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INFORMATION AND CONTROL 58, 88-100 (1983)

Relativizations Comparing NP and Exponential Time

W. IAN GASARCH*

Aiken Computation Lab, Harvard University,
Cambridge, Massachusetts 02138

AND
STEVEN HoMmEer'

Department of Computer Science, Boston University,
Boston, Massachusetts 02215

The possible relationships between NP and EXP{ = f;ODTIME(2""k) relative
to oracles are examined. It is first shown that for every oracle (including the empty
set) and any k. NP*s EXP{. Then it is shown that all other relationships are
possible under relativization. That is, for each £ >0 oracles A, B, and C are
constructed such that (i) P's NP EXPY, (ii) EXP?S NP®, and (iii) NPC and
EXP{ are incomparable with respect to inclusion. The construction of the set A is
especially intricate. apparently requiring a finite-injury priority argument. In each
case in the constructions when a possible inclusion is ruled out, it is doné in a very

strong way, namely, by'finding a language in one of the classes which is immune
with respect to the other class. )

1. INTRODUCTION

Many of the central problems of complexity theory remain open. In
particular, results settling the relationship between deterministic and
nondeterministic complexity classes are rare. One approach to these
problems has been to look at them relative to Turing machines with oracles
(see for example (Baker et al., 1975; Baker and Selman, 1979; Ladner and
Lynch, 1976; Rackoff, 1982). Usually, the results obtained indicate that the
question can be relativized in contrary directions. This tells us that the
unrelativized problems most probably cannot be solved using current
techniques, as most known techniques relativize.

We examine the relationships between NP and the deterministic classes
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MCS-82-03482.
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EXP, = U2  DTIME(2¢m"), Obviously NP < (J& , EXP

«5> hence, we ask
how NP relates to EXP, for an arbitrary fixed k. A nu

mber of interesting

concerning exponential time. The arguments in Theorem 3 of (Book, 1972)
can be used to show that NP4 # EXP{ for every oracle 4. We present a
slightly different proof of this fact here. This is the only negative result; we

show that all of the other relativized situations are possible. Namely, oracles
4, B, and C are constructed so that

(i) P'g NP* & EXP
(i) EXP{c NP®
(iii)  NP€ and EXP{ are incomparable under inclusion.

Bennett and Gill (1981) show the existence of an oracle 4 such that there
is an NP* set with no infinite P* subset. The proof in (Bennett and Gill,
1981) is probabilistic and nonconstructive. In (Homer and Maass, 1983) and
independently in (Schoning, 1982) a constructive proof of this fac
We use the methods of (Homer and Maass, 1983) to obtain similar results
about NP* and EXP{. For example, an oracle C is constructed so that not

only are NP€ and EXP; incomparable but there exist infinite languages, L,
and L, such that

t is given.

(1) L,€NPC and L, contains no infinite EXPS subset.
(2) L, € EXP{ and L, contains no infinite NPC subset.

Such an L (L,) is said to be immune with respect to EXP{(NPC) sets.
More generally, if L is a language such that no infinite subset of L is in a
particular complexity class then L is said to be immune with respect to that
class. Recently, Book and Schoning (1982) have studied th

€ notion of
immunity and obtained results for a wide variety of complexity

classes.

2. NOTATION AND FirsT RESuLTS'

All languages considered will be subsets of {0, 1}. We fix enumerations
PV icona.., ({NP "Vi-o.1.2,..,) of polynomial time-bounded  deter-
ministic (nondeterministic) oracle Turing machines. For any X € N we write
P (NPY) for machine P{’ (NP{’) with oracle X, or, when no confusion can
result, for the language accepted by that machine. We write M(x) for the
computation of machine M on input x. We may assume p;(n) =i+ n'
bounds the time for any computation on an input of length n.

For any natural number k and any set X, EXPy denotes the collection of
languages accepted by deterministic Turing machines with oracle X which
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90 GASARCH AND HOMER

run in time 2¢", where ¢ is some constant. We let k denote a positive natural
number which is arbitrary but fixed throughout the paper. We fix an
enumeration {E{’};_, ., ., of deterministic oracle Turing machines with
time bound 2" for some ¢. We may assume h(n) =i+ 2™ bounds the time
of any computation by E¥ on inputs of length n. PX(NP*, EXPY) denotes the
collection of all languages L € P¥(NP*, EXPY). For a more complete
account of these definitions see Hopcraft and Uliman (1979).

