Learning via Queries
with Teams and Anomalies

by
William I. Gasarch!

Department of Computer Science
Institute for Advanced Computer Studies
The University of Maryland
College Park Maryland, 20742 USA

Efim B. Kinber
Computing Centre
Latvian State University

Riga, USSR
Mark G. Pleszkoch

Department of Computer Science
The University of Maryland
College Park Maryland, 20742 USA
and

IBM Application Solutions Division
Gaithersburg Maryland, USA

Carl H. Smith?

Department of Computer Science
Institute for Advanced Computer Studies
The University of Maryland
College Park Maryland, 20742 USA

Thomas Zeugmann
Department of Mathematics
Humboldt University
Berlin GDR

1" Supported, in part, by National Science Foundation Grant CCR 8803641.
2 Supported, in part, by National Science Foundation Grant CCR 8701104.

I. Introduction

Most work in the field of inductive inference regards the learning machine to be a
passive recipient of data [5,6]. In [13] the passive approach was compared to an active
form of learning where the machine is allowed to ask questions. In this paper we continue
the study of machines that ask questions by comparing such machines to teams of passive
machines [26]. This yields, via work of Pitt and Smith [19], a comparison of active learning
with probabilistic learning [18]. Also considered are query inference machines that learn
an approximation of what is desired. The approximation differs from the desired result
in finitely many anomalous places. Passive approximate inductive inference has been
extensively investigated [8,10,11,21,27].

The basic paradigm of asking questions has been applied to DNF formulas [1], CNF
formulas [4], p formulas [15], context-free grammars [2], deterministic one-counter au-
tomata [7], deterministic bottom up tree automata [23], deterministic skeletal automata
[22], deterministic languages [16], and prolog programs [24]. Valiant also considered the
issue briefly. [28]. For a nice summary of these results see [3].

Several intuitions about the use of queries for learning are implied by our results.
Firstly, active learning machines can be simulated by a team of passive learning machines,
but (often) not conversely. Secondly, the power of queries seems to be incomparable to that
of allowing anomalies or BC-learning. Thirdly, there is often an infinite hierarchy of active
learning based on mind changes, and another infinite hierarchy based on anomalies. Several
of our results pertain to the quantifier structure of questions asked by learning machines.
One of our results indicates that asking questions with more alternations of quantifiers
leads to an increase in learning potential. Furthermore, the number of quantifiers is an

important factor.

II. Notation and Definitions
Throughout this paper, g, ©1, @2, ... denotes an acceptable programming system

[17], also known as a Godel numbering of the partial recursive functions [20]. We will

1

say that program ¢ computes the function ¢;. An (standard, passive) inductive inference
machine (IIM) is a total algorithmic device that takes as input the graph of a recursive
function (an ordered pair at a time) and outputs (from time to time) programs intended to
compute the function whose graph serves as input [8,14]. (see Figure 1) An IIM M learns
a recursive function f, if, when M is given the graph of f as input, the resultant sequence
of outputs converges (after some point there are no more mind changes) to a program that
computes f. In this case we write f € EX(M). The class EX is the collection of all sets
EX(M) (or subsets thereof) of functions learned by an IIM. If convergence is achieved
after only ¢ changes of conjecture we write f € EX (M), for ¢ € [N, where IN denotes the
natural numbers. The class of sets of functions identifiable by IIMs restricted to ¢ mind

changes is denoted by EX..

f(0), f(1), f(2)... — 1M DO, PLy P2 -

Figure 1.

The convergence criterion discussed above was syntactic in that convergence to a
particular program was required. There is also a semantic convergence criterion whereby
convergence 1s to a function. Specifically, we say that an IIM semantically converges iff
almost all of the programs output compute the same function. In other words, convergence
is to a sequence of (possibly syntactically different) programs all computing the same
function. The resulting notion of learning is called BC' for behaviorally correct.

In some cases, convergence (in either sense) to a program computing the input function
exactly may not be required. Perhaps an approximation will do. If an IIM M, on input
f, converges to a program that computes f everywhere, except on perhaps at most a
anomalous inputs, we say that f € EX*(M). The class EX® is defined analogously to the
definition of the class EX. A comparison of the classes EX? arising from the consideration

of various values for a and ¢ appears in [10].

A collection, or team, of inductive inference machines, My, M, ..., M,, infers a
function f iff there is an ¢ with 1 < ¢ < n such that f € EX(M;). In this case we write
f € EX(M,...,M,). Aset S of recursive functions is learned by the team iff each f € S
is learned by some member of the team. Different member of the team will learn different
members of S. If the team My, M,, ..., M, learns the set S, we write S € [1,n|EX. The
class [1,n]EX is the collection of sets S that are inferrible by some team of n inductive
inference machines. The definition of [m,n|EX, where m out of the n inference machines
succeed can be found in [19]. The definition of the classes [m,n|E X, is analogous.

A query inference machine (QIM) is an algorithmic device that asks a teacher questions
about some unknown function, and while doing so, outputs programs. The questions are
formulated in some language L. Formally, a QIM is a total algorithmic device which, if
the input is a string of bits g, corresponding to the answers to previous queries, outputs
an ordered pair consisting of a (possibly null) program e, called a guess, and a question .

-

(See Figure 2) Define two functions ¢ (guess) and ¢ (query) such that if M(b) = (p,) then
g(l\l(g)) = p and q(i\/f(g)) = . Without loss of generality, we adopt the conventions that
all questions are assumed to be in prenex normal form (quantifiers followed by a quantifier-
free formula, called the matrix of the formula) and that questions containing quantifiers
are assumed to begin with an existential quantifier. A QIM M learns a recursive function
f if, when the teacher answers M’s questions about f truthfully, the sequence of output
programs converges to a program that computes f. In this case, we write f € QEX[L](M).
For a fixed language L, the class QEX L] is the collection of all sets QEX[L]|(M) for a QIM
M. QEX.L], QEX*[L] and QEX}[L] are defined similarly. Teams of query machines

are defined analogously.

— b1, 9, ... (questions formulated in L)
QIM — by, bo,... (answers)
L — P1,P2, ... (guesses)
Figure 2.

