
On Finding the Number of Graph

Automorphisms

Robert Beals∗ Richard Chang† William Gasarch‡

Jacobo Torán§

November 14, 1997

Abstract

In computational complexity theory, a function f is called b(n)-enumerable
if there exists a polynomial-time function which can restrict the output
of f(x) to one of b(n) possible values. This paper investigates #GA, the
function which computes the number of automorphisms of an undirected
graph, and GI, the set of pairs of isomorphic graphs. The results in this
paper show the following connections between the enumerability of #GA
and the computational complexity of GI.

1. #GA is exp(O(
√

n log n))-enumerable.

2. If #GA is polynomially enumerable then GI ∈ R.

3. For ε < 1
2
, if #GA is nε-enumerable then GI ∈ P.

1 Introduction

The Graph Isomorphism problem has a special place in computational complex-
ity theory. The set GI consists of all pairs of graphs that are isomorphic to each

∗Department of Computer Science and Department of Mathematics, University of Ari-
zona, Tucson, AZ 85712 (email: beals@math.arizona.edu). Supported in part by an NSF
Mathematical Sciences Postdoctoral Fellowship and by the Alfred P. Sloan foundation.

†Department of Computer Science and Electrical Engineering, University of Maryland
Baltimore County, Baltimore, MD 21250, USA (email: chang@umbc.edu). Supported in part
by National Science Foundation grants CCR-9309137 & CCR-9610457 and by the University
of Maryland Institute for Advanced Computer Studies.

‡University of Maryland Institute for Advanced Computer Studies and Department of
Computer Science, University of Maryland College Park, College Park, MD 20742, USA
(email: gasarch@cs.umd.edu). Supported in part by National Science Foundation grant CCR-
9301339.

§University of Ulm, Theoretische Informatik, D-89069 Ulm, Germany. (email:
toran@informatik.uni-ulm.de,). The work of this author was done while he was at Dept.
Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Pau Gargallo 5, E-
08028 Barcelona, Spain. Supported in part by the European Community through the Espirit
BRA Program (project 7141, ALCOM II).

1

other. GI is known to be in NP but not NP-complete unless the Polynomial Hier-
archy collapses [GMR89, Sch89], a condition which violates the usual intractabil-
ity assumptions. Nevertheless, there is no known polynomial-time algorithm to
solve the isomorphism problem on general graphs even though some progress
has been made towards polynomial-time algorithms in special cases (most no-
tably for planar graphs [HT71, HW74], graphs of bounded genus [FM80, Mil80],
bounded degree graphs [Luk82] and graphs with bounded eigenvalue multiplic-
ities [BGM82]). Thus, the Graph Isomorphism problem belongs to a short list
of problems in NP that are suspected to be neither decidable in polynomial
time nor NP-complete. In fact, the exact complexity of GI remains an open
problem. For example, it is not known whether GI can be solved in randomized
polynomial time or whether GI is contained in the class NP ∩ co-NP.

The current state of knowledge on the complexity of GI depends on the two-
round interactive protocol for Graph Non-Isomorphism [GMR89], a technique
which we exploit in this paper. However, even before this proof was discov-
ered, it was suspected that GI could not be NP-complete because counting the
number of graph isomorphisms has roughly the same complexity as deciding the
existence of an isomorphism [Mat79]. In contrast, the counting versions of typ-
ical NP-complete problems tend to be much harder than the decision versions.
The proof that counting graph isomorphisms is relatively “easy” also demon-
strated a close connection between the structure of graph isomorphisms and
graph automorphisms (isomorphisms between a graph and itself). The results
in this paper add another link to this connection.

In computational complexity theory, a function is called b(n)-enumerable1

if a polynomial-time function can determine a restricted range for the func-
tion. For example, a priori the #GA function, which computes the number
of automorphisms in a graph, may output any value from 1 to n! for a graph
with n vertices. However, we will show that #GA can take on only one of
exp(O(

√
n log n)) values — i.e., we will show that #GA is exp(O(

√
n log n))-

enumerable. The other main results in this paper show that if #GA is “easy”
in the sense of enumerability then there is a corresponding decrease in the com-
plexity of GI. Namely:

• If #GA is polynomially enumerable then GI can be recognized in random-
ized polynomial time.

• For ε < 1
2 , if #GA is nε-enumerable then GI can be recognized in deter-

ministic polynomial time.

Currently, GI does not seem to be solvable in polynomial time using either
randomized or deterministic computations. Hence, these results could also be
interpreted as results on the non-enumerability of #GA.

The rest of the paper is organized as follows. In Section 2, we provide some
technical background and formal definitions for the terms used in this paper.

1not to be confused with recursive enumerability in recursive function theory or countable
(denumerable) sets in set theory.

2

In Section 3, we construct a graph gadget that allows us to combine many
instances of GI into one instance of #GA. In Sections 4 and 5, we present the
results connecting the enumerability of #GA and the complexity of GI. Finally,
in Section 6 we give an upper bound on the enumerability of #GA.

2 Preliminaries

In this paper, we will work with many complexity classes. We assume that the
reader is familiar with P and NP, the classes of languages recognized by deter-
ministic and nondeterministic polynomial-time Turing machines. We will use
PH to denote the Polynomial Hierarchy and R to denote the class of languages
recognized by probabilistic polynomial-time Turing machines with bounded one-
sided error. We refer the reader to standard references [BDG88, BDG90, Sch85]
in complexity theory for explanations on the relationships among these classes.

An instance of the Graph Isomorphism problem (GI) is a pair of undirected
graphs (G,H). Without loss of generality, the vertices of the graphs are indexed
1 through n. The pair (G,H) is an element of GI if there exists a bijection f
from the vertices of G to the vertices of H that preserves the edge relations —
i.e., (u, v) is an edge in the graph G if and only if (f(u), f(v)) is an edge in
H. In this case, f is called an isomorphism between G and H and we write
G ' H. Note that we may think of f as a permutation of the set {1, . . . , n}.
Whereas GI is a set, or alternatively a decision problem, #GI is a function,
or a counting problem. The value of the function #GI on input (G,H) is the
number of isomorphisms from G to H.

An instance of the Graph Automorphism problem (GA) is a single graph
G. The graph G is an element of GA if G has a non-trivial automorphism
— i.e., an isomorphism between G and itself other than the identity function.
Analogously, the function #GA computes the number of automorphisms on G.
It is often more convenient to work with GA instead of GI, because the set of
automorphisms of a graph forms a group under composition.

Clearly, the set GI is an element of NP because an NP machine can guess a
permutation and check that the permutation is indeed an isomorphism between
two graphs. As we have mentioned before, GI is known to be incomplete for
NP unless the Polynomial Hierarchy collapses. The complexities of #GI, GA
and #GA can be estimated based upon their relationship to GI. For example,
GA reduces to GI by a many-one polynomial-time reduction. Therefore, GA
is also an element of NP and cannot be complete for NP unless PH collapses.
Clearly, GI reduces to #GI because knowing the number of isomorphisms cer-
tainly tells you whether one exists. In addition, one can compare the com-
plexities of these problems as oracles. Using the group structure of GA, one
can show that PGI = P#GA = P#GI [Mat79], [Hof79], [KST93, Theorem 1.24].
Thus, treated as oracles for P, the problems GI, #GA and #GI have essentially
the same complexity.2

2Of course, PGA ⊆ P#GA, but whether P#GA ⊆ PGA remains an open problem.

