ILLiad Request Printout

Transaction Number: 427393

Username: 100934397 Name: William Gasarch
ISSN/ISBN: '
NotWantedAfter: 11/09/2009

Accept Non English: Yes

Accept Alternate Edition: No

Request Type: Article - Article

Loan Information

et -

LoanAuthor:

LoanTitle:

LoanPublisher:

LoanPlace:

LoanDate:

LoanEdition:
NotWantedAfter: 11/09/2009

A;tigleﬁlnformation

PhotoJdJournalTitle: SIAM journal of Computing
PhotoJournalvVolume: 16

PhotodJournallIssue:

Month:

Year: 1987

Pages: 613-(2

Article Author: Gasarch‘

Article Title: Oracles for Deterministic versus Alternating classes

Citation Information

Cited In:
Cited Title:
Cited Date:
Cited Volume:
Cited Pages:

OCLC Information

ILL Number:

OCLC Number:

Lending String: Direct Request

Original Loan Author:

Original Loan Title:

01d Journal Title:

Call Number: UMCP EPSL Periodical Stacks QA76.8555 v.16 (1987)
Location:

Notes

9/11/2009 7:42:04 AM System 1. No Matching Bib/2. No ISBN, ISSN, or OCLCNo in request.

1 security
G results

1

i
i
|
i

problem

bntmy, 87
i

&dtigraphs,

653-665.
NJ, 1962.
mentation

ice, Yale

cted

13

id tables,

-

i,

i i

SIAM J. CompuT. © 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, August 1987

002

ORACLES FOR DETERMINISTIC VERSUS ALTERNATING CLASSES*

WILLIAM GASARCH¢?

Abstract. We construct oracles that force all possible relationships between NP and EXP, =
DTIME (20("‘9). We generalize these results to obtain a theorem about oracles that force relationships
between deterministic and nondeterministic (and altemating) classes, from which many corollaries follow.
The corollaries are interesting because Wwe compare a powerful type of machine (e.g., nondeterministic,

alternating) to a jess powerful type of machine that can use more time, One of our corollaries is that the
result DTIME (n log* (n)) < 3,-TIME (n) does not relativize,

Key words. oracle, NP, alternation

AMS(MOSs) subject classifications. 68Q15, 03015

[16]). Other topics shown hard to explor
the Berman-Hartmanis Conjecture [23], P-immunity, p.
sets for R or NP co-NP [32], and the existence of sp.

We construct oracles that induce al] possible r
between NP and EXP,. Other results involving €xpone

simplicity [5], [18], complete
arse sets in NP— p [24].

614 WILLIAM GASARCH

[34])), DTIME (c"), NTIME(d"), DTIME(n°), BTIME (n%), and alternating classes
[19]. One of our corollaries is that the result DTIME (n log* (n)) € £,-TIME (n) [28]
does not relativize.

In many oracle constructions in the literature, a set A is constructed to force
L*¢ K*, where L' is an oracle dependent language and K)is a relativized complexity
class. However, it is possible that L* can still be approximated by a language in K A
i.e., some infinite subset of L* is in K*. Oracles for which this does not happen were
shown to exist in [6] and constructed recursively in [18], [31]. We borrow their
terminology. (In the definitions below: L is a language; L is the complement of L, i.e.,
S*—L; K, K,, and K, are complexity classes.)

DEFINITION. L is K-immune, if L is infinite and has no infinite subset in K.

DEerINITION. L is K-bi-immune if both L and L are K-immune.

DerINITION. K, g K, withimmunity if K, g K,, and there exists a language LeK,
that is K;-immune.

DEerFINITION. K, 1K, with immunity (read as “K, is incomparable to K, with
immunity”) if there exist languages L, € K,, L, € K;, such that L, is K,-immune and
L, is K,-immune.

DerINITION. K, g K, with bi-immunity if there exists a language L€ K, that is
K,-bi-immune and K, g K.

DerFINITION. K, LK, with bi-immunity (read as “K, is incomparable to K, with
bi-immunity”) if there exist languages L, € K, L, € K, such that L, is K,-bi-immune
and L, is K,-bi-immune.

We assume throughout that we have enumerations of:

(1) all oracle polynomial time bounded Turing Machines, {P{, P, - - -}, where
machine P!’ takes time at most p;(x)=i+|x|' on input x;)

(2) all oracle nondeterministic polynomial time bounded Turing Machines
{NP{), NPY), - - -}, where machine NP!’ takes at most time p,(x)=i+|x|’ on input x
along any path;

(3) (for a fixed k) all oracle DTIME(2°"”) time bounded Turing Machines,
{EQ, EY, - - -}, where machine E{’ takes at most time h;(x) = 2% on input x.

We use the symbol “L(M)” to denote the language recognized by that machine
M. Throughout this paper X is the fixed alphabet {0, 1}. The symbol *“(,)”” denotes an
easily computed mapping from I*x3* to N or Z*xX* to £*; usage will be clear
from context, e.g., “(i, j < s means that “(i, j)”’ is a number which is less than s; and
“(i, x)w” means that (i, x) is a string and represents the concatenation of the string
(i, x) with the string w. If a number appears as an argument to {,) then we mean its
binary representation. If w, and w, are strings, then [(w;, w2)| > Max (|wy], lwyl). If n,

and n, are numbers then (n,, n,)>Max (n,, n;). The symbol (,,) denotes an easily
computed mapping from Z* xZ* xZ* to T*.

2. NP versus EXP,. One difference between NP and EXP,= DTIME (2°¢9)
(k=1 arbitrary but fixed) is that NP is closed under “polynomial padding” while
EXP, is not. Book [7] exploited this difference to prove NP # EXP,. His proof
relativizes, i.e., it can be modified easily to show that for any oracle A, NP*# EXP*,
This has also been observed by Dekhtyar [10].

The proof of NP # EXP, does not indicate in what way NP and EXP, are related.
NPg EXP,, EXP,g NP, and NPLEXP, are possibilities. Dekhtyar [10] claims
(without proof) that oracles A, B, and C exist such that NP*g EXP{, EXPY g NP®,
and NP 1 EXPC. This shows that any technique that relativizes will not suffice to
resolve how NP and EXP, relate.

ORACLES: D

It is possible that every s
constructing oracles that indu
and EXP,, we show that any
of these questions.

2.1. P*g NP*g EXP;. (
complexity theory was given -
existence of an oracle A such
EXP7 by the relativized versi
an oracle A such that P4 g Ni
with immunity. Clearly this im

The following proof is ar
argument proof of the same t]

THEOREM 1. There exists
both proper inclusions hold wit

Proof. Let

L;‘ = {xlay'yl =
L}={0"1""¢.