(,): NXN-N denotes a fixed recursive pairing function which is
monotonic in both coordinates. ( , ): {0, 1}* X {0, 1}* denotes a pairing
function on strings that operates in polynomial time. We sometimes abuse
notation and use an integer i as one of the arguments in the ( , ) function.
In such a case we mean i is in binary notation. |x| is used to denote the
length of string x. |[4]| is used to denote the cardinality of set 4. For any
language L, L denotes the complement of L. x  y denotes the concatenation
of strings x and y. The function log( ) always refers to log base 2.

In Book (1972, Theorem 3) it is shown that NP # EXP,. The proof there
can be easily modified to show that for any oracle 4, NP* # EXP]. The
following argument was pointed out to us by Michael Sipser.

THEOREM 1. For all A, if EXP{ < NP* then EXP} , < NP".

Proof. The key observation here is that by polynomially padding sets in
EXP; one may decrease their complexity.

Let L€ EXP;,,. Define L'={x0""'~""||x|=n and x€L}. Now
L' € EXP{, since we can modify the machine which recognizes L in
EXP{,, to recognize the “padded language” L’ in EXP{. Hence by our
assumption L’ € NP* and so L € NP* since NP" is closed under polynomial
length padding. §

As a corollary we have:

COROLLARY. For all A, NP* # EXP{.

Proof. By a straightforward diagonalization, EXPy is properly contained
in EXPy,, (see Hopcraft and Ullman, 1979, p. 299). Now if NP* = EXP;
then EXP{ , < NP* by the theorem. Hence we have EXP{ < NP'c
EXP{, |, a contradiction. [

3. P*S NP'G EXP]

One of the first and most basic oracle constructions in complexity theory
was given in Baker, Gill, and Soloway (1975), where they showed the
existence of an oracle 4 such that P* = NP*. For such an oracle we have

P
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NP4 = P*< EXP} by the relativized version
(Hopcraft and Ullman, 1979, p. 299). We ¢
that P*G NP EXP%, and moreover we
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EXP?.
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NP* :P“_CFEXP;(4 by the relativized version of the time hierarchy theorem
(Hopcraft and Uliman, 1979, p. 299). We construct here an oracle A such
that P*<: NP'< EXP{, and moreover we obtain these inequalities with

immunity. Clearly this implies the same result for EXP{, k > 1, instead of
EXP{.

THEOREM 2. There exists an oracle A such that

(1) P'c NPic EXPI.
(2)  There is an infinite Lt € NP* with no infinite P* subset.
(3) There is an infinite L € EXP{ with no infinite NP subser.

Progf: (In the style of Soare (in press)). Let:
LY ={0"|3xE€ A, |x| = n, neven, nnot a power of 2}
Li=1{0"| 1" € 4).

Clearly L € NP* and L4 € EXP? for any A. To ensure (1), (2), and (3) we
have the following requirements:

RP;: POV infinite = P/ N L # g

RNPi: NP{O{O}* infinite = NP N LT £ &

T;: . |L3[> i (This is to ensure that L3 is infinite)

C;: For almost all x, NP{(x) accepts iff Xy (x)y s 12 4

O € 4. (This is to ensure that NP < EXP!))

The infinitude of L7 will follow easily from the construction and need not
be a formal requirement.

We construct 4 in stages. A, denotes the elements placed into 4 by the
end of stage.s. 4 = U< 4. The expression “preserve a computation” will
be used in reference to a computation on an oracle machine with oracle A,
and will mean to restrain from 4 all strings that the computation queried
which were not in 4.

RP; will act by diagonalizing. It will restrain strings from entering 4 to
preserve a computation or to prevent a certain string from entering L%, The
latter type of restraint will not affect the other requirements because LY, L3,
and the code strings (requirement C,) they query, operate an on different
sets.

Both RNP; and C; operate only when the computation by NP{ cannot be
changed, and all the strings they query have already been decided upon.
Thus these requirements never have to preserve a computation, though RNP,

may restrain a string to preserve membership of an element in L1,




92 GASARCH AND HOMER

For the most part, RP, and RNP; restrain strings, and T; and C ; place
strings in 4. The conflicts are resolved with a priority argument, in which
requirements can be injured, that is, actually become unsatisfied when they
were previously satisfied. We will keep track of which requirement is
restraining which strings, and if a requirement wants to put into 4 a string
restrained by another requirement of lower priority, the higher priority
requirement gets its way. When this happens we say the lower priority
requirement has been injured. When a requirement R restrains and/or places

strings into 4 at stage s we say that R has received attention at stage s. The
prority ordering is

RP,, RNP,, T, C,, RP,, RNP,, T}, C,....