3

The incompleteness of GI also shows that P#GI cannot contain any NP-
complete problems unless PH collapses. This result sets the Graph Isomorphism
problem apart from the NP-complete problems. For example, consider the sat-
isfiability problem SAT and the corresponding counting problem #SAT, which
outputs the number of satisfying assignments of a Boolean formula. SAT is of
course NP-complete, so PSAT = PNP. However, #SAT is #P-complete3 and it
also known that P#SAT contains the entire Polynomial Hierarchy [Tod91]. Thus,
the complexity of #SAT is much higher than the complexity SAT, whereas the
complexity of #GI is at the same level as that of GI. Note that the complexity of
the counting version of a problem is not necessarily a good predictor of the com-
plexity of the decision version of the problem. For example, deciding whether
a bipartite graph has a perfect matching can be done in polynomial time, but
counting the number of perfect matchings in a bipartite graph is #P-complete
[Val79]. However, since the counting versions of natural NP-complete problems
are #P-complete, the observation that PGI = P#GI nevertheless suggests that
GI is not NP-complete.4 This observation was interpreted by many authors as
“evidence” that GI might not be NP-complete before the incompleteness of GI
was proven [Hof79].

Returning to graph automorphisms, we note that the value of #GA(G) has
several special properties. First, #GA(G) must range from 1 to n! because the
identity function is always an automorphism and there are at most n! permuta-
tions of the n vertices. Second, the set of automorphisms of G forms a subgroup
of Sn, the set of all permutations of {1, . . . , n} under composition. This group
structure can be exploited in many ways. For example, from LaGrange’s Theo-
rem, we know that #GA(G) must divide n!, hence #GA(G) cannot have factors
larger than n. Thus, given #GA(G) as input, it is possible to obtain a complete
prime factorization of #GA(G) in polynomial time. The following observations
about #GA and prime numbers will be needed throughout the paper.

Lemma 2.1 Let G be a graph with n vertices. For i ≥ 1, let mi be the ith
smallest prime number larger than n.

1. #GA(G) divides n!.

2. mi does not divide #GA(G).

3. There exists a prime p s.t. mi < p < 2mi.

4. For n ≥ 17, mi ≤ 2(n log n+ i log i).

5. mi can be computed in time nO(1) + iO(1).
3A function f is in the class #P if there exists an NP machine N such that f(x) equals

the number of accepting paths in the computation of N(x).
4I.e., considering the example of perfect matchings in bipartite graphs, one should not

claim that the counting version of a problem being hard implies that the decision problem is
hard. However, one might still argue that if the counting version of a problem is easy, then
the decision problem might be easy.

4

Proof: Parts 1 and 2 follow from the preceding discussion. Part 3 is just
Bertrand’s Postulate [HW79] (that there exists a prime number between x
and 2x). Part 4 can be derived easily from a result of Rosser and Schoenfeld
[RS62] which states that the number of primes less than x is between x/ lnx and
1.25506x/ lnx, for x ≥ 17. (These are estimates for the constants in the Prime
Number Theorem.) Part 5 follows from Part 4, because mi is polynomial in n
and i. Since we can list all the primes below a number x in time polynomial in
x (not the length of x), mi can be found in time polynomial in n and i. �

Thus, #GA cannot take on every value between 1 and n! since some of these
numbers cannot be the order of a subgroup of Sn. This leads us to “enumerabil-
ity” as a measure of complexity. The concept of enumerability in computational
complexity theory was introduced independently by Beigel [Bei87a] and by Cai
and Hemachandra [CH89] then later modified by Amir, Beigel and Gasarch
[ABG90].

Definition 2.2 Let b : N → N be polynomially bounded. A function f is b(n)-
enumerable if there exists a polynomial-time computable function g, such that
for all x, g(x) outputs a list of at most b(|x|) values, one of which is f(x). A
function f is poly-enumerable if f is b(n)-enumerable for some polynomial b.

For super-polynomial b : N → N, f is b(n)-enumerable if there exists a
polynomial-time computable function g, such that for all x, f(x) is one of the
b(|x|) values in the sequence g(x, 0), g(x, 1), . . . , g(x, b(|x|)−1). (Here we assume
that the second input to g is written in binary.)

Intuitively, we think of the enumerability of functions as a generalization of
approximability. For example, suppose a function f : N → N is approximable
within a factor of 2. Then, there is a polynomial-time computable function
which, for all x, outputs a value y and guarantees that y ≤ f(x) ≤ 2y. Thus,
the set of possible values of f(x) is restricted to the numbers between y and
2y. For enumerability, the set of possible values does not have to be an in-
terval. Another difference between enumerability and approximability is that
in approximability the number of possible values is “output sensitive” — i.e.,
the number of possible values of f(x) depends directly on f(x) rather than x.
In addition, approximability is only meaningful when there is a natural total
ordering on the range of the function whereas enumerability makes sense in a
broader setting.

The algorithm which computes #GA in polynomial time using a GI oracle
is a group-theoretic algorithm and proceeds roughly as follows (q.v. [Hof79,
KST93] for details). Let A be the automorphism group of a graph G. Consider
a tower of subgroups of A

I = A(n) ≤ A(n−1) ≤ · · · ≤ A(1) ≤ A(0) = A,

where I is the trivial group containing only the identity permutation and ≤
denotes the subgroup relation. Here, A(i) is the subgroup of pointwise stabilizers
of {1, . . . , i} in A — i.e., the set of permutations ψ ∈ A such that for all j, with

5

1 ≤ j ≤ i, ψ(j) = j. The order of the group A can then be determined by
iteratively computing the order of the subgroups A(n), A(n−1), . . . , A(0). This
iterative procedure relies on the fact that a labeled isomorphism between two
graphs can be constructed in polynomial time using a GI oracle. A labeled
graph isomorphism between graphs G and H with n vertices is a permutation
of {1, . . . , n} which preserves the edge relations of G and H as well as labels
assigned to vertices of G and H. For example, if we label both vertex j in G
and vertex j in H with the label `j for 1 ≤ j ≤ i, then we can guarantee that
any labeled isomorphism between G and H is in fact a pointwise stabilizer of
{1, . . . , i}. This is because any labeled isomorphism is forced to map vertex j in
G to vertex j in H for 1 ≤ j ≤ i. The labels on the vertices of a labeled graph
can be simulated in an unlabeled graph by attaching large cliques or long cycles
to the vertices. In the example above, the label `j assigned to vertex j can be
simulated in an unlabeled graph by attaching a cycle of n + j new vertices to
vertex j using a single edge. Again, any isomorphism between G and H must
map vertex j in G to vertex j in H for 1 ≤ j ≤ i. Note that if the original graphs
G and H are planar, then the simulated labeled graphs are also planar. Since
planar graph isomorphism can be computed in polynomial time [HT71, HW74],
this procedure also computes #GA(G) for planar graphs in polynomial time.
Similarly, the simulated labeling scheme applied to bounded genus graphs does
not change the genus of the graph. Thus, #GA(G) can also be computed in
polynomial time for bounded genus graphs. Attaching a long cycle to a vertex in
a bounded degree graph will increase the degree of the vertex by 1. So, #GA(G)
is again polynomial-time computable for bounded degree graphs. Thus, in each
of these special cases, #GA(G) is in fact 1-enumerable.5