3

All the query languages that we will consider allow the use of quantifiers. Restricting
the applications of quantifiers is a technique that we will use to regulate the expressive
power of a query language. Of concern to us is the alternations between blocks of existential
and universal quantifiers, as well as the total number of quantifiers. Suppose that f €
QEX[L|(M) for some M and L. If M only asks quantifier-free questions, then we will say
that f € QoEX[L)(M). If M only asks questions with existential quantifiers, then we will
say that f € Q1 EX[L|(M). In general, if M’s questions begin with an existential quantifier
and involve d > 0 alternations between blocks of universal and existential quantifiers, then
we say that f € Qi1 EX|[L|(M). Furthermore, if there are at most k quantifiers total
in all blocks we say that f € Q4. EX[L](M). The classes Q5 EX[L] and Q5 EX.[L] are
defined analogously.

Now we introduce the languages that will be used. Every language allows the use
of A, =, =, ¥, 3, symbols for the natural numbers (members of IN), variables that range
over IN, and a single function symbol F which will be used to represent the function being
learned. Inclusion of these symbols in every language will be implicit. The base language
L contains only these symbols. If L has auxiliary symbols, then L is denoted just by these
symbols. For example, the language that has auxiliary symbols for plus and less than is
denoted by [+, <]. The language that has auxiliary symbols for plus and times is denoted
by [+, x]. The language with extra symbols for successor and less than is denoted by
[S, <], where S indicates the symbol for the successor operation. Such languages have “€”
as a symbol for “element of.” The symbol “x” will be used to denote an arbitrary language
that includes all the symbols common to all the languages we consider and some (possibly
empty) subset of recursive operators, e.g. +, <, x and S. Such a language will be called
reasonable.

The following definitions are necessitated by our proof techniques. Suppose f is a
function and n is a positive integer. For j < n, the j®'n-ply is the function A\z[f(n -z + j)].

Clearly, any function can be determined from its n-plys. For any function f, let I(f)

4

denote the set of values y for which there are infinitely many z’s with f(z) = y. For two
functions f and ¢, we write f =* ¢ to mean that f(z) = g¢(z) for all but finitely many
z’s. If f(x) = g(z) except for at most a values of z, then we write f = g. If f(z) = g(x)

except for exactly a values of x, then we write f ==% g¢.

ITI. Queries versus Teams

In this section we examine the simulation of active learning machines by teams of
passive learning machines. Pitt [18] found an equvalence between teams of passive learning
machines and probabilistic learning machines. Various trade offs with probability and other

parameters of learning were investigated in [19].

THEOREM 1. Qu+1EXo[x] C QuEX[*].

Proof: The d = 0 case is proven in [13]. Suppose S € Qq4+1EX[*] as witnessed by the QIM
M. We describe the operation of a QIM M’ showing S € QEX[x]. M' simulates M as
follows. If M asks a question with at most d blocks of quantifiers, M’ ask the same question
and gives the answer to M. M’ also outputs any conjecture produced by M during the
simulation. After M produces its only conjecture, M' can stop the simulation. Suppose
M asks a question 1 with d 4 1 blocks of quantifiers. To reduce notational complexity, we
assume that the leftmost quantifier block contains a single quantifier. (The general case
is similar.) Hence, ¢ looks like 32V ... ¢(x,y1,...,yn) for some n and quantifier free ¢.

Consider the following questions (with d blocks of quantifiers).

77Z}0 :¢(07y17"'7yn)
77Z}1 :¢(17y17"'7yn)

If the correct answer to ¥ is “NQO”, then the correct answer to each of ¥, 11, ... is also
“NO”. However, if the correct answer of 1 is “YES,” then there will be a 7 such that the

correct answer to ¢; is “YES.” In simulating M, M' answers ¢ as NO and simultaneously

5

continues the simulation and while doing so asks g, ¥, ... until, if ever a j is found such
that v; is answered “YES.” If such a j is found, the simulation of M is restarted from the
beginning, only this time when M asks 1, M' provides the answer “YES.”

During the course of M"’s operation, it may be working on several questions v at one
time. The number of such questions will be finite as M can only ask finitely many questions
before outputting its only conjecture. Hence, M'’s simulation of M can be restarted only
finitely often. In the case i starts with a block of universal quantifiers, the roles of “YES”
and “NO” are reversed. Blocks of more than one quantifier are handled by considering

vectors of values instead of x in the 1;’s. X

THEOREM 2. Ve,d € N, Qi1 EX [*] C [1,c¢+ 1|QqEX][*].

Proof: Let ¢ and d be given. Suppose M is a QIM making at most ¢ mindchanges that
witnesses S € Qqy1EX [*]. M is simulated by a team My, ..., M. where M; (0 < ¢ <
¢) simulates M asking the same questions and providing M with the correct answers.
However, instead of faithfully reproducing M’s conjectures, M; ignores all but the i + 15

conjecture which is used as M;’s only output. Xl

The question of whether or not the inclusion of Theorem 2 is proper naturally arises.

The answer depends on the query language.

THEOREM 3. For all c € N, Q1EX.[S,<] C[l,c+ 1]EX.

Proof: By the d = 0 case of Theorem 2, Q1 EX.[S,<] C [1,¢+ 1]EX and by Theorem 10

of [13] EX — QEX_.[S, <] # (. Hence, the theorem follows. X

Next, we examine the language [+, <]. Not only do we compare the appropriate query
inference classes with team inference classes, we are also able to answer a problem left open
in [13]. The solution to this problem yields another level in a suspected infinite hierarchy

based on alternation of quantifiers in the query language.

6

THEOREM 4. There is a T € (EX} N Q2:EX,[<]) — Q1 EX[+, <].

Proof: Recall that I(f) denotes the set of values that appear infinitely often in the range
of f. Let T be defined as follows:

T ={fleso = f and I(f) = 0}V
{flesoy =" £, I(f) = {e}, and
Va > pz[f(z) = €|, o) (x) = f(z) and
Va,y > pzlf(z) = €], (f(z) # e and z £ y) = f(z) # f(y)}.

T € EX} is witnessed by the IIM that always outputs as its only conjecture the value
f(0). The QIM that witnesses that T' € Q2 EX;[<] first finds the value of f(0) by asking
F(0) =07 F(0) =17 ---. The QIM then outputs f(0). Then ask the following questions

until (if ever) the unique e € I(f) is found:
Vaedyly > x and F(y) = 0]?

Vzdyly > x and F(y) = 1]?

A “YES” answer indicates that I(f) is not empty and an appropriate patched version of
program f(0) is output.

The proof that T' ¢ Q1 EX[+, <] is a highly nontrivial modification of the proof that
the set of recursive functions is not in Q1 EX[+, <] from [13] (Theorem 13). Let M be a
QIM that asks questions using the query language [+, <] restricted to sentences with only
existential quantifiers. We construct a recursive function f € 7' in effective stages of finite
extension. The function f will be computed by program e described below, e.g. f = ..
The finite amount of f determined prior to stage s is denoted by f°. The least number
not in the domain of f* is denoted by z°. By way of initialization, by implicit use of the
recursion theorem, f® = {(0,¢)}. The function f is determined by the execution of the

following stages in their natural order.