Note that all strings in L
ensure that L{*, L5 and the cc
strings.

Clearly we have L{*e NI
infinite and contains no infini
ments:

RP;: L(P})
RNP;: L(N

The infinitude of L{(L3)
as a formal requirement.

We need a function to hel
an injective function com
(%1, X2, X3), (X1, X3, X3) > x;.

We code NP*c EXP{ v

For all i, for all x
NP (x)
(Note that 1x is interpret
We construct A in stages.
the set of strings placed into .
at no later stage may an eleme

guarantees that requirements
and that A=US_ A, is recurs

CONSTRUCTION
Stage 0: Ag<« &, r(0) «0.
Stage s+1:

of these questions.

_» 1. P NP < EXP2. One of the first and most basic oracle constructions in
- complexity theory was given in Baker, Gill and Solovay [2], where they showed the
existence of an oracle A such that PA — NP*, For such an oracle we have NP4 = pag
EXP} by the relativized version of the Time Hierarchy Theorem [20]. We construct
an oracle A such that P4 g NpA 1> and, moreover, we obtain these inequalities
with immunity. Clearly this implies the same result for EXP{, k> 1, instead of EXP},

The following proof is an arithmetic forcing argument similar to [24]. A priority
argument proof of the same theorem is in [14].

THEOREM 1. There exists g recursive oracle A such that P*g NPAg EXPA and
both proper inclusions hold with immunity.

Proof. Let

L ={x|3,[y| =|x|, xy € A, |xy] is not a power of two},
L3={0"1"¢ A}.

Note that all strings in L{* are of a length that is not a power of two. This wil]
ensure that L{, L3 and the coding of NP* into EXP2 are affected by disjoint sets of
strings.

Clearly we have L}c NpA and Ly'e EXP{. We need to ensure that L{(L$) js
infinite and contains no infinite subset in PA(NPA). We state this in terms of require-

- ments:

RE: L(P)N L} infinite> L(PA) L=,

RNP.: LINP) N L2 infinite » LINPYHN LA % .

The infinitude of L{(L3') follows from the construction and need not be stated
as a formal requirement. .

We need a function to help code NP into EXPl. Let c: NXNxN->2N+ 1 be
an injective function computable in polynomial time such that for aj]
E (1, %2, X3), c(x, » X2, X3) > x,.

We code NP“<c EXP4 via:

For all i, for all x
NP?(x) accepts in steps iff 0°“1x0 ¢ 4
(Note that 1x is interpreted as a binary number.)

, ge we define A, and r(s): A, is
 the s i i through stage s, r(s) is a “restraint function” in that
| atno later stage may an element w, [w| < r(s), be placed into A. The restraint function
| guarantees that requirements which are declared satisfied at stage s remain satisfied;
| and that A=UT | A, is recursive.

CoNSTRUCTION
Stage 0: A, « I, r(0)«0.
Stage s+1:

616 WILLIAM GASARCH

There are six substages. To avoid notational problems the phrase *“A, < A u{w}”
means add w to A,. If “A,” is referenced later we mean the updated version. The
phrase “decide a string” means to decide whether it is in A or not. “Restrain a string”
means to decide that the string will never enter A.

We pick a length n so that later (in substage ¢) we can run P (0=i=s/2) on
some string of length n/2 and diagonalize (to satisfy some RP;). Since the diagonaliz-
ation will involve strings of length n, we pick n large (so the number of strings of
length n is large) and we are careful to not put too many strings of length n into A,
in substages a and b.

Let n, =n be the least even number not a power of 2, such that n>r(s) and

Z(n) < 2n/2

Substage a: (Decide all strings of length k, r(s) <k<n). Foreach k, r(s)<k<n,
if k=c(i, 1x, t) for some (i, x, t), then run NP#(x) for t steps. If it accepts then set
A, « A, U{O‘("“‘")} Since t<c(i, 1x, 1), placing 0°*'>" into A does not affect the
computation that this string codes.

Substage b: (Decide all strings of length k, n < k < p,(n)). We want to do a similar
construction as in substage a, but there is one glitch: strings of length n <k may enter
A at a later time and invalidate a computation which we coded. To avoid this we
decide certain strings of length n to preserve computations. The key point is that when
we finish coding there will still be enough strings of length n undecided to help satisfy
requirements RP, 0=i=s/2.

For each k, n < k= p,(n), such that k = c(i, 1x, t) for some (i, x, t) run NP#(x).
If it accepts then A, < A,U{0°**"} and we restrain from A all strings of length n
that were queried.

If it rejects then we search for a set of unrestrained strmgs B (of length n), such
that NPYB(x) accepts. If we find such a B then, for a particular accepting path,
restrain all elements queried of length n that are not in A; U B, and set

A, < A,U{x|xe B and x is queried on that path}U {oetit=ny,

Note that the number of elements of length n which are decided is less than t < p,(n).

If none accept then we do not put 0°*1=" into A because (key point!) whichever
elements of length n enter A, NP{* will not accept, since we tried all possibilities.

Substage c: (Decide remaining strings of length n, and satisfy RP;). Note that the
number of strings of length n not yet decided is less than (number of machines run
during substage b) X (max number of strings queried in such a run) < p,(n) X p,(n) =
pi(n) <22,

For each x, |x| = n/2, let D, = {xy: |y| = n/2}. Since there are less than 2"/* decided
strings, one of the D, must contain only undecided strings. Let D,, be the least such
(for definiteness). Note that x,e Li iff D, NA#J. Run P(x,) for all i such that
O=si= s/ 2 and RP, not satisfied. If any accept then declare all such RP; satisfied, since
X0 L{ and the restraint will be set to insure x, & ¢ L. If all reject then take the least
(for definiteness) we D, not queried in any of the Ps(x0) computatlons and set
A, « A,U{w}. This does not satisfy any RP, but it does help to make L{ infinite.

Substage d: (Requirements RNP;,, 1=i=5s/2). Run NP#2:(0") for all i such that
1=i=s/2, and RNP, not satisfied. Since all strings of length = p,(n) are now decided,
all the NPA +(0") computations are valid. If NP{+(0") accepts then declare all such
RNP; satisfied, since 17" ¢ A,, and r(s) will be set to ensure 12" ¢ A. If all reject then
set A « A,U{17"}. This does not satisfy any RNP; but it helps make L% infinite.

Substage e: (Decide strings of length k, p,(n) <k=2"). Similar to substage a.

Substage f: Set A,,, < A, as it stands at the end of substage e.