There do exist functions which cannot be polynomially enumerated unless
some intractibility assumptions are violated. For example, Cai and Hemachan-
dra showed that unless P = PP, the function #SAT is not nε-enumerable for
ε < 1.6 This result was improved independently by Cai and Hemachandra
[CH91] and by Amir, Beigel and Gasarch [ABG90], who showed that P = PP if
and only if #SAT is p(n)-enumerable for some polynomial p. Moreover, Amir,
Beigel and Gasarch [ABG90] proved that unless the Polynomial Hierarchy col-
lapses to its fourth level, #SAT is not 2nε

-enumerable for ε < 1. Since #SAT is
clearly 2n-enumerable, these results show tight upper and lower bounds on the
enumerability of #SAT assuming that PH does not collapse.

In the present paper, we investigate the enumerability of #GA. Our mo-
tivation for studying the enumerability of #GA is twofold. First, the results
mentioned above combined with Toda’s theorem that every set in PH reduces
to #SAT [Tod91], show that #GA cannot be #P-complete unless PH collapses
to PNP (actually to PGI). Therefore, the enumerability properties of #GA
might be very different from those of #SAT. Also, connections between the

5It is not clear to the authors how this labeling scheme would affect graphs with bounded
eigenvalue multiplicity.

6PP is the class of languages recognized by probabilistic polynomial-time Turing machines
with unbounded two-sided error. Since PP contains NP, the conclusion P = PP is generally
considered to be unlikely.

6

enumerability of #GA and the complexity of GI might help us obtain a better
classification of the Graph Isomorphism problem.

Throughout the paper, we use the number of vertices in a graph as the mea-
sure of the size of the input. We do this to simplify the terminology even though
the length of the encoding of a graph could be as long as n2. In certain cases,
this convention does have an effect on our results. For example, Theorem 4.5 is
stated for ε < 1/2; without this convention, the statement would be ε < 1/4.

3 Combining Lemma

In this section we show how to combine many instances of GI into one instance of
#GA. This lemma will be used in the proofs of the main theorems of Sections 4
and 5. First, we need to define the notion of reductions between two functions
(as opposed to sets).

Definition 3.1 (Krentel [Kre88]) Let f and g be two functions. We say that
f reduces to g, written f ≤p

m g, if there exist two polynomial-time computable
functions S and T such that

f(x) = S(x, g(T (x))).

Intuitively, f ≤p
m g implies that f is easier than g, because g provides enough

information for a polynomial-time function to compute f . These reductions are
also called metric reductions in the literature.

To simplify our notation, we will also use the following notational device for
generalized characteristic functions. For a set A and an ordered list x1, . . . , xr

of instances of A, the function χA(x1, . . . , xr) outputs a sequence of r bits such
that the ith bit is 1 if and only if xi ∈ A. Note that r does not have to be
constant here.

Now, we are ready to prove the Combining Lemma. This key lemma allows
us to construct a graph F from q instances of the Graph Isomorphism problem,
(G1,H1), . . . , (Gq,Hq), such that #GA(F) provides enough information to de-
termine in polynomial time whether Gi is isomorphic to Hi for each instance
(Gi,Hi).

Lemma 3.2 (Combining Lemma) There exist polynomial-time functions T
and S such that χGI ≤p

m #GA via T and S. Furthermore, in the case where
the ordered list Q = 〈(G1,H1), . . . , (Gq,Hq)〉 consists of pairs of graphs with n
vertices, the following hold for the graph F output by T (Q).

1. The F has O(n2q log n+ nq2 log q) vertices.

2. The output of S(Q,#GA(F)) can be computed from (n, q,#GA(F)).

Proof: In the construction below, the running time of T will be polynomial
in |Q| which is polynomial in n + q. This allows for the possibility that Q has
many small graphs. In the first step of the construction, we find m1, . . . ,mq,

7

Gi Hi

Gi

Gi

Gi Hi

Hi

Gi Hi

HiGi

Gi Hi
Gi

Hi

..
.

...

..
.

ari+1
ari

a3

a2
a1

...

a2ri

Hi

Figure 1: Combining ri copies of Gi and Hi.

the q prime numbers immediately following the number n. Let ri = (mi +1)/2.
Assuming that each graph in Q has at least 2 vertices, ri is an integer. For each
i, 1 ≤ i ≤ q, we construct a graph Ci as follows. Take ri copies of Gi, ri copies
of Hi and a complete graph with 2ri new vertices a1, . . . , a2ri

. Connect each
vertex in the jth copy of Gi to aj . Connect each vertex in the jth copy of Hi

to ari+j . (See Figure 1.) Call the resulting graph Ci.
Now, suppose that Gi is isomorphic to Hi. Then every automorphism of Ci

can be formed by a permutation of the vertices in {a1, . . . , a2ri
} followed by an

automorphism of each copy of Gi and Hi. Hence

#GA(Ci) = (2ri)!(#GA(Gi))2ri .

Since 2ri = mi + 1, the prime number mi divides #GA(Ci).
On the other hand, if Gi is not isomorphic to Hi then every automorphism

of Ci can be formed by a permutation of the vertices in {a1, . . . , ari
}, followed

by a permutation of the vertices in {ari+1, . . . , a2ri
} and the automorphisms of

each copy of Gi and Hi. In this case,

#GA(Ci) = (ri)!(ri)!(#GA(Gi))ri(#GA(Hi))ri .

Since ri < mi and |Gi| = |Hi| = n < mi, the prime number mi does not divide
#GA(Ci). In summary,

Gi ' Hi ⇐⇒ mi divides #GA(Ci). (1)

Let F be the disjoint union of all the Ci, for 1 ≤ i ≤ q. The output of the
function T (Q) will be F . Since each Ci has (mi + 1)(n + 1) vertices, the total

8

number of vertices in F is

(n+ 1)
q∑

i=1

(mi + 1) < q(n+ 1)(mq + 1).

By Lemma 2.1 part 4, we know that mq ≤ 2(n log n + q log q). Hence, we can
bound the number of vertices in F by O(n2q log n+ nq2 log q).

Now, we show how #GA(F) can be used to compute χGI(Q). By the con-
struction of F ,

#GA(F) =
q∏

i=1

#GA(Ci). (2)

We also know that for all i, 1 ≤ i ≤ q

Gi ' Hi ⇒ mi divides #GA(F).

However, the converse may not hold because #GA(Cj) for some j > i may
contain mi as a factor. Thus, to determine whether Gi ' Hi from #GA(F),
these extraneous mi factors (if they exist) must be removed. To do this, we
start with the last Ci, namely Cq. Since mj < mq for all j < q, we know that

Gq ' Hq ⇐⇒ mq divides #GA(F).