Construction.
Stage 0: 4, = @.

Stage s + 1: After this stage, the question of membership in 4 is decided
for each string of length less than s + 1, as well as for some additional
strings of length greater than s. We perform various actions depending on s
as follows:

If s is even and not a power of 2 then we try to use it for one of the RP, as
follows:

Run P{+(0°) for each i<logs such that pi(s) <2*% If RP; is not
satisfied, then preserve P45(0°) for RP;. Find the least i such that RP; is not
satisfied, P{¢(O°) accepts, and [L%:| > i. If such exists then restrain all length
s strings from 4 for RP;. At this point RP; is satisfied. If no such i exists
then put the least string of length s that is not restrained into A. (Note: Such

a string must exist since the total number of strings restrained up to this
point is less than

(stages) * (machines -run per stage) * (maximum number of queries per
machine)

which is less than s * log(s) * 2/2 < 2°.) This is done to make L+ infinite.
If 5 is odd we try to satisfy the RNP; requirement as follows:

Let k = [log(s) + 1].
Run NP{<(0*) for each i < log s such that p,(k) < s.

Note that since p,(k) <s all the computations are automatically
preserved.

Find the least i such that RNP; is not satisfied and NP#(0%) is

accepted. If 12“ is not in 4 already, then restrain it for RNP,. At this point
RNP; is satisfied.

We perform the next two actions regardless of whether s is even or odd.

COMPARING NP AND EXPO!

Let i=|L4s|, and let k=/[log(s)+ 1]. If
requirement of higher priority than T then p
satisfied.

For any j < s/2 and any x with p;(|x|)=s.
put w={j,x)* (j,x)*1*"'x 0 into 4,
requirement of higher priority than C; or |
length and hence does not put any eleme't
|w| > s, placing w into A will not interfere wi

END OF CONSTRUCTION.

LeEmMMA 1. Every requirement is injured
restrain a finite number of strings from A.

Proof. The requirements T; and C; ne
restraint, so the lemma is automatically true
to the RP; and RNP; requirements.

RP; can only be injured by a T;,j <, or ¢
is satisfied it never acts again, so 7; can on
stops acting, but, note that at stage s

(i) RP; needs to restrain strings of le

(i) C; needs to place strings of th
where p;(|x|) = s, into 4.

A simple calculation reveals that eventua
C; places into A always exceed the length
Hence there is an s such that for all stag
namely, s such that all the T have stopped
the strings that the C; place into 4 are too

RNP; can only be injured by a T;,j <1, |
often.

Each RP;, RNP; only acts finitely often
stage where it can be injured, then it will b"
have to act again. Since it acts only fini
restraint. 1

LEMMA 2. Every RP, receives attention

Proof. Let s, be a stage such that Ys >
exists via Lemma 1). If RP; ever receives
permanently satisfied. Thus RP; may rece
stage so. N

LEmMMA 3. L{ is infinite.
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Let i={L%s], and let k=[log(s)+1]. If 12**

requirement of higher priority than T ; then put 12
satisfied.

For any j < 5/2 and any x with p(|x|) =, run NP

) is not restrained by a
) 4 a string j put. w=(jox) % (j,x) % 12" % 0 into A,

into 4. At this point 7} is

s(x). If it accepts, then
unless w is restrained by g

[w| <'s. Note that w is of odd

t put any elements into Ly or L#; and, when

ith any of the NP computations.

1er priority requirement of higher priority than C; or
/€r priority length and hence does no
d/or places 'w| > s, placing w into 4 will not interfere w
tage s. The
END oF CoNsTRUCTION.

LEMMA 1. Every requirement is injured only Sinitely

often, and wil] only
restrain a finite numper of strings from A.