Begin stage s. Suppose that so far in the construction M has asked m questions and
received answers by, by, ..., by. Let 3 = g(M(by1by...by)), M’s most recent guess. As
in other diagonalization arguments in inductive inference, we simultaneously look to make
the current guess wrong or force a mind change. In addition we extend the function except
at the point we are trying to diagonalize against. If stage s does not terminate, then f
will be defined everywhere except on a single point. In this case, a patched version of f
will suffice to obtain the desired result.

The search for an extension forcing a mind change will involve M asking more ques-
tions. Several questions may have to be answered during stage s before an extension
forcing a mind change will be found. This will also involve fixing certain extensions to f*
that must be used in the event that the mind change is not found before a diagonalization
point is found. Let b= (b1,...,bm). This vector of responses will be lengthened during
stage s. To reduce notation, the various, larger and larger, vectors will not be indexed.
Consequently, galways denotes the current vector. Similarly, let ¢ denote the current
fixed portion of f. Initialize o = f* so that it will always be the case that f¢ C o C f*+1.

Simultaneously execute the following two substages.

Substage 1. Diagonalize against the current guess. If ¢ (2®) converges before a
mind change is found in substage 2, then set f**' = o U {(2*,1 = ¢,(2%))} and

go to stage s 4 1.

Substage 2. Force a mind change or extend f°. Let y be the least number not in
the range o. In trying to answer questions, we will assume f(z°) = y, although
f(z*®) will remain undefined. Let ¢ = q(lW(g)), M’s most recent query. Define
g = ¢ and 3 = —p. For ¢ € {0,1}, use Lemma 4 of [13] to effectively find out
if there is a finite sequence 7; (with no repeated values) extending o U {(z°,y)}
such that any function extending 7; will make ¢; true. By Lemma 3 of [13], for
some ¢ € {0,1}, 7; exists.

If there exists ¢ € {0,1} such that g(]\i(gi)) # j and 7; exists

8

then choose the least such ¢ and the least such 7; and set f*t! = 7, b= gz',
and go to stage s + 1, (this forces M to change its mind at stage s + 1)

else let ¢ be the least number such that 7; exists, set b = gz', c=o0cUm; U
{(z,y)} — {(2®,y)}, for z the least number not in the domain of 7;, and
repeat substage 2 for these new values of o and b.

End stage s.

If every stage of the construction terminates, then f(z) is defined for all z and I(f) =
0, hence ¢y = f, so f € T. If M converges to j when trying to infer f, then, by the
failure of substage 2 to extend f past some point, @, (since it is extended by substage 1
infinitely often) is wrong on infinitely many arguments. Hence, f ¢ Q1 EX[+, <](M).

If some stage s never terminates, then substage 2 is executed infinitely often. Con-
sequently, f eventually becomes defined on every argument except z°. We show that M
does not infer h = f U {(z°,y)}. Let b denote the value of b on entry into stage s and let
j = g(l\l(g)). By the failure of substage 2 to terminate stage s, when M tries to infer h, it
will converge to j. By the failure of substage 1 to terminate stage s, ¢;(2*®) is undefined.
Hence, h ¢ Q1 EX[+, <](M).

X

The class EX]} is very restrictive. As a consequence of known inclusions [10,26], the
set T from Theorem 4 is also contained in the class [1,2]EX, and all its supersets. A

question that naturally arises is whether or not Theorem 4 can be modified to consider the

class Q2 EX| | instead of Q2 EX[<].

THEOREM 5. Q2 EX|[| — Q1EX[+,<] # 0.

Proof: Let
S ={fleso) = fand =(Fk, ¥z > 1 Iy1,...,ye) f(z) = f1) = ... = flyx)}

U{fleso = f and (3k, ¥z > 1 3ys, .. ye)f(z) = f(1) = ... = f(yx) and @; = f for [least}
The theorem follows using techniques similar to the proof of Theorem 4. X

COROLLARY 6. For all c € N, Q1 EX [+,<] C[1,c+ 1]EX.

Proof: By Theorem 2 with d = 0 and « =“+, <,” Q1 EX. [+, <] C [1,¢+1]EX. By Theorem

4, EX) —Q1EX[+,<] # 0. Since EX! C EX C[1,c+ 1]EX [26] the corollary follows. X

COROLLARY 7. Q1 EX[+,<] C Q2 EX [+, <].

Proof: The inclusion holds by definition. We show that the inclusion is proper. By
Theorem 4, Q2 EX,[<] — Q1 EX[+, <] # 0. Since Q2 EXy[<] C Q2EX|[+, <], the corollary

follows. X

IV. Queries versus BC

In this section we compare active learning with BC' learning. As a corollary to the

main theorem in this section we obtain an infinite hierarchy based on mind changes.

THEOREM 8. For all ¢ € N — {0}, Q: EX_[S] — [1,¢|BC # 0.

Proof: For n a positive integer, j < n, and f a function, let f}' denote the gt n-ply of f.

10

Let ¢ be given. Let S, be defined as follows:

S, = U {fl3e1,ea,... .6
1<i<c—1
;= Aale]

P =" Axles]

Fi =" dales]

£V E Akl keNi <j <c

FiH @) #ei,1<j<czelN
f=ve}

U{fl3er,ea,... e

o = Azled]

T =" Aales]

fccjll =" /\x[ec]

f=e, or fo =" Aalec]}
A QIM that witnesses S. € Q1 EX.[S] behaves as follows. The value of ey can easily
be found. Output this value. To find ey (if it exists) ask the following question for all

values of ¢ and b:
Vylly#O0andy #1and ... andy #a) = (Fly) =e1 = Fly+1)=0)]?

When a “YES” answer is received, then e; = b. Output eq, if it exists. By a similar process,
find and output es, eq, ..., e.. If e, is output, we must also check to see if fST1 =* \z[e,].