ORACLES:

Set r(s+1)«2"+1.
END OF CONSTRUCTION

L{(L3) is infinite becaus
with indices less than s/2;
Lz s—(s/2)=s/2 (|L34|2
LEMMA 2. NP*c EXP;
Proof. We show that for .
accepts in p;(|x|) steps whicl
1x as a binary number, 1x
EXP#{ machine has time to v
Note that 1x was the larg
is not strictly necessary but n
for almost all x, as (finitely oft
It is necessary to be able to ¢
All elements xe L} are
stage s +1 where |[x|=n; no e
the x, used in substage c of
LemmMma 3. Each requirer
Proof. If a requirement
and will never receive attenti
all s=so, for all j<i, RP, dc
We show thatif PN L}
Let s, be the least number g
exist as PN L{ is infinite a
not been satisfied then at stz
thus satisfied. 0O
LEMMA 4. Each requiren
Proof. Similar to Lemm:z

2.2. EXP? g NP2, In th
previous section is possible a
1 in that we exhibit an oracle
no infinite subset of L? or L
Meyer, who suggested the p
which is proved rigorously in

PROPOSITION. Let B be
EXP¢ -bi-immune. Then any ¢
than 2°™ on all but a finite

Lynch [25] proved that
that every infinite subset of |
way: any deterministic algori
all but a finite number of val
reason that L is hard (“hard”
the set L is its own hard core
for a proper subset of L that 1
on hard cores see [11], and fi

THEOREM 5. There exist
inequality is witnessed by a la

Proof. For clarity we pre
k is similar.

ORACLES: DETERMINISTIC VERSUS ALTERNATING

Set r(s+1)«2"+ 1.
END oF CONSTRUCTION

L(L$') is infinite because during stages 1, 2, 5+1 we consider only machines
with indices less than 5/2; hence in at most 5/2 stages nothing enters LYNLY) so
LM =5~ (s/2)=5/2 (L= s —$/2=5/2).

Lemma 2. NPAC Expa

. The string x € L(NP?) iff NPA(x)

©ns exactly when 0<(-1xp() ¢ 4 Since, looking at
1x as a binary number, 1x <2t (i, 1x, p(x)) < c(;, 2 pi(x)) =2°"D: hence an
nd EXP{ machine has time to write down the query. [
Note that 1x was the largest argument to the function ¢(-). The “¢» in c(i, 1x, t)
"t’ Is not strictly necessary but makes ¢
e

he proofs easier. Without it the code would work

ention. Let s, = max (s, 2i).
2) € P (such a string muyst
Xo(s) for some s). If RP, has
RP, receives attention and is

, reater than s, such that Xo(s
& exist as PANLY s infinite and all elements of L are

4 1ot been satisfied then at stage s,, during substage c,
thus satisfied. [

LemMa 4. Egep requirement RNP, is satisfied,
Proof. Similar to Lemma 3, .

2.2. EXP{ < NP®. In this section we show that the
previous section is possible as well. We obtain a stronger t
l'in that we exhibit an oracle B such that there is an infinjte language 1.2 ¢ Np# with
no infinite subset of 15 of L” in EXPE. we say that L® is Exp? -bi-immune. Albert
Meyer, who Suggested the problem to us, pointed out the fo]lOwing consequence,
which is proved rigorously in [14].

ProrosrTiON. Let B be an oracl
EXP?-bi-immune,
than 2°"" 5, all but a finite se

Lynch [25] proved that if [¢ DTIME (f1 (n)) then
that every infinite subset of L’ is not in DTIME
Way: any deterministic algorith

ST T

opposite inclusion of the
ype of result than Theorem

there exists a set L'c L such
(f(n)) in the following Very strong
m that decides 1’ must take more than time f(n) on

values. L’ is called the “hard core” of L, because it is the
reason that L is hard (“har

d” meaning [¢ DTIME(f(n))). I

e with respect to EXP? that is, there is no need to look
for a proper subset of L that makes [hard; the set 1. is hard in and of itself. For more

on hard cores see [11], and for more on bi-immunity see [4].
a recursive oracle B sych that EXp? S NP® and this

is EXP3 -bi-immune,

=1. The proof for larger values of

n the above Proposition,

618 WILLIAM GASARCH

We construct the set B in stages. During the construction we code EXP? into
NP?® by the following method:

For all i and x, EZ accepts x iff there exists w such that (i, x)we B and |w|=
(i, x)|®+1—|(j, x)|. Clearly this implies EXP} < NP®. Note that [(i, x)w| =|(i, xF+1
is not a fourth power. This will ensure that no code string is ever placed into B by
accident.

We let

L%={x|3,ye B, |w|=|x|}.

Note that L® € NP® for all B. _
To take care of infinite subsets of L® and L® we have the following requirements:

Ry L(EP) infinite > L(E?) N L? # &
Re.: L(E®) infinite> L(EP)NL? # 2.

The requirements inherit a priority ordering from the ordering given by the pairing
function (-, -).

Recall that h; bounds the running time of machine E;. We let B denote the strings
put into B through the first s stages.

CONSTRUCTION

Stage 0: By« .

Stage s +1:

(1) Foreachi=s,if hi(s)< 2s2, the run E 2 on all strings of length s and preserve
each of these computations by restraining from B all the strings queried in the
computation which were not in B,. Note that the total number of strings restrained at
this stage is at most s X 2° x 2 <2°,

(2) Find the least e =(j, i) <s such that

(a) R, is not satisfied.
(b) There is an x € £* such that |x|=s and E accepts x.
(¢) hi(s)<2%. _

If j=1, then to ensure EZN L? # & we restrain all strings of length s* from B.

If j =2, then to ensure EZN L? # & we place into B the least string of length s*
that is not restrained from B. (Note that such a string will not be a code string.) There
must be such a string since the total number of strings restrained from B up to this
point in the construction is less than ¥;_, 27 <2*". (Note that the j=1 case of the
previous stages restrains only strings of length less than s*)

R, is said to have acted and is now declared satisfied.

(3) For each E?:(x) which has just been run and which accepted x, find some w
such that |w| = |(i, x)|* —|(i, x)| + 1, and (i, x)w is not restrained from B. Put (i, x)w into
B. Such a w must exist since the number of possible w is 2!~ K¢I*1 Note that
(i, x)| = |x| = 5. The function f(n)= n®—n+1 in domain n=s has its only minimum
at n=s. Hence 2P0l =95 =s%1 which exceeds 2°, the number of strings
restrained. Hence such a w must exist.