Ll
! Proof. The requirements 7, and C,
. Testraint, so the lemma is automati

| tothe RP, and RNP; requirements

s decided | RP; can only be injured by a T,,j<iora C;,j<i Oncea T requirement
idditional - is satisfied it never acts again, so T; can only injure RP; once. The C; never
ding on s stops acting, but, note that at stage s
e RP, as ‘ (i) RP; needs to restrain strings of length at most pi(s),
i (i) C; needs to place strings of the form Bhx)x (oxyx 1274 g,
o | where p;(|x|) =, into 4. ‘
% IS not | ,
P, is not + A simple calculation reveals that eventually the length of the strings that
1 length ! C; places into 4 always exceed the length of the strings that RP; restrains.
i exists ’ Hence there is an s such that for ajl stages past s, RP; is never injured,
te: Such namely, s such that all the T; have stopped acting, and large enough so that
to this | the strings that the C; place into 4 are too large to injure RP,.
. RNP, can only be injured by a T}, j < i, hence can be injured only finitely
‘ « often.
€S per

/

’ Each RP,, RNP, ohly acts finitely often, because if it ever acts past the
7 stage where it can be injured, then it will be satisfi
%

¥

ed permanently and never

inite. have to act again. Since it acts only finitely often it imposes only finite
! restraint.

‘v LEMMA 2. Every RP; receives attention Jinitely often.

tically w‘h Proof. Let s, be a Stage such that Vs > So RP; does not get injured (such

‘: exists via Lemma ). If RP; ever receives attention past s,, then it will be

D5) s | permanently satisfied. Thus RP, Mmay receive attention at most once after
point N stage s,. i

Lemma 3. L4 s infinite.
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Proof. We prove that ¥i |[L{| > i. Assume inductively that 3s > s, such
that |L’,“°| > i. Let s, be a stage such that s, > sy, s, even, s, is not a power
of 2, and none of the RP;, 0 < j <, receive attention at s, (such exists by
Lemma 2). At stage s, a string of length s, will be placed into 4 for the first
time. Hence

. A . A
O°' is an element of L*' not in L|*.

Therefore |[L{s| > i+ 1. |

LEMMA 4. RP;, RNP,, T;, and C; are all satisfied.

Proof. In all the proofs below, let s, denote the stage past which the
requirement in question, Z, will never be injured, and let s, denote the length
of the longest string restrained by requirements of higher priority than Z.
Both s, and s, exist by Lemma 1.

RP;: Assume P, {0}* is infinite. Let s be a stage such that

(a) s,<s,

(b) i<logs,

(€) pis) <27,

d) [LY]> i,

(e) siseven anzi not a power of 2,
(f) Pfs accepts O°.

If no such s exists, then P{s only accepts odd length strings or those which
are of length a power of 2, hence the requirement is satisfied. If such an s
exists, then at that stage RP; will act, and be satisfied forever because
nothing of higher priority ever injures it.

RNP;: Assume NP{ M {0}* is infinite. Let s be a stage such that

(a) s0<s5s,

(b) i<log s,

(©) pils) <27,

(d) pi([log(s) +1]) <,

(e) s is odd,

(f) NP%s accepts O, where k = [log s + 1].

Such a stage must exist since NP{ M {0}* is infinite, and as s goes through
all the odd numbers, [logs + 1| goes through all the natural numbers. At

e ——
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stage s, RNP; will act and be satisfied foreve
ever injures it.

T;: During any stage s such that
requirement 7; will be free to put strings
cardinality of L% until |L%| > i, at which po

C,: The only reasons not to put a co
in conflicts with something of higher priorit
than the stage itself). By Lemma 1, the for
finite number of strings. By a simple calc
which a code string for C is longer than the
put it into 4. Hence the latter reason al:
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4. EXPS NI

In this section we show that the opposite
is possible as well. We obtain a stronger ty
that we exhibit an oracle B such that there |
with no infinite subset of L® or L® in EXP
the problem to us, pointed out the following

PROPOSITION. Let B be an oracle such ¢
with no infinite subset of L or L in EXP%.’
for L must operate in time greater than 2" .

Proof. Assume there is a deterministic T
and operates in time 2¢"* (henceforth referr
often. It must operate in good time on an i
the machine by having it always reject if it
the original machine accepts an infinite :
machine accepts an infinite subset of L in g
hypothesis of the theorem. In the L case,
having it reverse its answers on those inputs
The new machine accepts an infinite subset

THEOREM 3. There exists a recursive o
and this inequality is witnessed by a languag
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Proof. For clarity we present the proof
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We construct the set B in stages. During
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stage s, RNP; will act and be satisfied forever since nothing of higher priority
ever injures it.