The proof is completed by showing that S & [1,¢]BC. Suppose My, ..., M, are
IIMs. Using the operator recursion theorem [9] an infinite monotone increasing sequence

of programs, p(0), p(1), ... is constructed, in stages, such that o, ;) will be in §—(BC(M;)U

11

-+ U BC(M.)), for some i. Program p(0) will start with My, ..., M, on a queue in that
order. The program proceeds by trying to diagonalize, using standard techniques, against
the IIM at the front of the queue. If successful, program p(0) moves the IIM at the front
of the queue to the rear and goes to the next stage. Continuing in this fashion, p(0) will
diagonalize against each of My, ..., M, infinitely often in a round robin manner. If the
IIM at the front of the queue has converged on the segment of) determined so far
to a program for a finite function, then p(0)’s search for a diagonalization point will fail.
Another one of the p(¢)’s will continue at that point, in an identical fashion, except that
the IIM at the front of p(0)’s queue will have been permanently removed. We say that
program p(0) is at level 1 and that the p(¢) with only ¢ — 1 IIMs on its queue is at level
2. The program called p(z) may also be unable to find a diagonalization point for similar
reasons. Consequently, there will be other programs in the sequence at levels 3, 4, ...,
¢+ 1. The program operating at level k£ will have (¢ + 1) — k IIMs on its queue.

It 1s possible that the program at level & will succeed only ofter the program at level
k+1 has been successful in finding extensions. In this case, a new program must be started
at level k + 1, extending the recently revised program at level k. This new program will
be the “next” p(i), i.e. p(¢) where 7 is least such that p(7) has not yet been mentioned,
explicitly or implicitly, in the construction. Programs at level k will be explicitly activated
and deactivated by programs at levels 1, ..., k — 1. e (1 < k < ¢+ 1) will denote the
currently active program (one of the p(z)’s) at level k. The construction will insure that
Ve, € e, © ... € e,y,. The finite initial segment of ¢., determined prior to stage s of
the construction of the current e; will be denoted by o}.

The initial configuration of the construction is as follows. For 1 < k < ¢, e = p(k—1)
with queue My, ... M,. e.41 = p(c) with an empty queue. For 1 < k < c+ 1, o) = 0.
Program e.4; will be determined in its entirely at its activation. Program e; (p(0)) can
never be deactivated. In order to avoid a notational nightmare, we present the construction
for the ¢ = 2 case only. This construction has three levels. We will be concerned with
the zeroth, first and second 3 plies of the functions we constructed. To simplify notation,

these will be referred to as the 0t 15¢ and 2™ plies, respectively.

12

Stage s in the simultaneous construction of e, e; and e3.
Suppose the queue is M, M' in front to rear order. Simultaneously perform the

following 2 steps.

Step 1: Make another one of M’s guesses wrong.
Look for a p and a 7 such that
T1.1 7 2 p D of such that:
T1.2 If z is in domain (7 — o) and z is on the 0" ply of 7 then 7(z) = e;, and
T1.3 If z is in domain (7 — o) and z is on the 1°* or 2% ply of 7 then 7(z) €
{ea,e2 + 1}, and
T1.4 Domain of p and 7 are initial segments of the integers, and
TL1.5 @urp(z) # 7(x) for some z in domain (7 — 7).
If such a 7 1s found then perform the following actions:
A1.1 Stop work on Step 2, and
A1.2 Set ot =7, and
A1.3 Move M to the rear of the queue, and
A1.4 Deactivate e; and esz, and
A1.5 Activate a new ey with o51t! =7, and

A1.6 Go to stage s + 1.

Step 2: Give up on M, try M'.
Execute the following Substages in their natural order. a;’t denotes the finite
initial segment of ., (for the current ez) determined prior to Substage ¢. 05’0 = oj.
Begin Substage t. Activate a new e3 and define:
oy'(z) if 2 € domain &3,
Pes(T) = ¢ €4 if z is on the 1'" ply and z ¢ domain O';’t,
€9 otherwise.

Try and make another one of M'’s guesses wrong by searching for

a p and a 7 such that:

13

T2.1 72 pDast
T2.2 If z is in domain (7 — ¢5") and z is on the 0" ply of
7 then 7(x) = ey, and
T2.3 If z is in domain (7 — ¢5’") and z is on the 15 ply of
7 then 7(x) = ez, and
T2.4 If z is in domain (7 —oy’") and z is on the 24 ply of
7 then 7(z) € {e2,e2 + 1}, and
T2.5 There are z and y in domain (7 — ¢5") such that
7(x) = ez and 7(y) = ez + 1, and
T2.6 Domain of p and 7 are initial segments of the integers,
and
T2.7 opp(py(z) # 7(x) for some z in domain (7 — a3h).
If such a 7 1s found then perform the following actions:
A3.1 Set a;’t—H =7, and
A3.2 Deactivate ez, and
A3.3 Go to Substage ¢t + 1.
End Substage t.
End Stage s.
Case 1. Every stage s terminates. Since e; is never deactivated, e; = p(0) throughout
the construction. Let f = ¢.,. f is a recursive function since every stage defines f on a
larger initial segment of its domain. By T1.2, f§ = Az[e;]. By actions Al.4, and A1.5, e,
is deactivated and reactivated with a new index at every stage. By T1.3, neither the first
nor second plies of f are finite variants of constant functions. Only values of various ey’s
and their successors are placed in the range of f along the second and third plies. By the
monotinicity condition of the operator recursion theorem, all these values will be larger
than e;. Hence, f € S5 by the ¢ = 1 case of the first clause of the definition of 5.

Choose M € {My,M,}. M is at the front of the queue at the beginning of infinitely

many stages. Actually, for the ¢ = 2 case that we are doing, M will be at the front of

14

queue at every other stage. At each such stage there is a different p and an x such that
p C f and parp)(z) # f(z). Hence, infinitely often, M, on input f, outputs an incorrect
program. Consequently, f & BC(M). Since M was chosen arbitrarily, f € (S; —[1,2]BC).

Case 2. Some stage s never terminates. Let s be the least such stage. Suppose the
queue at the beginning of stage s is M, M’ in front to rear order. Program e; is not
deactivated at or past stage s since if action Al.4 is executed, so will action A1.6 and
stage s will terminate. Every 7 D o7 that is an initial segment of ¢, or of ., for any
es active during stage s will be considered in T1.1 through T1.4. Program M(7), for each
such 7, computes a finite function, as otherwise a p and a 7 satisfying T1.1 through T1.5
would be found and stage s would terminate.

Case 2.1. Every substage t terminates. Let f = p.,. f is a recursive function since
every substage defines f on a larger initial segment of its domain. By T2.2, f3 = \z[e4].
By T2.3, f3(z) = ey, for all z € domain of. T2.5 insures that the third ply of f is not
a finite variant of a constant function. Only values e; and e; + 1 are placed in the range
of f along the third ply. By the monotinicity condition of the operator recursion theorem
these values will be larger than e;. Hence, f € S5 by the second clause of the definition of
Ss.