Now, if Gq ' Hq then Cq contributes an (mq +1)! factor to #GA(F); otherwise,
Cq contributes an (ri)!(ri)! factor to #GA(F).

To determine whether Gq−1 ' Hq−1 we need to remove the prime factors
> n from #GA(F) that came from #GA(Cq). Since #GA(Gq) and #GA(Hq)
do not contain prime factors > n, the prime factors > n in #GA(Cq) come from
either (mq + 1)! or (rq)!(rq)! depending on whether Gq ' Hq (which we have
already determined). So, let

Ni =



#GA(F) if i = q

Ni+1

(mi+1 + 1)!
if mi+1 divides Ni+1

Ni+1

(ri+1)!(ri+1)!
otherwise

From the preceding discussion, it is clear that Gi ' Hi ⇐⇒ mi divides Ni.
Thus, the function S can compute χGI((G1,H1), . . . , (Gq,Hq)) from #GA(F),
n and q, by finding m1,m2, . . . ,mq and calculating N1, N2, . . . Nq. �

4 #GA and nε-enumerability

The main theorem in this section shows that it is unlikely for #GA to be nε-
enumerable because for any ε < 1/2, #GA is nε-enumerable if and only if GI can

9

be recognized in polynomial time. We begin with a review of two constructions
from the literature. The first one shows that the Graph Isomorphism problem
is “self-computable,” in the sense that given GI as an oracle, we can construct
an isomorphism between two isomorphic graphs in polynomial time [KST93,
Sch76]. We reproduce the proof of this well-known theorem because we need
to make references to the construction in the proof and because we need to
estimate the sizes of the graphs queried.

Lemma 4.1 There exists a polynomial-time Turing machine using GI as an
oracle which finds an isomorphism between two graphs, if the graphs are iso-
morphic.

Proof: We prove that GI is “self-computable” by constructing a mapping be-
tween the vertices of two isomorphic graphs G and H using GI as an oracle.
This “self-computable” property is similar to the disjunctive self-reducibility of
SAT.7 In the first stage of the construction, we find a vertex i1 in H such that
there is an isomorphism between G and H mapping vertex 1 in G to vertex i1 in
H. This is accomplished by trying all n vertices in H exhaustively and asking
the GI oracle the n questions:

Is there an isomorphism from G to H mapping vertex 1 to vertex
i1?

These questions can be transformed into queries to GI by attaching cycles with
n + 1 vertices to vertex 1 in G and vertex i1 in H. Thus, any isomorphism
between the transformed graphs must map vertex 1 in G to vertex i1 in H. If
such an isomorphism exists, the remaining n−1 stages of the construction assign
vertices 2, . . . , n in G to the vertices in H under the restriction that vertex 1
maps to vertex i1. In stage k of the construction, vertex k in G and ik in H
will be attached to a cycle with n+ k vertices. �

Remark: It is convenient to think of the procedure described in the preceding
proof as a self-reduction tree. The root of the tree, level 0, is labeled with the
graphs (G,H). Each vertex at level k has n − k children which represent the
n − k possible assignments of vertex k in G to the n − k remaining vertices
in H. These vertices are labeled with the corresponding transformed graphs.
This tree has n! leaves, so we cannot construct the entire tree in polynomial
time. However, at the leaves of the tree, every vertex of G is assigned to some
vertex of H. Thus, in polynomial time we can determine whether the mapping
represented by a leaf is indeed an isomorphism between G and H.

In the proof of Theorem 4.5 below, our strategy is to traverse the self-
reduction tree from the top down. Since the tree has exponentially many paths,

7That is, given any Boolean formula F , consider the formula F0 obtained by replacing the
first variable of F with the Boolean value FALSE and the formula F1 obtained by replacing
the first variable with TRUE. Then, F ∈ SAT if and only if F0 ∈ SAT or F1 ∈ SAT (q.v.
[BDG88, Section 4.5] and [Sch85, Section 4.5]).

10

we will need to identify some of the paths as dead-ends. The following com-
binatorial lemmas [Bei91, Owi89] will help us prune the tree and maintain a
polynomial bound on the running time of the tree traversal.

Definition 4.2 For a collection C of sets and a set X, we say X separates C if
for all S, S′ ∈ C, S 6= S′ ⇒ S ∩X 6= S′ ∩X.

Lemma 4.3 For a collection C of sets, with |C| = n ≥ 1, there exists a set X
that separates C where |X| ≤ n− 1.

The lemma below adapts Lemma 4.3 to show that if we have ` vectors
in {0, 1}`, then the vectors can be uniquely identified by their values at ` − 1
coordinates. Thus, one of the coordinates is not needed to distinguish the vectors
from each other. In the following, we use (~b)i to denote the ith component of a
vector ~b ∈ Σ`.

Lemma 4.4 Let m ≤ ` and ~b1, . . . ,~bm ∈ {0, 1}`. There exists a coordinate k
such that for all ~bi 6= ~bj, there exists t 6= k such that (~bi)t 6= (~bj)t. Moreover, k
can be found in time polynomial in `.

Proof: It suffices to prove the case where m = `. Use Lemma 4.3 where C is
the collection of subsets of {1, . . . , `} represented by the bit vectors ~b1, . . . ,~b`.
Let k be an element not contained in the separator X. Since X is a separator,
each pair of bit vectors must differ at coordinates other than k. The coordinate
k can be found in time polynomial in ` because we can simply try all possible
values for k and check each pair of ~bi and ~bj . This takes time O(`4). �

We are now ready to prove the main result of this section. The techniques
used in this proof and in Lemma 4.4 are derived from results on enumerability
and self-reducibility by Amir, Beigel and Gasarch [ABG90].

Theorem 4.5 For ε < 1/2, the function #GA is nε-enumerable if and only if
GI ∈ P.8

Proof: In Section 2, we outlined a polynomial-time algorithm for #GA which
uses GI as an oracle. Thus, if GI ∈ P, then #GA is also computable in polyno-
mial time. In this case, #GA would be 1-enumerable. Thus, we only need to
show that if #GA is nε-enumerable, then GI ∈ P.

Given two graphs G and H with n vertices, we search the self-reduction tree
described above in stages. We maintain a list Q of pairs of graphs from the
self-reduction tree. Initially, Q contains just the pair (G,H). Throughout the
tree-pruning procedure we maintain the invariant that G ' H if and only if
Q contains a pair of isomorphic graphs (i.e., χGI(Q) is not all zeroes). Also,
the size of the list Q will always be polynomially bounded. In the beginning of

8Recall that the n in “nε-enumerable” is the number of vertices in the graph. If n is the
length of the encoding of the graph, we would need to further restrict ε < 1/4.

11

every stage of the tree pruning, we take each pair of graphs in Q and replace it
with its children in the self-reduction tree. We continue the replacement until
Q has at least q(n) pairs (for q(n) ≥ n to be determined below).