END oF CONSTRUCTION

We prove that each R, is eventually satisfied. Note that each R, is acted upon at
most once. Assume that e =(j, i) and E} accepts an infinite set. Let s, be a stage
beyond which no Ry, k <e, will act, and such that for all s> s,, we have h;(s) <2%.
Past s,, all computations of E? are preserved. Since E 8 is infinite, there is a stage
s, = s, where E 5. accepts some string of length s,. At this stage R, acts and becomes
satisfied.

——

ORACLES:

2.3. NP€ incomparable

in the other. We show there
THEOREM 6. There is a

with immunity.

Proof. Let

Li={
Ly ={

(The condition that n be odd
of each other.)

Clearly LY € NP€ and
and contains no infinite subs

RE;: L
RNP;::

We construct C in stag
the set of strings placed intc
at no later stage may an elen
guarantees that a requiremes
recursive.

CONSTRUCTION

Stage 0: Cy« I, r(0) « (

Stage s+ 1: There are tv

Case 1: s is even (look :
such that n = r(s). Run E5(
RE; not satisfied. If any acce
since 0" ¢ L and the restrai
take the least x (for definite
of the above computations, a
at most (s/4) x(1/s)x2" " <
increases the cardinality of

Set r(s+1)«2"" +1. T
in the above computations s
have 0" L{+, and 0" ¢ LC.
then it remains satisfied at al

Case 2: s is odd (look |
all i such that 0=i=s/4, p;(
then let C,,, <« C, and declar
will be set to insure 0" ¢ LS.
action puts 0" into LS, whicl
infinite.

Set r(s+1)«2™ +1. If
remains satisfied at all later st

END oF CONSTRUCTION

LT (LY) are infinite by th
the requirements are satisfied
in LY and LS are there becau:

LemMMA 7. Each requirer

ORACLES: DETERMINISTIC VERSUS ALTERNATING

2.3. NP€ incomparable to EXP(. It may be that neither NP nor EXP is contained
in the other. We show there is an oracle for which this is the case.

THEOREM 6. There is q recursive oracle C such that NP€ js incomparable to EXP{
with immunity.

Proof. Let

LY ={0"]3 xe Clx|=n*""and »n is odd},
Ly ={0"[1"e C}.

(The condition that n be odd in L{ will make actions taken for L{ and LS independent
of each other.))

Clearly L{ € NP€ and LY € EXPE. We need to ensure that L{(LS) is infinite
and contains no infinite subset in EXPE(NP). We state this in terms of requirements:

RE;: L(EY) infinite > L(EC)N LT # g,
RNP: L(NPY) infinite > L(NPE) N 1€

We construct C in stages. At the end of each stage we define C, and r(s): C, is
the s i i through stage s, r(s) is a “restraint function” in that
at no later stage may an element w, |w| < r(s), be placed into C, The restraint function
guarantees that a requirement satisfied at stage s remains so, and that C = U, G is
recursive.

CONSTRUCTION

Stage 0: Cy« @, r(0) «0.

Stage s+ 1: There are two cases:

Case 1: s is even (look at RE, requirements). Let n, = n be the least odd number
such that n = r(s). Run Ef(0") for all i such that 0= =< s/4, hi(n)<(1/s) x 2"“', and
RE; not satisfied. If any accepts then set C,,, « C; and declare all such RE; satisfied,
since 0" & L{ and the restraint wil] be set to insure 0" ¢ LE. If no E £:(0™) accepts then
take the least x (for definiteness), such that |x|=n**! and x was not queried in any
of the above computations, and set Ci+1« C,U{x}. Such an x exists because there are
at most (s/4)x (1/s) x 2" <2"fk+l strings queried. This action puts 0" into LS, which
increases the cardinality of LS, and thus helps it to be infinite.

Set r(s+1)« 27" +1. The value r(s+1) exceeds the length of any string queried
in the above computations so Ef(0™) = E{(0"). Since r(s+ 1)>Max (n**1, r(s)), we
have 0" ¢ L{"+, and 0" ¢ LC. Therefore if an RE, requirement is satisfied at stage s+ 1
| then it remains satisfied at all later stages. '

" Case 2: s is odd (look at RNP, requirements). Let n = r(s). Run NPF:(0") for
all i such that 0=i=s/4, p(n) <2"k, and RNP, not satisfied. If any NP£:(0") accepts
then let C,,, « C. and declare all such RNP, satisfied, since 0" ¢ LS and the restraint
- will be set to insure 0" g LY. If no NPE(0™) accepts then set C,,, « C, U {lz"k}. This

B action puts 0" into LY, which increases the cardinality of LS, and thus helps it to be

infinite.
Set r(s+1)«2"+1. If an RNP, requirement is satisfied at stage s+ 1, then it
remains satisfied at all later stages by the same reasoning used for the R., requirements.
END ofF CoNsTrUCTION

620 WILLIAM GASARCH

Proof. Assume not and let i, be the least i with RE; not satisfied. Then L(Eg) is
an infinite subset of LS, and i, is never declared satisfied. There must exist an s, such

that

(a) io=so/4.

(b) For all n>n,,, h(n)<(1/s)x2"",

(¢) For all i<iy, if RE; will be declared satisfied (as opposed to being satisfied
by having E € accept a finite set) then it has been declared satisfied at some time earlier
than sq.
For any even s> s, at stage s E .-(;}(0”!) will be run. If it ever accepts then RE;
will be satisfied, contrary to hypothesis. Hence it rejects 0™ for all s> so. Since
L(Ef)< LS c{0™|s=0,1,2," -, So}, L(E <) is finite contrary to hypothesis. Thus RE,
is satisfied. O

LEMMA 8. Each requirement RNP; is satisfied.

Proof. Similar to Lemma 7. O

3. A general theorem. The proofs of Theorems 1, 5, and 6 only use certain relations
between polynomial and exponential functions; hence, they are a natural target for
generalization. From our general theorem we obtain oracles relating

(a) DTIME(n®) and NTIME (n?)(¢c>d >0),
(b) DTIME(c") and NTIME(d")(c>d>0),
(c) DTIME(n®"#™) and NTIME (n*) (k>1),
(d) P and NTIME (n*) (k>1),

(e) DTIME (nlogn) and NTIME (n),

(f) DTIME(n log* (n)) and NTIME (n),

(g) D# P and EXP..

Items (a) and (b) answer questions raised by Janos Makowsky [26]. These comparisons
are interesting because the DTIME machines have more time to operate, but the
NTIME machines are nondeterministic; therefore, there is no obvious relation between
the two. NTIME(f) can be replaced by 3,-TIME(f) in the list above. NTIME(f)
can also be replaced by ATIME(f), which allows an unbounded number of alterna-
tions, though any path of the machine must halt in time f.