By the remarks in the beginning of Case 2, M fails to BC identify f. At each substage
t there is a different p and an z such that p C f and up(,y(2) # f(z). Hence, infinitely
often, M', on input f, outputs an incorrect program. Consequently, f ¢ BC(M'). Since
M and M' we chosen arbitrarily, f € (S2 — [1,2]BC).

Case 2.2. Some substaget never terminates. Let t be the least such stage. Let f = ¢,
as defined at the beginning of substage t. Since f3 =* Az[es], f € Sy by the second clause
of the definition of S;. Every 7 that is an initial segment of f will be considered in T2.1
through T2.6. Program M'(7), for each such 7, computes a finite function, as otherwise a
p and a 7 satisfying T2.1 through T2.6 would be found and substage ¢t would terminate.
Hence, M' cannot BC identify f. By the remarks in the beginning of Case 2, M fails to
BC identify f. Since M and M' we chosen arbitrarily, f € (S2 — [1,2]BC). Xl

The above argument can be modified to show the following.

15

THEOREM 9. For all ¢ € N, Q1 EX.[S] - U N1,] BC* # 0.

Proof: Choose a € IN. Modify the proof of Theorem 8 as follows. Instead of looking for an
x in T1.5 and T2.7 look for a4+ 1 distinct such z’s. In Case 1 and 2.1, instead of obtaining
M (or M'") infinitely often outputting a wrong program, we now have M (or M') infinitely

often outputting a program that is wrong in at least a + 1 places. X

COROLLARY 10. BC and Q1 EX,[9, <] are incomparable.

Proof: By Theorem 8, Q1 EX[S, <] — BC # (). In [13] it is shown that EX — Q1 EX/[S, <

] # 0. X

The following corollary of Theorem 8 yields a multitude of infinite hierarchies based
on the number of mind changes allowed a QIM asking questions involving a single type of

quantifier. There is a hierarchy for each language.

COROLLARY 11. Let L be any language that contains a symbol S for successor. Then

for each ¢ €N, Q1 EX . [L] C Q1 EX.41[L].

Proof: The inclusion holds by definition, we show that it is proper. Let ¢ € I[N be given. By
the d = 0 case of Theorem 2, Q1 EX.[L] C [1,c+ 1]QoEX[L]. Since each QIM that asks
quantifierless questions can be replaced by an equipowerful IIM [13], [1,¢ + 1]QoEX[L] =
[1,¢+ 1]EX. ;From the results in [26] it follows that [1,¢+ 1]EX C [1,¢+ 1]BC. Hence,
O EX[L] C[l,e+ 1]BC. By Theorem 8, there is an element of @1 EX.41[L] that is not

in [1,¢+ 1]BC. The corollary follows. X

16

THEOREM 12. Q2 EX[5, <] and U2, [1, ¢|BC are incomparable.

Proof: The set of primitive recursive functions is in EX, and consequently, in BC. In [13]

it was shown that the primitive recursive functions were not in Q2 EX[S, <]. To complete

the proof, it suffices to find a set T such that T € Q2 EX([S, <] — U2, [1,¢|BC. Let

Se

3

T =
1

where S, is as defined in the proof of Theorem 8. By Theorem 8, T' ¢ U2 ,[1, ¢|BC.
A QIM that witnesses T' € Q2 EX[S, <] behaves as follows. First find a ¢ > 0 such
that f(0) = f(¢). Then the function serving as input is from S.. Furthermore, the value

of f(0) is e1. To find out if ey exists, ask:

dy, zVe[xr >y and F(z) =e1 = Fle +1) = 2]?

If ey exists, z is its value. Continue in this fashion to find e; (if it exists) by asking:

dy, zVz[r >y and F(z) = ey = Flz + 1) = 2]?

V. Queries versus Anomalies
A further analysis of the proof of the result that Qo EX[*] = EX from [13] immediately

yields the following.

THEOREM 13. For all a € N U {x}, for all ¢ € N, Qo EX?[x] = EX.

The next result shows a completely different outcome when questions using a single

quantifier are allowed.

17

THEOREM 14. For all a e NU {*}, Q1 EXo[| — U0 EX2 # 0.

Proof: Pick a € INU {x}. First we define T to be the set of step functions. T contains all
and only the functions f such that either f = Az[0] or there are constants ¢y, ..., ¢, for
some n € [N such that:

0 ifzx<e,
1 if01§$<02,

flz) =
c, e, <z

In [10] it is shown that T is not contained in U.>oEX!. The proof is completed by
presenting a QIM M that Q1 E X, infers T using a query language without special symbols.

First, M determines if the input function is the everywhere zero function by asking;:

If the answer i1s “YES” then M outputs a program for the constant zero function and

stops. If the answer is “NO” M continues by trying to find ¢; by asking:
F(0)=17
F0)=0AF(1)=17
FO)=0AF(1)=0AF(2)=17
FO)=0ANF(1)=0AF(2)=0AF(3)=07
If f € T, then eventually a “YES” answer will be the response to one of the above questions.

When the “YES” answer arrives, the value of ¢y is known. M then asks:
Ve[(ze <1 = Flz)=0)Az > ¢ = F(z) =1)]?

If the answer is “YES” then M outputs a program for the following function g¢:

g($):{0 if$<61,

1 otherwise.

If the answer is “NO” M searches for ¢; in a manner similar to the method for finding ¢;.

Again, the search will succeed iff f € T. The process continues until M has found all the

18

relevant constants ¢y, ..., ¢,. Any function in 7' will have such constants for some n. The
questions using the universal quantifier are used to determine if the last such constant has
just been found. With the appropriate constants in hand, M easily outputs the correct
program. A program is output only when all the proper constants have been found. M

outputs at most one program. X

This last theorem shows that QIEX[x] — EX. # (), for all ¢. Hence the result
Q1 EXy[x] € EX from [13] cannot be improved by substituting EX. for EX. It is also
possible to prove Theorem 14 using, instead of T', a set S of recursive functions that are
almost every where {0, 1} valued and have the property that the largest value that does not
map to a 0 or a 1 is an index for the function. The proof becomes more involved with the
use of a more complicated set. Wiehagen [29] has shown that this set S cannot be inferred
by any consistent inductive inference machine (i.e., machines that only output conjectures
that agree with all the data seen so far), thereby ruling out a potential strengthening of the
result that Q1 EXy[x] € EX to a more restrictive class than EX. An inductive inference
machine is consistent if all its conjectures are consistent with all the data used to make the
conjecture. This contrasts with the fact that any class in £ X can be inferred consistently.
Moreover, the class S contains arbitrarily complex functions since suitable finite variants
of arbitrarily complex functions are in S and some these are also arbitrarily complex [25].
Hence, a QIM that asks only single quantifier questions can learn a set of arbitrarily com-
plex functions that no passive IIM can learn when restricted to a fixed finite number of
mind changes. Finally, the class S cannot be reliable [8] identified. For reliable inference,
convergence is synonymous with identification. Hence, another possible strengthening of
our results is ruled out.