Let Q′ = 〈(G1,H1), . . . , (Gq(n),Hq(n))〉 be the first q(n) pairs in Q. Let m be
an upper bound on the size of these graphs. We apply the Combining Lemma to
construct the graph F which has at most r = mq(n)2 log q(n) vertices. Then, we
use the enumerator for #GA on F to obtain a list of rε numbers one of which is
#GA(F). The function S in the Combining Lemma converts these numbers into
a list of rε vectors~b1, . . . ,~brε in {0, 1}q(n), one of which is χGI(Q′). Now, suppose
that ~bi 6= 0q(n) for all i, 1 ≤ i ≤ rε. Then, we know that χGI(Q′) 6= 0q(n), so
G must be isomorphic to H. Thus, we can halt the pruning procedure and
accept. In the remaining case, we may assume that 0q(n) is one of the vectors
in ~b1, . . . ,~brε . We will pick q(n) below so that rε ≤ q(n). Then, Lemma 4.4
gives us a coordinate k such that for ~bi 6= ~bj , the vectors ~bi and ~bj differ on a
coordinate other than k. Now, it cannot be the case that (Gk,Hk) is the only
isomorphic pair of graphs in Q′, because in that case χGI(Q′) = 0k−110q(n)−k,
hence χGI(Q′) can only be distinguished from 0q(n) using the kth coordinate.
Thus, the pruning process can safely remove the pair (Gk,Hk) from the list Q
and still guarantee that if Q contains an isomorphic pair before pruning, then
it also does after pruning.

We continue removing items from Q until it has fewer than q(n) pairs of
graphs. Then we proceed to the next stage. After at most n stages, the pairs in
Q are leaves of the self-reduction tree, so we can compute χGI(Q) in polynomial
time. By the invariant we have maintained, G ' H if and only if χGI(Q) is not
all zeroes. Thus, we have shown that GI ∈ P.

Finally, we need to show that by picking q(n) to be nα where α > 1/(1−2ε),
we can guarantee that rε ≤ q(n). (The constant α is positive since ε < 1/2.)
From the construction of the self-reduction tree in Lemma 4.1, we know that m
is O(n2) since the graphs Gi and Hi consist of n original vertices and cycles of
size n+ 1 through 2n. So,

rε ≤ (cn2 · q(n)2 · log q(n))ε = (cn2 · n2α · α log n)ε.

Thus, rε < n2ε+2αε+δ for all δ > 0. From our choice of α, we know that

2ε+ 2αε < 1 + 2αε < α.

Therefore, rε ≤ q(n). �

Since it is generally believed that GI 6∈ P, the preceding theorem can also be
interpreted as a lower bound on the enumerability of #GA. We can also use the
theorem to obtain a lower bound on the bounded query complexity of #GA.
The bounded query classes are defined as follows.

Definition 4.6 Let j(n) be a function and X be a set. A function f is in
PFX[j(n)] if there exists a polynomial-time oracle Turing machine which com-
putes f using no more than j(n) queries to X on inputs of length n.

12

Counting the number of oracle queries has been established as a useful com-
plexity measure. For example, the number of queries to an NP oracle can be
used to characterize the complexity of approximating NP-optimization problems
[Cha96, CGL97]. The following fact shows that there is an intimate connection
between the enumerability of a function and the bounded query complexity of
that function.

Fact 4.7 (Beigel [Bei87b, Lemma 3.2]) Let f be any function and j(n) be a
polynomial-time computable function. The following are equivalent:

1. There exists X such that f ∈ PFX[j(n)].

2. f is 2j(n)-enumerable.

Using Fact 4.7 we can obtain a lower bound on the number of queries needed
to compute #GA, assuming that GI 6∈ P.

Corollary 4.8 Let ε < 1/2. If there exists an X such that #GA ∈ PFX[ε log n]

then GI ∈ P.

5 #GA and poly-enumerability

Assuming that GI 6∈ P, the main result in the previous section is a “non-
enumerability” result. In general, we would like to prove stronger non-enumerability
results for #GA. For example, Amir, Beigel and Gasarch [ABG90] were able to
prove that #SAT is not 2nε

-enumerable for ε < 1 unless the Polynomial Hier-
archy collapses. We cannot use their machinery for the case of #GA, because
it turns out that #GA is actually exp(O(

√
n log n))-enumerable. Instead, we

adapt the techniques of Goldwasser, Micali and Rackoff [GMR89] to show that
#GA cannot be poly-enumerable unless GI ∈ R.9

Goldwasser, Micali and Rackoff showed that Graph Non-Isomorphism, the
complement of GI, can be recognized by a two-round interactive protocol. We
briefly review this protocol in order to motivate the proof of Theorem 5.2. There
are two parties involved in the interactive protocol: an all-powerful prover and
a randomized polynomial-time verifier. The verifier asks the prover to convince
him that the input graphs (G,H) are not isomorphic as follows. In secret, the
verifier randomly picks one of G and H along with a random permutation ψ. He
applies ψ to either G or H, whichever one he picked, and obtains a new graph
X. Then, the verifier asks the prover whether X is a permuted version of G or
of H. If G and H are not isomorphic, the all-powerful prover simply checks if
G ' X or if H ' X, and provides the appropriate answer. On the other hand,
if G and H are isomorphic, X can be a permuted version of either graph. In
that case, the prover can only provide the correct answer with probability one
half. Thus, if G 6' H, there exists a prover who can always convince the verifier

9We were motivated in part by Lozano and Torán [LT93, Theorem 5.1] who also used this
technique in their proof.

13

to accept. Conversely, if G ' H, no prover (even one that “lies”) can convince
the verifier to accept with greater than 50 percent probability.

In the proof below, our randomized algorithm for GI will play the role of the
verifier and the enumerator for #GA will play the role of the prover. However,
unlike the prover in an interactive protocol, the enumerator provides several
answers at once.10 Thus, it is possible for the enumerator to give two answers
at the same time: one that corresponds to G ' H and one to G 6' H. We cope
with this situation by emulating the interactive protocol many times in parallel.
Thus, instead of picking one permutation ψ and forming one permuted graph
X, we pick q(n) permutations ψ1, . . . ψq(n) and form q(n) graphs X1, . . . , Xq(n)

each of which is a permutation of either G or H.

Notation 5.1 For each permutation ψ ∈ Sn, we use ψ(G) to denote the graph
obtained by re-labelling the vertices of G using ψ. Given two permutations
ψ, ρ ∈ Sn, we define ψ◦ρ ∈ Sn to be the functional composition of ψ and ρ —
i.e., (ψ◦ρ)(G) = ψ(ρ(G)).

Theorem 5.2 If #GA is poly-enumerable then GI ∈ R.

Proof: Assuming that #GA is p(n)-enumerable via an enumeration function
g, we will construct a randomized polynomial-time algorithm to decide whether
the input graphs G and H are isomorphic. Let n be the number of vertices in
G and H and let q(n) ≥ n be a polynomial to be specified later. As discussed
above, we randomly pick q(n) permutations ψ1, . . . , ψq(n) from Sn and for each
ψi permute either G or H. Our choice of applying ψi to either G or H can be
represented by a single bit. So, a bit vector ~b ∈ {0, 1}q(n) and the permutations
ψ1, . . . , ψq(n) fully specify our random choices. Let bi be the ith bit of ~b and Xi

be the result of applying the permutation ψi; that is,

Xi =

{
ψi(H) if bi = 0
ψi(G) if bi = 1.