T;: During any stage s such that 2% > 8y, where k= [log(s) + 1],
requirement 7, will be free to put strings into A4 and thus increase the
cardinality of L until [L4| > i, at which point 7; is satisfied.

C;: The only reasons not to put a code string into 4 are: if putting it
in conflicts with something of higher priority; or, if the string is short (less
than the stage itself). By Lemma 1, the former reason can only restrain a
finite number of strings. By a simple calculation, there is a stage s past
which a code string for C is longer than the stage number at which C acts to

put it into 4. Hence the latter reason also only restrains finitely many
strings, and the requirement is satisfied. |

4. EXP?< NP*

In this section we show that the opposite inclusion of the previous section
is possible as well. We obtain a stronger type of result than Theorem 2 in
that we exhibit an oracle B such that there is an infinite language L? € NP?
with no infinite subset of L# or L7 in EXP;. Albert Meyer, who suggested
the problem to us,. pointed out the following consequence:

PROPOSITION.  Let B be an oracle such that there is an infinite I € NP®
with no infinite subset of L or L in EXP}. Then any deterministic algorithm
for L must operate in time greater than 2™ on all but a finite set of points.

Progf. Assume there is a deterministic Turing machine that recognizes L,
and operates in time 2¢"* (henceforth referred to as “good time™) infinitely
often. It must operate in good time on an infinite subset of L. or L. Modify
the machine by having it always reject if it runs in time greater then 2", If
the original machine accepts an infinite subset of L, then the modified
machine accepts an infinite subset of . in good time, which contradicts the
hypothesis of the theorem. In the I, case, modify the machine further by
having it reverse its answers on those inputs on which it halted in good time.

The new machine accepts an infinite subset of L, again a contradiction, |

THEOREM 3. There exists a recursive oracle B such that EXPf < NPE,

and this inequality Is witnessed by a language L® € NP® such that no infinite
subset of L® or of L is in EXP?,

Proof.  For clarity we present the proof for k

= 1. The proof for larger
values of k is similar.

We construct the set B in stages. During the construction we code EXP?
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into NP? by: for all i and x, E? accepts x iff 3w such that (i, x) * w € B and
|w| = |(i, x)|* + 1. Clearly this implies EXP} < NP®. We let
L® = {x|3w € B,|w|=|x[*}.
Note that L® € NP for all B. To take care of infinite subsets of L? and L?
we have the following requirements:
R, 5 E? accepts an infinite set = E NL? +@.
R, E? accepts an infinite set= E¢ N L" # @.
The requirements inherit a priority ordering from the ordering given by the
pairing function (-, -).
We now describe the construction of B. Recall that /; bounds the running
time of machine E,. We let B, denote the strings put into B through the first

k stages.
CONSTRUCTION.
Stage 0: B, =@.

Stage s + 1: (1) For each i s, if h(s) < 2, then run E¥ on all strings of
length s and preserve each of these computations by restraining from B all
the strings queried in the computation which were not in B,. Note that the
total number of strings restrained at this stage is at most 2 * 2° % 250 < 2%,

(2) Find the least i = (j, e) < s such that

(a) R, is not satisfied.
(b) There is an x € }_* such that |x| =s and E}" accepts x.
(©) hys)<2"

If j=1, then to ensure EZ N LE + @ we restrain all strings of length s*
from B.

If j=2 then to ensure E2 N L? # @ we place into B the least string of
length s* that is not restrained from B. There must be such a string since the
total number of strings restrained from B up to this point in the construction
is less than 3'3_,2°" < 2% (Note: The j=1 case of the previous stages
restrains only strings of length less than s*.) R, is now said to be satisfied.

(3) For each E?s(x) which has just been run and which accepted x, find
some w such that |w|=|{, x)|* + 1, and (i, x) * w is not restrained from B.
Put (i, x) * w into B. Such a w will exist, since the number of possible w’s is
greater than 25**! which exceeds the number of strings restrained.

END OF CONSTRUCTION.

We prove that each R, is eventually satisfied. Note that each R; is acted
upon at most once. Assume that i = (j, e) and E® accepts an infinite set. Let
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s, be a stage beyond which no R,, k <i,
s> S, h,(s) < 2%, Past s,, all computations
E® is infinite, there is a stage s, > s, where E’
s,. At this stage R; will be acted upon and h

5. NP€ INCOMPARABLE

Our final result shows it may be the case t
contained in the other.