Now we consider whether or not asking questions enables the precise (no anomalies)
learning of functions that, without queries, can only be learned by IIMs that tolerate
anomalies. As we shall see, not even a single error can always be corrected. A strengthening

of Theorem 4 is easily obtainable.

19

THEOREM 15. For all a € IN, there is a set T% € (EX T N Q,EX,[<]) — Q1 EX*[+, <].

Proof: Define T* as follows:
T* ={fleso) = fand I(f) = O}V
{flesoy ="' £,I(f) = {e}, and
Va > pz[f(z) = €], p0)(z) = f(z) and
Va,y > pz[f(2) = el,x # y and f(z) # e = f(z) # f(y)}.
An easy modification of the proof of Theorem 4 , and a proof that T¢ € Qs EX;|[<]

now suffices. Xl
COROLLARY 16. For all « € N, EX{T' — Q1 EX [+, <] # 0.

Proof: Immediate from Theorem 15. X

This result yields the following hierarchy:
QlEX[—I_v <] C QlEXl[—I_v <] C--C QlEXa[—I_v <] C QlEXa+1[+7 <] -
COROLLARY 17. For all a € IN, the classes EX*t! and Q EX®[+, <] are incomparable.

Proof: By Corollary 16, it suffices to show that Q1 EX [+, <]-EX**! £ (). Since EX**t! C
BC [10] it suffices to show that Q1 EX[+,<] — BC # (. This is just the ¢ = 0 case of

Theorem 8. X

VI. Blocks of Quantifiers

In this section we establish a hierarchy based on the total number of quantifiers a
QIM is allowed to use in phrasing its questions. Many results is logic and theoretical
computer science suggest that increasing the number of alternations of quantifiers (number

of blocks) would increase the capabilities of the resultant QIM. This expectation is reflected

20

in Corollary 7. Below we present a finer approach. We establish hierarchies based on the
total number of quantifiers all of the same type.

In order to carry out our next construction, we need to examine the expressive power
of statements with k existential quantifiers in [+, <]. The following mathematical lemma
concerns the expressive power of k existential quantifiers in [+, X, <]. Although we do not
need the additional strerngth of the lemma, it is no more difficult to prove and it may be
useful at some later point. Basically, the following lemma says that k existential quantifiers
are not sufficient to ask the question, “Is there some value in the range of F that occurs

at least k£ + 1 times?”

LEMMA 18. Let 6 be a query in [+, x, <] with at most k existential quantifiers, let
m € IN, and let ¢ be a finite function with domain an initial segment of [N such that any
recursive function f extending o satisfying the following two properties makes 6 false.

1. if z is in the domain of the f and not in the domain of o then f(z) > m.

2. no value appears in range(f)— range(o) more than k times.

Then there exists an m’ > m and a finite function 7 such that the domains of 7 and o are
disjoint and some value occurs in the range of 7 at least k£ + 1 times, and any function f

extending o U 7 using values > m' at most k& times makes 6 false.

Proof: Let 8 = Jxq - - Jxp(x1, ..., xk). Let Go be the terms in ¢(z1,...,2x) which occur

as arguments to the function symbol F. For example, if 6 is

dzdy (F(3) = F((x x Fy)) + F(18))) A (z >4) A (F((z xy)+ x + x) = 52),

then
Go = {3,(z x Fly)) + F(18),y,18,(x x y) + = + z}.

21

For a given finite function o, let G, be the collections of terms formed by taking elements
of Gy and substituting (in all possible ways) members of the range of o for the value of F.
For example, given Gy as above and o = {(0,5),(1,7)},

Go ={3,(x x5)+5,(x x5)+ 7, (x xT)+5,(x xT)+7,y,18,(z xy) + = + z}

= {3,652+ 5,52 + 7,7 +5,7x + 7,y, 18, zy + 2x}.

Note that the terms of G, are essentially polynomials in zq,...,z;. Let g, denote the
number of terms in G,. The polynomials in G, describe the points in the domain of F
that may be accessed by the query ¢ (z1,...,zr) (except terms which have nested F’s; we
will use m' to handle them later). The main idea will be to find a set of k£ + 1 points that
can not all be referred to in any instantiation of 6.

We view G, as a mapping of IN* to subsets of IN. of size < ¢,. For example, for the G,
above, G,(2,3) = {3,15,17,19,18,10}. Henceforth, we will denote G, by G,(z1,..., k).

We construct the extension 7 to o as follows. We claim that there exists points,

D1,y Pk+1, Dot in the domain of o such that (Vaq)--- (Vay)

{p17"'7pk—|-1} Z Ga-(l’l,...,.fk).

In other words, for all values x1, ..., z, the points py,...,pgy1 cannot be simultaneously
referred to in the query ¢ (x1,...,zx).

To see that this is true let n be chosen such that () < n. and consider the effect

K
of G, (as a mapping) modulo n. Formally define G to be the function that on input
(z1,...,2%) € {0,1,...,n — 1}* produces the multiset (repeated elements are allowed)
obtained by taking every element in G7 and reducing them mod n. (For example, for
the above G,, G2(2,3) = {3,0,2,4,3,0}.) For every (z1,...,21) € {0,1,...,n — 1}F,
|G (z1,...,2%)| < go; hence the number of k + 1 element subsets of G?(x1,...,z) is
< (kj—l)' (By convention, a subset of a multiset may also be a multiset. For example, for

the G, above, {3,3,0} is a subset of G2(2,3).) Since there are n* elements in the domain

of G the number of k + 1 element multisets {ry,..., 7,41} that can be a subset of some

22

k41 Since the number of possible k + 1 element

Gl(x1,...,x5)1s < nk-(kj_l) <nkF-n=n
multisets that are subsets of {0,1,...,n— 1} is n*T!, there exists a multiset {ry,... ,rgs1}

that is not a subset of any GJ(x1,...,2x). Thus, for any set {p1,...,pr+1} such that for

alle <k+4+1,pi=r; (modn),
(\V/l’l,... s Lk € N){pl, ,pk+1} g GU(ZL'l,...,CL’k).