Now, consider the instances of the graph isomorphism problem: (G,X1), . . . , (G,Xq(n)).
Note that if G is not isomorphic to H then

χGI((G,X1), . . . , (G,Xq(n))) = ~b,

since G is isomorphic to Xi only when Xi = ψi(G). On the other hand, if G
is isomorphic to H, then our choice of applying ψi to G or H does not change
whether G is isomorphic to Xi. So, in this case,

χGI((G,X1), . . . , (G,Xq(n))) = 1q(n).

Next, we use the Combining Lemma on (G,X1), . . . , (G,Xq(n)) to construct a
graph F such that #GA(F) provides enough information to compute χGI((G,X1), . . . , (G,Xq(n))).

10Another difference is that the enumerator cannot “lie” in the same manner as the prover
because one of the answers it provides must be the correct value of #GA.

14

Procedure R-ISO(G,H)

1. Randomly pick ~b ∈ {0, 1}q(n) and ψ1, . . . , ψq(n) ∈ Sn.

2. Use the Combining Lemma to construct F = T ((G,X1), . . . , (G,Xq(n))).

3. Use g to generate the possible values of #GA(F).

4. Compute the set POSS = {S(n, q(n), N) | N ∈ g(F)}.

5. If ~b 6∈ POSS then output YES, otherwise output NO.

Figure 2: Randomized procedure to determine whether the graphs G and H are
isomorphic.

Let r(n) be a polynomial upper bound on the number of vertices in F . If we
could compute #GA(F) directly, then we can immediately determine whether
G ' H by checking whether #GA(F) corresponds to the case where χGI((G,X1), . . . , (G,Xq(n)))
is ~b or 1q(n).11 However, we cannot compute #GA(F) directly, so we use the
enumerator for #GA(F) instead. Let T and S be the reduction functions from
the Combining Lemma. (We used T on (G,X1), . . . , (G,Xq(n)) to obtain the
graph F .) Since we assume that #GA is p(n)-enumerable, in polynomial time we
can compute g(F), a set of polynomially many values one of which is #GA(F).
For each value in g(F), we use the S function from the Combining Lemma to
determine a possible value for χGI((G,X1), . . . , (G,Xq(n))). Call the set of all
such values

POSS = { S(n, q(n), N) | N ∈ g(F) }.

If G 6' H, then ~b = χGI((G,X1), . . . , (G,Xq(n))). Thus, ~b must be an element of
POSS, since χGI((G,X1), . . . , (G,Xq(n))) is always an element of POSS. On the
other hand, if G ' H, then ~b ∈ POSS occurs with very low probability. (This
will be proven below.) Therefore, the strategy for our randomized algorithm is to
accept (G,H) if and only if ~b 6∈ POSS. Figure 2 summarizes Procedure R-ISO,
the randomized algorithm to determine whether G ' H.

If G 6' H, then Procedure R-ISO outputs NO with probability 1. We need to
show that if G ' H then Procedure R-ISO outputs YES with high probability.
Intuitively, it is unlikely for ~b ∈ POSS when G ' H because POSS is completely
determined by F and the same F can be the result of exponentially many
random choices. We prove this formally by showing that for each of choice of ~b
and ψ1, . . . , ψq(n) made by Procedure R-ISO, there is a block of 2q(n) random
choices which produces the same graph F . Each random choice within a block
has a distinct ~b. Thus, within each block, the probability that ~b ∈ POSS is at
most p(r(n))/2q(n). Furthermore, we will show that the blocks form a partition

11The exception is the pathological case where we chose ~b = 1q(n). However, this case only
occurs with probability 1/2q(n).

15

of the set of all random choices made by Procedure R-ISO. Thus, the overall
probability that ~b ∈ POSS is also bounded by p(r(n))/2q(n).

The blocks are defined as follows. Assume that G is isomorphic to H. Since
permutations are invertible, for every graph Y isomorphic to G, there exists
a permutation ρ such that ρ(H) = Y . Now, fix a sequence of permutations
σ1, . . . , σq(n) ∈ Sn and let Yi = σi(G). Let ρ1, . . . , ρq(n) be the corresponding
permutations such that ρi(H) = Yi. Let ~b be any bit vector chosen by Proce-
dure R-ISO. Then, there exists a choice of ψ1, . . . , ψq(n) such that the graph Xi

constructed in Procedure R-ISO is exactly Yi, namely:

ψi =

{
ρi if bi = 0;
σi if bi = 1.

Furthermore, if we fix an isomorphism τ from H to G, the permutation ψi is
completely determined by bi and σi — i.e., ψi = σi◦τ if bi = 0 and ψi = σi

if bi = 1. Thus, we can associate the permutations σ1, . . . , σq(n) with a block
of 2q(n) random choices for Procedure R-ISO (since there are 2q(n) different bit
vectors ~b). To see that every choice of ~b and ψ1, . . . , ψq(n) corresponds to some
block, simply note that we can set σi = ψi◦τ

−1 if bi = 0 and σi = ψi if bi = 1.
This will again guarantee that Yi = Xi for every i. Therefore, the blocks do
form a partition of the set of all random choices made by Procedure R-ISO.

Finally, observe that for each of the 2q(n) distinct bit vectors ~b in a block,
the same instances of GI, (G,X1), . . . , (G,Xq(n)), are constructed by Proce-
dure R-ISO. Thus, the same set POSS is generated. Since POSS has p(r(n))
elements and since p(r(n)) is polynomially bounded, the probability that a ran-
domly chosen ~b is not an element of POSS is at least 1 − p(r(n))/2q(n). Thus,
for q(n) large enough, Procedure R-ISO will accept with high probability in the
case that G ' H. �

As before, we can translate the non-enumerability of #GA into lower bounds
on its bounded query complexity using Fact 4.7.

Corollary 5.3 If there exists an X such that #GA ∈ PFX[O(log n)] then GI ∈
R.

6 Subexponential enumeration

The results of the preceding section can be interpreted as lower bounds on the
enumerability of #GA since it seems unlikely that GI ∈ P or GI ∈ R. In this
section we provide an upper bound on the enumerability of #GA by showing
that #GA is exp(O(

√
n log n))-enumerable. Our enumerator will be oblivious.

That is, given a graph G with n vertices and an index `, the output of this
enumerator g(G, `) will depend only on n and `. We think of ` as being an
encoding of the order of a permutation group A of degree n. We must show
that an appropriate encoding exists such that ` takes space O(

√
n log n) and the

function ` 7→ |A| is computable in polynomial time.

16

Definition 6.1 Let Sn be the group of all permutations of Ω = {1, . . . , n} under
composition. A subgroup A of Sn, written A ≤ Sn, is also called a permutation
group of degree n and Ω is called the permutation domain of A. The order of
the subgroup A, written |A|, is the number of permutations in A.