THEOREM 9. Let D,, D,, -~ and Ny, Ny, - -+ be sequences of computable functions
such that

(1) For all n and i, N;14(n) = Ni(n)=n, D;y,(n)Z Di(n)=n.

(2) Foralli

~—

. . N,'(n) . Di(n
fim N(m=eo, fmpy=0 R

0.

lim D;(n) =00,

n->oco

(3) D, and N, are time constructible, so one can compute D,(n)(Ny(n)) in
O(D,(n))(O(Ny(n))) steps. By the linear speed-up theorem [20] we may assume the

order constant is one.
(4) For all i the function that maps x t0 Ni(|x|) is computable in Dy(|x|) steps.

(5) Ni(n) is odd infinitely often.
Let

0

D“=G DTIME®(D;(n)), NO = U NTIME®“(N;(n)).

i=0 i=0

Then:
(a) There exists an oracle A such that N A< D* with immunity.

L Zaa b

ORACLES: |

(b) There exists an orac
(c) There exists an oracl
Proof. All three proofs
we shall be brief. We use th
bounds; usage will be clear f
Y N*g D* with immu
is constructed such that the f

RN;: L
We code N4 into D vi
N2

CONSTRUCTION

Stage 0: Ay« J, r(0) « 0.

Stage s +1 (satisfy RN,)

Let n, =n be the least r
k,n=k= D,(n), and for each
any computation path then
placing it into A does not int

Run N2+(0"); if it reject
will not place any string of l¢
requirement is satisfied.

Set r(s+1)« D,(n).

END ofF CONSTRUCTION

We see that N* < D*: F

An easy calculation shows th
Each RN, is satisfied by
(b) D®g N® with bi-in
L® e N°® for all B. B is const

R(l,i): y

R(Z,,): y

We code D® into N® by
DP(x) accepts iff th

(We modify (,) so that it alw:
Note that the coding depe
on strings of length =0 mod 3
We construct B and B si
“place into B.”

CONSTRUCTION:

Stage 0: By« .

Stage s+1:

(1) For each i=s, if D,(
preserve each of these compu

uch

iied
lier
RE,

nce
RE,

iins
for

ORACLES: DETERMINISTIC VERSUS ALTERNATING 621

(b) There exists an oracle B such that D® < N2 with bi-immunity,
= 'y
(c) There exists an oracle C such that N and D€ gre incomparable with immunity.

; D; for machines ag well as time
bounds; usage will be clear from context.

(a) N*g D* with immunity. Let L4 = {07

12 e g}, Clearly L* € D“, Oracle 4
is constructed such that the followi

ng requirements are satisfied:
RN LINT)N L* infinite> NN 1A% g,
We code N* into D* via

N{(x) halts in ¢ steps iff (i, x, 0') e A.
CoNSsTRUCTION
Stage 0: A, « I, r(0)«0.
Stage s +1 (satisfy RN,):

Let n,=n be the least number such that n> r(s) and D,(n)> N,(n). For each

y

=

kn=k=D,(n), and for each w, |w|=k w= (i, x, 0", if Nis(x) accepts in ¢ steps along
any computation path then place w into A. Note that the string w is so long that
placing it into A does not interfere with the computation it codes.

Run N24(07); if it rejects then place 12" jnto A. Since N,(n)< Dy(n), and we
will not place any string of length less than Di(n) into A, N&(0") = N 24(0™) and the
requirement is satisfied.

Set r(s+1) « D(n).

END oF CONSTRI{CTION

We see that N* < DA. For a fixed i

xe N} iff (i, x, oMy e 4.

An easy calculation shows the query length is less than D,(|x|) for
Each RN, is satisfied by the same reasoning used in Lemma 2.
(b) D®g N® with bi-immunity. Let 2= {x|3,yeB,|y|= 3Ni(/x])}. Note that
L®€ N® for all B. B is constructed to satisfy the following requirements:

x| large.

R,y (DY) infinite » L(DBYNLB = o,

R L(D?) infinite » L(D?)N L=,
We code D® into N* py:

D?(x) accepts iff there exists w, [w|=3N,

(We modify (,) so that it always produces a string of length divisible by three.)

Note that the coding depends on strings of length =1 mod 3in B while L® depends
on strings of length =0 mod 3in B.

We construct B and B
“place into B.”

(Ix[)+1 and (i, x)we B,

simultaneously. The expression “restrain from B’ means
CoNsTrRUCTION:

Stage 0: By« .

Stage s+1:

(

622 WILLIAM GASARCH

the computation that were not in B;. Note that the total number of strings restrained
at this stage is at most s x 2 x 2™ <22M(),

(2) Find the least e =(j, i) <s such that

(a) R, is not satisfied.
(b) There is an x € 3* such that |x|=s and D/ accepts x.

If j=1, then to ensure D? N L? # & we restrain all strings of length IN(|x]).

If j =2, then to ensure DN L? # & we place into B, the least string of length
3N,(|x|) that is not restrained from B. There must be such a string since the total
number of strings restrained from B up to this point in the construction is less than
Zle 22N,() < PINY(S)

Note that the j=1 case of the previous stages restrains only strings of length
3N,(|x|). These strings will not be relevant when we try to code D7 into NP2,

R; is now said to be satisfied.

(3) For each D?:(x) that has just been run and has accepted x, find some w such
that |w|=3N,(Jx|)+1 and (i, x)w is not restrained from B. Put (i, x)w into Bi,,. Such
a w will exist, since the number of possible w’s is 2*M*P*! which exceeds 2°™®, the
number of strings restrained (not including those possibly restrained in the j =1 case
above, since they are all of length 3N, (|x])).

END oF CONSTRUCTION

The requirements are satisfied for reasons similar to those stated at the end of

Theorem 5.
(¢) N€ incomparable to D¢ with immunity. Let

LE ={0"|3,xe C|x|=2N,(n)+1, Ny(n) odd},
LS ={0"|1?>"" € C, D,(n) even}.

The parity of n is included so that actions taken to place or restrain elements
from LE(LS) do not affect LE(LE). Clearly we have L{ € N€ and L{ € D. We need
to ensure that LE(LS) is infinite and contains no infinite subset in D (N). We state
this in terms of requirements:

RD,: L(ES)N LE infinite > L(ES) N LE # @,
RN,: L(NS)N LS infinite> L(NS)N LY # &.
We construct C in stages. The same conventions apply here as in Theorem 6.