We use pi,...,pr+1 in our construction of 7. Let m' be larger than max;{p;}. Let
7 be such that the positions pi,...,pr+1 all have the same value > m', and all other
values are unique and > m'. To see that this will work, assume by way of contradiction
that there is some extension f of ¢ U 7 such that f makes 6 true. In this case, there
must then be values ay,...,a; such that f makes ¥(aq,...,ax) true. But we know that
{p1,.-ype+1} € Go(aq,...,ar), so there must be some position p; € G,(a1,...,ar). We
claim that p; is not referenced as an argument to F in the statement v (ay,...,ag). If
it were, then it must be equal in value to some term of Gy, say t. If ¢ does not involve
F, then t € G4, a contradiction. If ¢t does involve F, then those occurrences of F must
either take on values in the range of ¢ or values > m'. If any value > m' is used in a
place not eventually multiplied by zero, then the value of ¢ will be > m', contradicting
p; < m'. If all values not eventually multiplied by zero are in the range of o, then t € G,
a contradiction. Let f' be f with the position of p; modified to contain a unique value.
(If necessary, all unreferenced positions can be modified to permit this). Then f' will also
make t(ay,...,ax) true, since ¥(ay,...,ar) does not reference the positions which have
been changed. Thus, f' makes 6 true, in contradiction to the assumption in the statement

of this lemma. X

We note that Lemma 18 can easily be extended to the language [+, x, <] (and there-
fore [+,<]) as well. In fact, Lemma 18 can be extended to any language of the form
[+, %, Py, Py, ..., P], where Py, P;,..., Py are any predicates whatsoever. This is because

the term structure of the language still consists of multi-variate polynomials. In other

23

words, the additional predicates do not affect which positions of F can be examined at the
same time. In addition, Lemma 18 can be extended to any language where all the function

symbols @&(x1,...,Tm) have the property that, for all n,
(B(z1,...,2m) mod n) = (B(xz; mod n,...,x, (mod n)) mod n).

We will not need this general version of Lemma 18 for this paper, but it may be useful in

subsequent work.
THEOREM 19. For any k£ > 0, we have Q’f+1EX0[1 —UZ, QYEX.[+,<] # 0.

Proof:

For a function f, let

R(f.k) = {(z0,21,- i) N\wi # 25 A flao) = flar) = -+ = flai)}.

i#]

Let
T = {fleso ="' f, and R(f,k) is finite, and

©0)(z) = f(z) for all # > max{miny € U|U € R(f, k)}.
We show that T' € QIIH'IEXO[|, by means of a QIM M as follows. Suppose f € T.

M asks the questions:

(3z0)(Fz1) - -~ (Fzx) /\%%0 (N i # 2j)F (o) = Flar) = - = Far)

i#]

(3z0)(Fz1) - -~ (Fzx) /\%%0 /\xz#l (N wi# 2j)F(wo) = Flar) = = Flar) |

i#]

(3z0)(3z1) - - (Fz1) /\g;l £0) (/\ zi £ n) A (/\ zi # 1) F(xg) = Fler) = - = Flxy)

i#]

until a response of NO is obtained. Then, M determines the actual values of f(0), f(1),...

f(n), and outputs an appropriately patched version of the program f(0) as its only guess.

24

For all ¢ > 0, we show that T ¢ Q¥*EX_.[+, <]. Suppose that M is a QIM that asks
questions using the query language [+, <] restricted to sentences with only k existential
quantifiers. We construct a recursive function f € T that M does not infer within ¢
mind changes. The construction proceeds in effective stages of finite extention. The initial
segment of f constructed prior to stage s is denoted f°. By implicit use of the recursion
theorem, initialize f* = {(0,€)}. At each stage, we will have M’s current query, which will
be denoted (ambiguously) by . In addition, we will have 6, which will be the disjunction
of previous queries to which we have responded NO. (We keep 6 to insure that the future
construction remains consistent with the previous responses.) The value of this 6, on entry
into stage s, will be denoted by 6°.

As was the case in the proof of Theorem 4 the extensions considered during stage
s below will cause M to ask questions which must be answered. The answering of the
questions will necessitate fixing portions of the extension. The variable o will be used to
denote the (partial) extension to f* currently determined. It will turn out that f* C o C

511, Similarly, let b denote the answers to the questions that have been answered.

Begin stage s. Let m be the largest value in the range of f°. Set § = 8°. Apply Lemma 18
to m and finite initial segment f° to get an extension 7 of f° and y > m occurring k + 1
times in the range of 7. Choose z least such that f(z) = y. Let 0 = f*U 7T — {(z,y)}.
Next, we perform the following two substages in parallel, until one terminates. If neither
substage terminates, then f will be defined everywhere except at z.

Substage 1. Let j = g(JW(g)). Run ¢ (z). If it converges before substage (2) is

complete, then choose z least such that z > m, « ¢ range o and z # ¢;(z) and

set

o=0cU{(z,2)}

and execute the query answer procedure.

25

Query Answer Procedure. Let ¢ be M’s current query. There are two

cases to consider. We can determine which of these cases holds by using

a slight modification of the technique from Lemma 3 in to deal with the

restriction on using values at most &k times.

Case 1. If there is a finite extension 7 D ¢ such that the range of 7
contains only values > m and no value appears in the range of
7 more than k times and o U7 makes v true, then set c = cUT
and answer the query YES.

Case 2. Otherwise, let z be the least value > z not in the domain of o,
set 0 = o U{(z,m)} (an arbitrary extension), set § = 6 V¢ and
answer the query NO.

End Query Answer Procedure.

Set f*t1 =0, 6*T1 = 6% and go to stage s + 1.

Substage 2. Answer the current query using the query answer procedure above.
Obtain future queries from M and continue to answer them in this manner. If
we encounter a mind change during this process, before substage (1) terminates
then one of two cases applies. Suppose this mind change is the d*" one.

Case 1. d <c+1. Set f*T! =05, ! =0 and go to stage s + 1.

Case 2. d = ¢+ 1. Define f:

o(z) if z € domain o,
flz) = {undeﬁned if z ==,
z4+m otherwise.

and terminate stage s and do not execute any stages s’ > s.

End stage s.

If all stages of the construction are executed, then either M makes ¢+ 1 mind changes
while inferring f, or M’s final guess is wrong infinitely often. If the construction stalls at
some stage, then f is undefined at some point z. However, the function f' = fU {(x,y)}

is in 7', and M’s final guess on inferring f’ is not a total function. X

26

COROLLARY 20. For any k > 0, we have Q¥ EX[<] — U, Q¥EX [+,<] #0.