Lemma 6.2 Let A be a subgroup of Sn. Let pi be the ith prime. Then |A| must
be of the form

∏m
i=1 p

di
i where

1. for all i, di ≤ n.

2. m ≤ n/ lnn+ o(n/ lnn).

Proof: Let m and d1, . . . , dm be such that |A| =
∏m

i=1 p
di
i . Since |A| is a divisor

of n!, we know that for all i, pdi
i divides n!. However, for any prime p, the highest

power of p dividing n! is pd, where

d =
∑
j≥1

⌊
n

pj

⌋
< n

∑
j≥1

1
pj

=
n

p− 1
≤ n.

(This formula simply counts the number of positive integers up to n which are
divisible by p, p2, et cetera.) In particular, all the prime factors of |A| are ≤ n.
The Prime Number Theorem states that

lim
n→∞

π(n)
n/ lnn

= 1,

where π(n) is the number of primes less than or equal to n. Thus, m ≤ n/ lnn+
o(n/ lnn). �

Theorem 6.3 #GA is exp(O(
√
n log n))-enumerable via an oblivious enumer-

ator.

Proof: Let G be a graph. The set of automorphisms of G is a subgroup of Sn,
hence #GA(G) must be of the form specified in Lemma 6.2. We show how to
enumerate all possible sizes of the subgroups of Sn. We describe this in the form
of a compressed encoding of orders of subgroups of Sn, such that the encoding
lengths are O(

√
n log n) and given the encoding of |A|, we can compute |A|

in polynomial time. One method would be to simply write down the binary
representations of the di, for 1 ≤ i ≤ π(n). By Lemma 6.2 the number of bits
used would be O(n), which is too many. However, we will use this technique for
“small” primes.

Let k =
√
n log n. Then π(k) = O(k/ log n) = O(

√
n/ log n). For A ≤ Sn,

the first part of the encoding of A will consist of the binary representations
of the di for pi ≤ k. This uses O(π(k) log n) = O(

√
n log n) bits, as desired.

To encode the exponents of the larger primes, we must use detailed knowledge
of the possible orders of subgroups of Sn. However, our task will be greatly
simplified by the fact that we can now ignore the small primes.

17

Let Ω denote {1, . . . , n}. For x ∈ Ω, xA denotes the A-orbit of x defined by:

xA = { y ∈ Ω | (∃ψ ∈ A)[y = ψ(x)] }.

We say that an orbit is trivial if it has one element, and we say that A is
transitive if Ω is an orbit. In any case, the A-orbits partition Ω. We describe
two divide-and-conquer techniques based on this partition. Let ∆ = xA be
an A-orbit, and let Ax denote the subgroup { ψ ∈ A | ψ(x) = x } of those
permutations which fix x. It is well known that

|A| = |Ax| · |∆|,

so if |∆| has only prime factors ≤ k, we may replace A by Ax for the purposes of
the second part of the encoding. We henceforth assume that all nontrivial orbits
of A have orders divisible by some prime larger than k (so in particular there
are at most

√
n/ log n nontrivial orbits). Actually, we make the more general

assumption that for any proper subgroup B of A, the index |A|/|B| is divisible
by a prime larger than k.

Now suppose that |∆| = m, and let B be the subgroup of Sm obtained from
A by ignoring the action outside of ∆. That is, B consists of those permutations
ψ ∈ Sm for which there exist ψ′ ∈ A such that ψ′ is an extension of ψ. Let A∆

denote the subgroup of A which fixes every point of ∆ (i.e., A is the subgroup
of pointwise stabilizers of ∆ in A). Then |A| = |B| · |A∆|, and to encode |A|
it suffices to first encode |B| and then recursively encode |A∆|. The number of
orbits ∆ which need to be considered is O(

√
n/ log n), so we must use no more

than O(log n) bits to encode |B|. To do this, we make great use of the fact that
B is transitive.

Now suppose that ∆1, . . . ,∆r is a partition of ∆ with 1 < r < m such
that B permutes the ∆i. If several such partitions exist, then choose one that
minimizes r. Then the partition is called a system of imprimitivity for B, and
the ∆i are called blocks of imprimitivity. Since B acts transitively on the set of
blocks, B has a subgroup of index r, from which we conclude that r is divisible
by some prime p > k. Let N be the subgroup of B that fixes the blocks, i.e. any
x ∈ N sends each ∆i to itself. Let K be the subgroup of Sr obtained from B by
considering the action on the blocks. Then |B| = |N | · |K|. In addition, every
orbit of N has order less than k, so |N | is a product of primes whose values are
at most k. Thus, to encode |B|, it suffices to encode |K|. By minimality of r, K
is primitive, i.e., preserves no nontrivial partition of the permutation domain.

Much is already known about the structure of primitive groups. The O’Nan–
Scott Lemma [Cam81, Theorem 4.1] classifies them into several types. Many of
these are ruled out by our assumption that the index of any proper subgroup
of K is divisible by some prime larger than k (where k2 is bigger than r, the
size of the permutation domain). In fact, it must be the case that K has a
simple normal subgroup T . Further, either |T | = r and K is a subgroup of the
automorphism group of T × T , or K is a subgroup of the automorphism group
of T . Following the Classification of Finite Simple groups, much is known about
the permutation representations of finite simple groups [BKL83]. In particular,

18

either T is one of polynomially many alternating or classical groups (each of
which can be described by a string of length O(log n)), or |K| is polynomially
bounded. In the first case |K|/|T | is polynomially bounded, so in either case
O(log n) bits suffice to describe the order of K.

We summarize the encoding of |A|. First, we write down the binary repre-
sentations of the exponents of the primes in |A| for all primes p ≤ k. Then, we
write down a sequence of O(n/k) pairs (〈T 〉, N), where 〈T 〉 is an O(log n) length
name of a group T which is either the trivial group or a classical group with a
permutation representation of degree ≤ n and N is a positive integer (written in
binary) which is at most nc for some constant c. For primes p > k, the p-part of
|A| is the product of the p-parts of the N ’s and the orders of the T ’s. The order
of T is given by an explicit formula, so |A| can be computed in polynomial time
from its encoding. The first part of the encoding uses O(π(k) log n) bits; the
second part of the encoding uses O((n/k) log n) bits. Both of these quantities
are O(

√
n log n) as desired. �

7 Discussion

Several open problems remain on the enumerability of #GA. We have shown
that if #GA is poly-enumerable, then GI ∈ R. For SAT, we know that if #SAT
poly-enumerable, then P = PP [ABG90, CH91] which implies that SAT ∈ P.
For #GA, it remains open whether #GA being poly-enumerable could imply
that GI ∈ P. It might even be possible to show that if #GA is 2nε

-enumerable
for some ε < 1/2, then GI ∈ P. Such a theorem would not violate our up-
per bound that #GA is exp(O(

√
n log n))-enumerable. Note that an analogous

result for #SAT, that #SAT is 2nε

-enumerable implies SAT ∈ P, is not known.
While no polynomial-time algorithms for GI or #GA have been discovered,

algorithms with subexponential running time do exist. For example, there ex-
ists an algorithm with time complexity exp(O(

√
n log n)) which computes the

automorphism group and its generators [BKL83] (this is harder than solving
GI and #GA). This algorithm combines the techniques of several authors in-
cluding Babai, Luks, and Zemlyachenko. The bound on the running time is
the same as the upper bound on the enumerability of #GA that we achieved
in Section 6. This striking observation brings up the possibility of the follow-
ing time-enumeration trade-off. By allowing the enumerator to run for longer
than polynomial time, say time exp(O((n log n)a + log n)), it might be possi-
ble to achieve exp(O((n log n)b))-enumerability for a + b = 1/2. Note that the
case a = 1/2 is given by the subexponential-time algorithm mentioned above
[BKL83], and the case a = 0 is our upper bound. The case 0 < a < 1/2 is open.