CONSTRUCTION

Stage 0: Co« O, r(0) < 0.

Stage s+ 1: There are two cases:

Case 1: s is even (look at RD, requirements). Let n, = n be the least odd number
such that n = r(s). Run DS+(0") for all i such that 0= i =s/4, D,(n) <(1/s)x2*™M"*!,
and RE,; not satisfied. We denote n, by n throughout. If any accepts then set C,., < C;
and declare all such RE, satisfied, since 0" ¢ L{: and the restraint will be set to insure
0"¢ LC. If no D{+(0") accepts then take the least x (for definiteness), such that
|x| =2N;(n)+1, x was not queried in any of the above computations, and set C,, <
C,U{x}. Such an x exists because there are at most (s/4) X (1/5) x22M™ ™ < 22Nim+1
strings queried. This action puts 0" into LS, which helps it to be infinite.

Case 2: s is odd (look at RN, requirements). Let n be the least number larger
than r(s). Run N5(0") for all i such that 0=i=s/4, N;(n)<2D,(n), and RNP,; not
satisfied. If any N'E+(0") accepts then set C,., < C, and declare all such RN; satisfied,
since 0" ¢ LS and the restraint will be set to insure 0" LS. If no N{*(0") accepts then
set C,,, « C,U{1?P™}. This action puts 0" into L5 which helps it to be infinite.

I I OO SN ATy . 5 T I PO

ORACLES:

In either case set r(s+
requirement is satisfied at s
END ofF CoNsTRUCTIO

The same reasoning us
the requirements satisfied.

In all the constructions i
a language out of a nondete:
has to ask too long. The sar
any class where no comput:
particular, we can diagonal
definition of alternating mac

4. Corollaries. We list
of the general theorem each
of oracles to force relations
are not logically independer
cases we can, using padding
cannot be equal. No proofs
in [7] and [8]. By the com
NTIME can be replaced by

Corollaries that menti
proved using Theorem 9 v
mention DTIME (O(f)) an
if(n). Similar remarks apply
In most of these cases, proo

CoROLLARY 10. Given
B, and C such that

(1) NTIME“(n‘)g D1

(2) DTIME®(n)g NT

(3) NTIME€(n?) inco:
with all the inclusions holdin,

CoRroLLARY 11. Given
B, and C such that

(1) NTIME*(d")g D1

(2) DTIME®(c")g NT

(3) NTIME€(d") incox
with all the inclusions holdin

COROLLARY 12. Given

(1) NTIME“(n*)g D1

(2) DTIME®B(n©tosm),

(3) NTIMEC€ (n*) incor

(4) For all oracles X, N
with all the inclusions holding

CoOROLLARY 13. Given
(1) NTIME#(n*)g P4,
(2) P®g NTIME®(n"),
(3) NTIME€ (n*) incon
(4) For all oracles X, N
with all the inclusions holding
COROLLARY 14. There e

frained

Ix)).
length
£ total
s than

length

v such
 Such
Y, the
case

nd of

aents
need
state

\ber
1)+1

- C,
jure
‘hat

1)+1

ger
ot
ed,
en

s

)

with all the inclusions h

with all the inclusions h

ORACLES: DETERMINISTIC VERSUS ALTERNATING 623

In either case set r(s+1)«2™ +1.
requirement is satisfied at stage s then i

This preserves all computations; hence if any
END oF ConsTrRUCTION

tis Permanently satisfied.

The same reasoning

used in Theorem 6 applies to prove L
the requirements satisfieq

T, LY infinite and all

8. he same technique can be used to dia
any class where no computation path can write a lon

particular, we can diagonalize out of 2? and other
definition of alternating machines). We will use this fac

4. Corollaries. We list some corollarie
€ general theorem each corollary cons

gonalize a language out of
& question on the query tape. In
alternating clagsses (see [19] for
tinsome of the corollaries below.

s of the general theorem. Due to the nature
ists of three Statements about the existence
complexity classes. Some of the statements

E(f) and/or NTIME(f), (E,--TIME(f)) are

i(n) = f(n) and/or N,(n) =f(n). Corollaries that
NTIME(O(f)) use D,(n) = if(n) and/or N,(n)=
if(n). Similar remarks apply to DTIME (n° "), NTIME (n®Y)),

and 2,-TIME (n°)),
In most of these cases, proofs are omitted.

CoRroLLARY 10, Given ¢, d req] numbers such that 1 < d <c, there exist oracles A,
B, and C such thar

(1) NTIMEA(n") [DTIMEA(n‘),

() DTIME®(n) g NTIME®(n?),

(3) NTIMEC(n") incomparable 1o DTIMEC(nC),
with all the inclusions]

CoroLLARryY 11,
B, and C such thas
(1) NTIME*(d") g DTIME*(c™),
() DTIME®(c") g NTIME®(4m),
(3) NTIME€(47) incomparable to DTIME© (.~),
with all the inclusions holding with immunity, and (2) with bi—immum‘ty.
CoroLLARY 12, Given a k = 1, there exist oracles A, B, and C such that
(1) NTIME*(n*) g DTIMEA(n©tosmy
() DTIME ®(n°tozm) o NTIME® (n*),
(3) NTIME € (n*) incomparable 1o DTIMEC(nO(“g")),
(4) For all oracles X, NTIMEX (n*) » DTIME X (n©ogn)
olding with immunity, and (2) wi
CoroLLARY 13, Given q k> 1, there exist orgcles A, B, and C such that
(1) NTIME*(n*) ¢ P4
2) PPg NTIME?®(n*),
(3) NTIME®€ (n*) incomparable 1o P<,
(4) For all oracles X, NTIMEX (n*) PX
olding with immunity, and (2) with bi-

immum'ty.
- There exist oracles A, B, and C sych th

at

624 WILLIAM GASARCH

(1) NTIME*(n)g DTIME*(nlog n),

(2) DTIME®(nlog n)g NTIME®(n),

(3) NTIMEC (n) incomparable to DTIME “ (n log n),
with all the inclusions holding with immunity, and (2) with bi-immunity.

COROLLARY 15. There exist oracles A, B, and C such that

(1) NTIME*(n)g DTIME*(n log* (n)),

(2) DTIME?®(nlog* (n))g NTIME®(n),

(3) NTIMEC (n) incomparable to DTIME “ (n log* (n)),
with all the inclusions holding with immunity, and (2) with bi-immunity.

By the note following Theorem 9, we may replace NTIME with any alternating
class. This yields Corollaries 16, 17,-and 18.

