy € [1,2]E X, is very strong since in order to break
it you need an oracle as hard as K.

4. The result [24,49]F Xy Z [2,4]E X, is not very strong since a low oracle
suffices to break it.

Open Problem 7.19 Classify non-inclusion results in inductive inference
via the set of oracles that make them fail. Try to find a coherent explanation
for the classes obtained.

8 Query Inference: Asking Both

What happens if we allow the learner to make queries about the function
and queries to an oracle?

Definition 8.1 [Ste95] Let S C REC. Let L be a query language. S €
QEX[L; A] if there is an oracle QIM that infers any f € S using queries in
L about f and queries to A.

Theorem 8.2 [Ste95] If EX[A] € EX[B] then
1. QEX[+,<; Al € QEX[+, <; B].
2. QEX[<; Al € QEX[<; B).
3. QEX|[Suce; A] € QEX[Suce; B].

Proof sketch:  This proof uses k-good sets [GPS92]. A set is k-good if,
informally, the elements in it are very far apart (how far apart is parameter-
ized by k). If a set is k-good then queries about it in [+, <] can be answered
by just knowing k. The sets that are constructed for the non-inclusions are
k-good sets so that the ability to ask queries in [+, <] does not help. 1

Theorem 8.3 REC € QEX[Succ; AJUQEX[<;A]UQEX[+,<;A] iff A
is high.
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By the above theorem the combination of queries and oracles is not that
powerful for inferring REC": if you can infer REC' then the oracle must be
doing all the work. The next theorem shows that the combination of queries
and oracles can be powerful for inferring some classes of functions.

Theorem 8.4 There is a set A such that
1. EX = EX[A],
2. QFEX[+,<] C QEX[+,<; A],
3. QEX[<] C QEX][<; A], and
4. QEX[Succ] C QEX[Suce; A].

Open Problem 8.5 Prove theorems about QFEX|[[Succ,<]? A]. This is
particularly interesting since, by Lemma 6.12 and reductions from [Suce, <]?,
we could obtain results about many other inference types.

9 Conclusions

Inductive inference has revealed many intuitions concerning machine learning
by example. In this survey we have formalized the intuition that asking
questions helps one to learn. In the survey of [GS95] the theme of formalizing
aspects of human learning is pursued in more depth.

Inductive inference has also served as a rich application area for recursion
theory and many other subareas of mathematical logic. We surveyed the area
of learning via queries to highlight since this shows off many of these areas.
We list the techniques used to prove theorems in this survey. The references
given refer to a place where the technique is used; however, in most cases,
the technique is used in several places.

1. Diagonalization (Theorem 4.1).
2. Non-constructive proofs (Theorem 4.1.3 and 4.1.4).

3. The Recursion Theorem (Theorem 4.2).

4. Complex simulation (Theorem 4.3).
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5. Probability (Theorem 4.5).

6. Ordinals (Theorem 4.9 and also [FS93]).

7. Hilbert’s 10th problem (Theorem 6.1).

8. Biichi automata (Theorem 6.8).

9. The Operator Recursion Theorem (Theorem 6.16).
10. Decidable theories (Theorem 6.14).
11. More recursion theory than you want to know (the table in Section 7.1).
12. Bounded queries (Theorem 7.17.6).

We again state what we consider to be the most important open problem
in the field; we also repeat our previous commentary on this problem. Our
conjecture is similar to the fact that the arithmetic hierarchy is proper.

Open Problem 9.1 Do more alternations of quantifiers help? Conjectures:
1. Q1EX[Suce, <] C QaEX[Suce, <] C Q3EX[Suce, <] ---.
2. QIEX[—I_a <] C QQEX[—I_a <] C Q3EX[+7 <] e

It is known that the Q;E X[Suce, <]* hierarchy collapses since every query
is equivalent to a Biichi automaton, which is in turn equivalent to a (second
order) formula with four alternations of quantifiers. It is also known that for
all 2 > 1 Q:EX[+, X] = Qi1 EX[+, x] since REC € Q1 EX[+, x]. There-
fore, if the conjecture is true, the proof will have to use particular properties

of [Suce, <] and [+, <].
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