We remark that for oblivious enumeration, our upper bound is tight up to
some logarithmic factors in the exponent. To see this, let k =

√
n log n as in

Section 6. Since kπ(k) = O(n), the sum of the primes up to k is O(n). By
scaling k by a constant factor, we may achieve that π(k) = Ω(

√
n/ log n) and

the sum of the primes less than k is ≤ n. So, for any subset S of the primes

19

p ≤ k, there is a permutation group of degree n whose order is the product of the
primes in S (the group is generated by disjoint cycles of prime lengths). This
gives us exp(Ω(

√
n/ log n)) different orders of permutation groups of degree

n. It is straightforward to obtain the same lower bound for the number of
distinct orders of automorphism groups of graphs of degree n. Thus, oblivious
enumeration seems to have reached its limit, but it remains open whether or
not a clever use of polynomial-time computable graph properties would yield a
better, non-oblivious enumerator.

Finally, we note that the reduction of Section 5 can be used even if the
enumeration is not polynomial. (It would yield a randomized algorithm for GI
which has super-polynomial running time.) Roughly speaking, the reduction
can be used as long as the enumerability is less than about exp(n1/2−ε) (so,
not surprisingly, an oblivious enumerator is useless for this). In order to beat
the subexponential running time of the existing algorithm [BKL83], the enu-
merability would have to be about exp(n1/4−ε) (however, the enumerator would
not have to be restricted to polynomial time).

Acknowledgements

The authors would like to thank László Babai for helpful comments on the topics
of this paper, and Dave Mount for proofreading.

References

[ABG90] A. Amir, R. Beigel, and W. I. Gasarch. Some connections between
bounded query classes and non-uniform complexity. In Proceedings
of the 5th Structure in Complexity Theory Conference, pages 232–243,
1990. A much expanded version has been submitted to Information and
Computation and is available via http://www.eecs.lehigh.edu/̃ beigel/.

[BDG88] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I,
volume 11 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1988.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II,
volume 22 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1990.

[Bei87a] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford Univer-
sity, 1987. Also available as Report No. STAN-CS-88-1221.

[Bei87b] R. Beigel. A structural theorem that depends quantitatively on the
complexity of SAT. In Proceedings of the 2nd Structure in Complexity
Theory Conference, pages 28–32, June 1987.

[Bei91] R. Beigel. Bounded queries to SAT and the Boolean hierarchy. Theo-
retical Computer Science, 84(2):199–223, July 1991.

20

[BGM82] L. Babai, Y. Grigoryev, and D. Mount. Isomorphism testing for
graphs with bounded eigenvalue multiplicities. In ACM Symposium
on Theory of Computing, pages 310–324, 1982.

[BKL83] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity
and the classification of finite simple groups. In Proceedings of the IEEE
Symposium Foundations of Computer Science, pages 162–171, 1983.

[Cam81] P. J. Cameron. Finite permutation groups and finite simple groups.
Bulletin of the London Mathematical Society, 13:1–22, 1981.

[CGL97] R. Chang, W. I. Gasarch, and C. Lund. On bounded queries and
approximation. SIAM Journal on Computing, 26(1):188–209, February
1997.

[CH89] J. Cai and L. A. Hemachandra. Enumerative counting is hard. Infor-
mation and Computation, 82(1):34–44, July 1989.

[CH91] J. Cai and L. A. Hemachandra. A note on enumerative counting. In-
formation Processing Letters, 38(4):212–219, 1991.

[Cha96] R. Chang. On the query complexity of clique size and maximum sat-
isfiability. Journal of Computer and System Sciences, 53(2):298–313,
October 1996.

[FM80] I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for deter-
mining the isomorphism of graphs of fixed genus. In ACM Symposium
on Theory of Computing, pages 236–243, 1980.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–
208, 1989.

[Hof79] C. M. Hoffman. Group-Theoretic Algorithms and Graph Isomorphism,
volume 136 of Lecture Notes in Computer Science. Springer-Verlag,
1979.

[HT71] J. E. Hopcroft and R. E. Tarjan. A V 2 algorithm for determining
isomorphism of planar graphs. Information Processing Letters, pages
32–34, 1971.

[HW74] J. E. Hopcroft and J. K. Wong. A linear time algorithm for isomorphism
of planar graphs. In ACM Symposium on Theory of Computing, pages
172–184, 1974.

[HW79] G. Hardy and E. Wright. An Introduction to the Theory of Numbers.
Clarendon Press, Oxford, fifth edition, 1979. The first edition was
published in 1938.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):490–509, 1988.

21

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Prob-
lem: Its Structural Complexity. Progress in Theoretical Computer Sci-
ence. Birkhauser, Boston, 1993.

[LT93] A. Lozano and J. Torán. On the nonuniform complexity of the graph
isomorphism problem. In K. Ambos-Spies, S. Homer, and U. Schöning,
editors, Complexity Theory: Current Research, pages 245–273. Cam-
bridge University Press, 1993. Shorter version in Proceedings of the 7th
Structure in Complexity Theory Conference, pages 118–129, June 1992.

[Luk82] E. Luks. Isomorphism of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25:42–65, 1982.

[Mat79] R. Mathon. A note on the graph isomorphism counting problem. In-
formation Processing Letters, 8:131–132, 1979.

[Mil80] G. L. Miller. Isomorphism testing for graphs of bounded genus. In
ACM Symposium on Theory of Computing, pages 225–235, 1980.

[Owi89] J. C. Owings, Jr. A cardinality version of Beigel’s nonspeedup theorem.
Journal of Symbolic Logic, 54(3):761–767, September 1989.

[RS62] J. B. Rosser and L. Schoenfeld. Approximate formulas for some func-
tions of prime numbers. Illinois Journal of Mathematics, 6:64–94, 1962.

[Sch76] C. P. Schnorr. Optimal algorithms for self-reducible problems. In Pro-
ceedings of the 3rd International Conference on Automata, Language,
and Programming (ICALP), pages 322–337, 1976.

[Sch85] U. Schöning. Complexity and Structure, volume 211 of Lecture Notes
in Computer Science. Springer-Verlag, 1985.

[Sch89] U. Schöning. Probabilistic complexity classes and lowness. Journal of
Computer and System Sciences, 39(1):84–100, December 1989.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, October 1991.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

22