COROLLARY 16. Given a positive real k and an integer j there exist oracles A, B,
and C such that

(1) P*g3l*g EXP,

(2) EXP{g3”,

(3) 2P€ incomparable to EXPy,

(4) For all oracles X, X # EXPY,
with all the inclusions holding with immunity, and (2) with bi-immunity.

Proof. For (1) a simple modification of the construction in Theorem 1 will suffice.
For (2) and (3) let D;(n) = 2" and N;(n) = n' and use the note following Theorem 9. [

It is known that DTIME (n log* (n)) < 2,-TIME(n) [28], (which [28] showed
implies DTIME (n) # NTIME (n)). This was proven by techniques that do not appear
to relativize. Corollary 17 verifies that, indeed, the proof does not relativize, nor can
it be made to relativize with modification. The containment is known to be false for
almost all oracles [12].)

COROLLARY 17. Given k=1 there exist oracles A, B, and C such that

(1) =,-TIME*(n)g DTIME*(n log*(n)),

(2) DTIME®(n log* (n))g 2,-TIME ®(n),

(3) 3,-TIMEC(n) incomparable to DTIME “ (n log* (n)),
with all the inclusions holding with immunity, and (2) with bi-immunity.

COROLLARY 18. Given a k=1 there exist oracles A, B, and C such that

(1) ATIME*(n°")g EXP{,

(2) EXPEg ATIME®(n°"),

(3) ATIMEC (n°") incomparable to EXPY,

(4) For all oracles X, ATIME* (n°®") # EXPY, :
with all the inclusions holding with immunity, and (2) with bi-immunity.

Since ATIME(n°®")= PSPACE [19] one may think that we can replace
ATIME*(n°") with PSPACE* in the above corollary; however, this depends on the
definition of relativized space bounded machines. If the space bound applies to the
oracle tape then ATIME (n®") = PSPACE relativizes, but there exists A such that
A¢ DSPACE*(log n) (any nonrecursive A will suffice). There are other definitions of
relativized space [9], [30] that allow the machine to ask long questions. Under these
definitions, PSPACE* is very powerful and the proof that ATIME (n°M) = PSPACE
does not relativize [27] (for the definition in [25] Savitch’s Theorem and the simulation
of space by time also do not relativize, though in the definition in [30] they do). Oracle
constructions using the [25] definition of relativized space appear (not surprisingly)
in [25]. Oracle constructions using the [30] definition of relativized space appear in
[13]. Recently J. Buss [9] proposed a definition of relativized space such that A is in
DSPACE“(log n), Savitch’s Theorem relativizes, the simulation of space by time
relativizes, and ATIME (n°")= PSPACE relativizes.

ORACLES:

CoROLLARY 19. (Using
PSPACE relativizes.) Given
(1) PSPACE*g EXP3,
(2) EXP;} g PSPACE?®,
(3) PSPACEY€ incompa
(4) For all oracles X PS
with all the inclusions holding
Proof. Since PSPACE =
X PSPACE™ = ATIMEX (n°
Valiant [34] defined the
that there exists a polynomi:
f(x)=the
He proves that computing tl
complete [33], [34]. D% P
bounded Turing Machines v
from P%‘T < D # P little els
complexity class. D* # P den
Turing Machines that have t
P-function calls. D # P*
oracle Turing Machines that
an oracle A such that D % P
Some languages in D # I
however, such a language ca
used to recognize it is poly
powerfulness of the question:s
time it has to work with.
COROLLARY 20. There ¢
(1) D*# Pg EXP},
(2) EXPZc DP# P,
(3) D% P incomparabl
(4) For all oracles X, D’
with all the inclusions holding
Proof. Since NPX c DX
exponentially long strings, c
construct A, Band C. 0O

5. Conclusions. Nondete
in one way; deterministic mac
The oracles constructed in th
kinds of power relate to each o

The languages L{ and LS
that may separate the two kin
for a D€ machine to recogni:
of what C is. This intuition i
defined in Theorem 9, for almr
also holds for all the pairs of «
to believe that these classes a
DTIME (n log* (n)) < =,-TIM
yields another counterexamp
Hypothesis, [22] for the first r

ORACLES: DETERMINISTIC VERSUS ALTERNATING 625

CoroLLARY 19, (Using a definition of relativized space such that ATIME (n°W) =
PSPACE relativizes.) Gipen a k=1 there exist oracles A, B, and C such that,

(1) PSPACEA S EXP},

(2) EXP? g PSPACE®.

(3) PSPACEC incomparable to EXPg,

(4) For all oracles X PSPACEX % EXP}¥,
with all the inclusions holding with immunity, and (2) with bi-immunity.

Proof. Since PSPACE = ATIME (n°®), relativizes Wwe know that for all oracles
XPSPACE* = ATIMEX (n°m), Using this, Corollary 18 yields the desired result,

Valiant [34] defined the class of functions # P to be the set of all functions f such
that there exists a polynomial bounded NDTM M such that

S(x)=the number of accepting paths of M on X.

He proves that computing the permanent of a matrix, and other problems, are # p.
complete [33], [34]. D4 p denotes the set of languages computed by polynomial
bounded Turing Machines with an oracle to
from P57 < D& P little else is k
complexity class. D4 4 p denotes |
Turing Machines that have two o
#P-function calls. p 4 pa denotes 1a
ines that can query any
an oracle A such that D 4 pA_ (Erunee

time it has to work
CoroLLARY 20. There exist oracles A, B, and C such that,
(1) D4 Pg EXP,
(2) EXPic D® & P
(3) D% p incomparable to EXP{,
(4) For all oracles X, DX 4 px EXP},
L with all the inclusions holding with immunity, and (2) with bi-immunity.
| Proof Since NPX< pX 4 p g all X, but a DX 4 P machine cannot query
L ¢Xponentially long strings, constructions like the three in Theorem 9 will work to
- construct A, Band C, [

and N©

* is incomparable to N¥ [12]. This

he corollaries. This may tempt one

asses are incomparable in the unrelativized case, but the result

DTIME (n log* (n)) € 3,-TIME (n) proves this false. This resuit combined with [12]
g vields another counterexample to the Random Oracle Hypothesis (see [6] for the
 Hypothesis, [22] for the first refutation). It may be the case that if the classes involved

626 WILLIAM GASARCH

are above a certain time limit then the deterministic and nondeterministic classes are
incomparable. On the other hand, all natural NP-problems are actually in EXP,, so
it may be the case that for low time bounds the deterministic classes are contained in
the nondeterministic ones, and for higher ones, the reverse is true. If this is the case,
it would be interesting to know where the turning point is, and if for some classes in
between we have incomparability.