THEOREM 4. There is a recursive set C s
(1) There is an infinite language L
subsets are in EXPY.
(2) There is an infinite LS € EXPS, no
in NP€.
Progf. As usual the construction of set
define

LY =1{0"|3x€C, |x|=n*""}
LS ={0"|1*" € C and n is not

(Note: The requirement on # in L§ is a conve
element into L§ does not affect L§.) For no
LS (LS) by L, (L,) throughout.

Clearly we have L, € NP and L, € EX}
(L,) is infinite and contains no infinite subse
in terms of requirements:

R;: EY infinite=>E{ ¢ L,
T,: NP{ infinite = NP{ & L,.

We will keep track of sets G and H con
which have already been met. Also, at each ¢
n, will be chosen large enough so that every
from C before stage s has length less than r

strings put into C through stage s of the con
construction.

CONSTRUCTION.

Stage 0: Co=G=H=g, n,=0.
Stage s: There are two cases.
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S, be a stage beyond which no Ry, k <i, will act, and such that for all
§> g, h(s) < 2% Past So, all computations of Ef are preserved. So, since
E? is infinite, there is a stage s, > s, where Ef‘l accepts some string of length
5,- At this stage R, will be acted upon and hence become satisfied. 1

5. NP€ INCOMPARABLE TO EXP§

Our final result shows it ma

y be the case that neither of NPC or EXP§ is
contained in the other.

THEOREM 4. There is a recursive set C such that

(1) There is an infin

ite language LS € NPC, none of whose infinite
subsets are in EXPC.

(2)  There is an infinite LS € EXPE, none of whose infinite subsets are
in NPC,

Proof.  As usual the constructi

on of set C is carried out in stages. We
define

L{=1{0"|3x € C, [x|=n*t1}

L$=1{0"| 17" € C and n is not divisible by & + 1.

(Note: The requirément on # in L{ is a convenience to assure that putting an
element into LS does not affect 7.€

.) For notational convenience we denote
1
LT (LS) by L, (L) throughout.

Clearly we have L, € NPC and L, € EXP{. We need to ensure that L,

(L,) is infinite and contains no infinite subset in EXP{ (NP€). We state this
in terms of requirements:

R;: E} infinite = E€ ¢ L,
T;: NP infinite = NPS ¢ L,.

CONSTRUCTION.

Stage 0: Co=G =H = g, n,=0.
Stage s: There are two cases.
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Case 1. s is even. We consider oracle machines NP$:-!, where i < s/4
and i € G. Let n, > n,_, be least such that

(1) Vigs/4, pi(ng) <2

(2) s is not divisible by k + 1

(3) every string in C,_, has length less than n;
(4) 1" is not restrained from C.

Find the least index i, < s/4 such that iy & G and NP’;:;" accepts O™. If

, . . nk .. . .
such an i, exists, restrain 1?” from C and put i, into G. If no such i, exists,
put 12" into C and hence add O™ to L,.

Case 2. s is odd. We consider oracle machines E$s-!, where i < s/4 and
i & H. Find an integer n, > 2"~V such that

(1) Vi<s/4,hyny)< 2t
Q) (s + 1)/2) Q072 ¢ gm?
(3) No element of length pk+1

k+1is in C,_, or restrained from C.

For each computation E¢s-1(0") with i € H, i < s/4, restrain from C all
strings quiried in the computation which are not in C,_,. Find the least such
index iy, such that ECs-1 accepts O™. If such an i, exists, put it into H and
restrain from C all strings of length n**'.

If no such i, exists, put the least string of length nk*1 which is not
restrained from C,_, ihto C. (Note that such a string of length n**1 must
exist, since no string of this length is restrained from C prior to stage s, and
at stage s at most ((s + 1)/2) 20772 anE Y gtrings of length n**! are

s
restrained from C.) This adds O" to L,.
END OF CONSTRUCTION.

That both L, and L, are infinite follows from the fact that at a stage s we
only consider machineés with indices less than s/4. Hence, after an even stage
s at least 5/2 elements have been put into L,, and after an odd stage s at
least (s — 1)/2 elements have been put into L,. So it remains to show that
the requirements are all satisfied.

LEMMA 1. Each requirement R; is satisfied.