COROLLARY 21. For all c ¢ N
1. QFEX, [S, <] C Q¥ EX.[S, <].

2. QYEX [+,<] C QT EX.[+,<].

THEOREM 22. For any reasonable language L, for any £ > 0 and any ¢ > 0, we have

Proof: In [12] it was shown that EX.1q — Q1 EX_.[L] is nonempty for any reasonable

language L. The result follows. X

Finally, in light of the definitions of this section, a careful examination of the proof of

Theorem 8 reveils a proof of a stronger result. We conclude with a statment of this result.

THEOREM 23. Q1 EX.[]—[1,c]BC # 0.

VII. Conclusions

The results of [13] have been extended in several directions. Inference by asking
questions has been related to team learning. The quantifier structure of queries has been
used as a measure of articulation. Not surprisingly, more articulate query machines are
more capable learners. What is perhaps surprising are the preliminary results indicating
that the number of quantifiers may be important. Our most general results are graphically
summerized below.

27

SUMMARY

By Corollary 11 and results from [13]

EX c [L2EX ¢ [L3IEX C
U U U
QlEXo[S, <] C QlEXl[S, <] C QlEXQ[S, <] C

By Corollary 11 and results from [12,26]

EX C [1,2|EX C [1,3|EX C
U U U
N EXo[+,<] C hEXi[+,<] C QhEX3[+,<] C

By Theorem 2, Corollary 11, and results from [12,26]

EX c [L2EX ¢ [L3IEX C
U U U
QLEXo[+,x] C QEXi[+,x] C QiEXy[+,x] C

All inclusions not shown in the above diagrams represent known incomparabilites,
except for the diagram concerning the query language [+, x]. Recall that [1,n]EX is
precisely the same collection of sets of functions that can be probabilistically inferred by

an inference machine with probability 1/n [18].

VIII. Acknowledgements
Computer time was provided by the Department of Computer Science at the Univer-
sity of Maryland. The National Science Foundation supported two of the authors. Peter

Montgomery supplied a crucial trick that was used in the proof of Lemma 18.

References
1. AngruinN, D. Learning k-term DNF formulas using queries and counter-examples.
Department of Computer Science TR-559, Yale University, New Haven, CT, 1987.

2. AncLuiN, D. Learning k£ bounded context-free grammars. Department of Computer
Science TR-557, Yale University, New Haven, CT, 1987.

3. ANGLUIN, D. Queries and concept learning. Machine Learning 2 (1988), 319-342.

28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

AncrumN, D. Equivalence queries and approximate fingerprints. In Proceedings of
the 1989 Workshop on Computational Learning Theory, M. Warmuth, Ed., Morgan
Kaufmann, San Mateo, CA., 1989.

AncrumN, D. anp SmriThH, C. H. Inductive inference: theory and methods. Computing
Surveys 15 (1983), 237-269.

Ancrumv, D. anp Swmrth, C. H. Inductive inference. In Encyclopedia of Artificial
Intelligence, S. Shapiro, Ed., John Wiley and Sons Inc., 1987.

BeErMAN, P. AND Roos, R. Learning one—counter languages in polynomial time. 28"
Annual FOCS conference (1987), 61-67.

Brum, L. anD Brum, M. Toward a mathematical theory of inductive inference. In-
formation and Control 28 (1975), 125-155.

Casg, J. Periodicity in generations of automata. Mathematical Systems Theory 8
(1974), 15-32.

Casg, J. anp SmitH, C. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25,2 (1983), 193-220.

FrewvaLps, R., SMiTH, C., AND VELAUTHAPILLAI, M. Trade—offs amongst parameters
effecting the inductive inferribility of classes of recursive functions. Information and

Computation 82,3 (1989), 323-349.

GasarcH, W., PLEszKoCH, M., AND Sorovay, R. Learning via queries with plus and
times. manuscript.

GasarcH, W. aND SMmITH, C. Learning via Queries. Journal of the ACM (1991).
acceptance indicated.

GoLp, E. M. Language identification in the limit. Information and Control 10 (1967),
447-474.

HELLERSTEIN, L. AND KaARPINSKI, M. Learning read-once formulas using membership

queries. In Proceedings of the 1989 Workshop on Computational Learning Theory,
M. Warmuth, Ed., Morgan Kaufmann, San Mateo, CA., 1989.

Ismizaka, H. Learning simple deterministic languages. In Proceedings of the 1989
Workshop on Computational Learning Theory, M. Warmuth, Ed., Morgan Kaufmann,
San Mateo, CA., 1989.

MacuTEY, M. AND YoUuNG, P. An Introduction to the General Theory of Algorithms.
North-Holland, New York, New York, 1978.

Prrr, L. A Characterization of Probabilistic Inference. Journal of the ACM 36,2
(1989), 383-433.

Prrr, L. anD SmiTH, C. Probability and plurality for aggregations of learning ma-
chines. Information and Computation 77 (1988), 77-92.

RocGEers, H. Jr. Godel numberings of partial recursive functions. Journal of Symbolic
Logic 23 (1958), 331-341.

RovYER, J. S. Inductive inference of approximations. Information and Control 70,2/3

(1986), 156-178.

29

22.

23.

24.

25.

26.

27.

28.

29.

SAKAKIBARA, Y. Inferring parsers of context-free languages from structural examples.
Fujitsu International Institute for Advanced Study of Social Information Science, Nu-
mazu, Japan, 1981.

SAKAKIBARA, Y. Inductive inference of logic programs based on algebraic semantics.
Technical Report 79, Fujitsu International Institute for Advanced Study of Social
Information Science, Numazu, Japan, 1987.

SHAPIRO, E. Algorithmic programming debugging. MIT Press, Cambridge, MA, 1983.
SMITH, C. A note on arbitrarily complex recursive functions. Notre Dame Journal of

Formal Logic 29,2 (1988), 198-207.

SMmiTH, C. H. The power of pluralism for automatic program synthesis. Journal of
the ACM 29,4 (1982), 1144-1165.

SMITH, C. H. AND VELAUTHAPILLAI, M. On the inference of approximate explanations.
Theoretical Computer Science. To appear.

VarianT, L. G. A theory of the learnable. Communications of the ACM 27,11 (1984),
1134-1142.

WIEHAGEN, R. Limes-erkennung rekursiver funktionen durch spezielle strategien.
Elektronische Informationsverarbeitung und Kybernetik 12 (1976), 93-99.

30