It is an open question whether our immunity results can be extended to bi-
immunity. It seems hard to construct an oracle A such that a language L* is bi-immune
with respect to a nondeterministic time class. It is also open if an oracle can be
constructed to force equality in Corollaries 10, 11, 14, and 15.

Acknowledgments. I wish to thank Harry Lewis and Albert Meyer for useful
conversations on the topics discussed in this paper; Amihood Amir and Clyde Kruskal
for proofreading; and an anonymous referee for pointing out some subtle mistakes in
an older version of the proof of Theorem 1.

I would also like to thank both the University of Maryland and Harvard University
for providing computer time.

REFERENCES

[1] D. ANGLUIN, On counting problems and the polynomial-time hierarchy, Theoret. Comput. Sci., 12 (1980),
pp. 161-173.

[2] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations of the P = ?NP question, this Journal, 1 (1975),
pp. 305-322.

[3] T. BAKER AND A. SELMAN, A second step towards the polynomial hierarchy, Theoret. Comput. Sci., 8
(1979), pp. 177-187. ’

[4] J. L. BALCAZAR, Simplicity for relativized complexity classes, manuscript.

[5] J. L. BALCAZAR AND U. SCHONING, Bi-immune sets for complexity classes, manuscript.

[6] C. G. BENNET AND J. GILL, Relative to a random oracle A, P* # NP 3 co-NP* with probability, this
Journal, 10 (1981), pp. 96-113.

{71 R. Book, Translational lemmas, polynomial time, and (log n)"-space, Theoret. Comput. Sci., 8 (1976),
pp. 177-187.

8] , On languages accepted in polynomial time, this Journal, 1 (1972), pp. 281-287.

[9] J. Buss, Relativized alternation, in Lecture Notes in Computer Science 223, Springer, Berlin-New
York, 1986, pp. 66-76. (Structure in Complexity Theory—Proceedings of 1st Structure Conference.)

[10] M. DEKHTYAR, On the relation of deterministic and nondeterministic complexity classes, in Lecture
Notes in Comput. Sci., 45, Springer, Berlin-New York, 1977, pp. 255-259.

[11] D. Du AND R. BOOK, The existence and density of generalized complexity cores, J. Assoc. Comput.
Mach., to appear.

[12] W. I. GASARCH, More on the random oracles hypothesis: What’s true almost always is not necessarily
so, Tech. Rep. 1596, Univ. of Maryland, Baltimore, MD.

. Relativized space with immunity, in Math. Systems Theory, Springer, New York-Berlin, to
appear.

[14] W. I. GASARCH AND S. HOMER, Relativizations comparing NP and exponential time, Inform. and
Control, 58 (1983), pp. 88-100.

{15] J. GRESKE AND J. GROLLMAN, Relativizations of unambiguous and random polynomial time classes,
this Journal, 15 (1986), pp. 511-519.

[16] J. HASTAD, Almost optimal lower bounds for small depth circuits, Proc. 18th Annual ACM Symposium
on the Theory of Computing, May 1986, pp. 6-20.

[17] H. HELLER, On relativized exponential and probabilistic complexity classes, manuscript.

[18] S. HOMER AND W. Maass, Oracle dependent properties of the lattice of NP sets, Theoret. Comput.
Sci., 24 (1983), pp. 279-289.

[19] J. HOPCROFT, A. K. CHANDRA, D. C. KOZEN AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput.
Mach., 28 (1981), pp. 114-133.

[20] J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[13]

W R B o S SN Y L PR P . ‘Il I-’ i

ORACLES: D

[21] S. KURTZ, Another oracle with :

[22] , On the random oracle h;
[23] , A Relativized Failure o

Science, Univ. of Chicago, ¢
[24] , On Sparse sets in NP —

[25] N. LYNCH, Log space machines

[26] J. MAKOWSKY, personal comm

[27] P. ORPONEN, Complexity classe
Science 154, Springer, Berlir
Spain, July 1983.

[28] W. PAuL, N. PIPPENGER, E. S
and related problems, Procee
1983, pp. 429-437.

[29] C. RACKOFF, Relativized quest
(1982), pp. 261-268.

[30] W. Ruzzo, J. SIMON AND M.
Comput. System Sci., 28 (19

[31] U. SCHONING AND R. BOOK, |
pp. 329-337.

[32] M. SIPSER, On relativizations ar
Springer, Berlin-New York,

[33] L.G. VALIANT, The complexity of

[34] , The complexity of enume

[35] C. WILSON, Relativized circuit ¢

[36] A. C. C. YAO, Separating the pol
Foundation of Computer Sci

ORACLES: DETERMINISTIC VERSUS ALTERNATING
{21 s. KURTZ, Another

Perties, manuscript, 1983
[22] On the random oracle hypothests, Inform. and Control, 57 (1983), pp. 40-47.
[23] ——, A Relativized Failure of the Berman—Hartmanis Conjecture, Tech Rep Dept. of Computer
1 Science, Univ. of Chicago, Chicago, IL.
- [24]

» On Sparse sets in NP ~ P: Relatiyi

zations, this Journg
08 Space machines with multj

1, 14 (1985), pp- 113-119.
iple oracle tapes, Th

eoret. Comput. Sci., 6 (1978), pp. 25-39.

Spain, July 1983.

(28] wW. PauL, N. PIPPENGER, E. SZEMERED] AND W. Tro
and related problems, Proceedings 24th IEEE Symposi
1983, pp. 429-437.

[29] C. RACKOFF, Relativiz,

€
(1982), Pp. 261-268.
[30] w. Ruzzo, J. Simon A

Comput, System Sci.,
[31] U. ScHonING AND R. B
pp- 329-337.
[32] M. SIPSER, On relativizations gnd existen
Springer, Berlin-New York, 1982, pr
i -G. VALIANT, The complexity of computi
> The complexity of enumeration q

d questions involving probabilistic algorithms, J. Assoc. Comput. Mach,, 29

ND M. Tompa, Space-bounded hierarchies and probabilistic computations, J.
28 (1982), pp. 216-230.

OOK, Immum'ty,

relativization, and nondeterminism, this Journal, 13 (1984),

ce of complete sets, in Lecture
oc. 9th ICALP Conference, Aa,
ng the permanen;, Theoret. Com
nd reliabiliry problems, this Jou

Notes in Computer Sci., 140,
rhus, Denmark.

put. Sci., 8 (1979), Pp. 189-201.
rnal, 3 (1979), pp. 410-421.
1985), pp. 169-18].

. 26th IEEE Symposium on the

time hierarchy by oracles, Proc