Proof. Assume not, and let i, be the least i with R; not satisfied. Then E,
is an infinite subset of L,, and i, is never put into H, as when an index j is
put into H we ensure that E{ ¢ L. Let s be an odd stage such that i, < s/4
and, for every j < i, ever put into H, j is in H before stage s. As i, & H, at
every stage s,>s, the computation E,-Co”‘l rejects 0", and these
computations are preserved. This contradicts our assumption that E,C0 is an
infinite subset of L,. [}

o — | E— oy, S -—._MM*——MW”_M‘“;
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LEMMA 2. Each requirement T, is satisfie

Proof. Assume not, and let i, be the lea
satisfied. Let s be any even stage such that i,
NP,.COXI*' must reject O™, since otherwise at st
from C, NP,?O”*'(O”H) would be preserved
would have NP ¢ L,. Similarly we see t
NP,-CO“*'(O"SI) is preserved for every s, > s an
subset of L, and T is satisfied. 1§

6. FURTHER RESE.

The techniques and question explored in t
at in other settings. One might hope to get
results in the strong form they are obtained h
A be constructed such that there is a
(Relativized ) 7" classes are defined in Ba
infinite subset of L is in 3 5**? Can L be suc
L is in 3'8*? Such results would be of intes
NP* algorithm for recognizing any infinite s

Other results relating NP and EXP, are
Maass (1983), an oracle B is constructed
infinite set in NP? has an infinite P? subs
asked here. For example, can one construct
and every infinite set in EXP} contains an
author has shown that for almost all oracles
parable, with immunity, and has generalize:
other deterministic vs nondeterministic quest
(Gasarch, in press).
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LEMMA 2. Each requirement T, is satisfied.

Proof.  Assume not, and let iy be the least number such that T;, is not
satisfied. Let s be any even stage such that i,  s/4. Then at any even s, > s,
AVP%I” must reject O"si, since otherwise at stage s, , 1% would be restrained
from C, NPZ)”“(O"H) would be preserved (since M5, 41> Diy(n,,)) and we
would have NPﬁ)cth. Similarly we see that the rejecting computation

:\"Pfufl“(O"ﬂ) is preserved for every s, > s and so NPS; cannot be an infinite
subset of L, and T} is satisfied. f

6. FURTHER RESEARCH

The techniques and question explored in this paper might well be looked
atin other settings. One might hope to get previously known relativization
results in the strong form they are obtained here. For example, can an oracle
4 be constructed such that there is a language L in Y54 — A
(Relativized 274 classes are defined in Baker and Selman, 1979) and no
infinite subset of L is in 2_7"? Can L be such that no infinite subset of L or
Lis in 272 Such results would be of interest in that they imply that any
NP* algorithm for recognizing any infinite subset of , (or L) must fail.

Other results relating NP and EXP, are also possible. In Homer and
Maass (1983), an oracle B is constructed such that P® = NP? and every
infinite set in NP® has an infinjte P? subset. Similar questions might be
asked here. For example, can one construct a set B such that NP? < EXP?
and every infinite set in EXP{ contains an infinite NP? subset? The first
author has shown that for almost all oracles A, EXP{ and Y"*** are incom-
parable, with immunity, and has generalized the theo

other deterministic vs nondeterministic questions. Thes
(Gasarch, in press).
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The Complexity of Evaluating

StAavROS S. CosM/
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Cambridge, Massacl

A sequence of results which characterize ex
related to the evaluation of relational queries co
joins is proved. It is shown that testing whethe
given relation equals some other given relation
languages that are equal to the intersection of a
co-NP—it includes both NP and co-NP, and w
different context, see Papadimitriou and Yani
Annual ACM Sympos. on the Theory of C
pp. 255-260). It is shown that testing inclusic
respect to a fixed relation (or of relations witl
complete. The complexity of estimating the nun
examined.

1. INTRODUCT

The relational algebra is known to be a
expressing database queries. But exactly I
expressibility, Codd showed in his classical
to a version of first-order logic. In terms of
other hand, there have been several resul
algebra on finite relations embodies sor
power. Already in (Aho et al., 1979; and C
shown that evaluation as well as testing
relational queries are hard combinatorial
were results suggesting that the join of rele
even in certain weak senses of the word (|
al., 1981) (a polynomial time algorithm fo
(Honeyman, 1980), and that project-join qu
given conjectured result for inclusion (Mai

In some sense, relational algebra seems
way different from, say, the ordinary alg
exponentiation). In ordinary algebra, as ir
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