Easy Parts of Quantum Graph Coloring

William Gasarch-U of MD
Graph Coloring

Notation \([k] = \{1, \ldots, k\}\).
Graph Coloring

Notation $[k] = \{1, \ldots, k\}$.

Definition $G = (V, E)$ is k-colorable if there exists a mapping

$$COL: V \rightarrow [k]$$

such that $(\forall x, y \in V)[(x, y) \in E \implies COL(x) \neq COL(y)]$.
Graph Coloring

Notation \([k] = \{1, \ldots, k\}\).

Definition \(G = (V, E)\) is \(k\)-colorable if there exists a mapping

\[
\text{COL} : V \rightarrow [k]
\]

such that \((\forall x, y \in V)[(x, y) \in E \implies \text{COL}(x) \neq \text{COL}(y)]\).

Notation The least \(k\) such that \(G\) is \(k\)-colorable is denoted \(\chi(G)\).
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.
4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.
4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.
A Graph Coloring Game

Given G and k imagine the following game.
A&B are on one team. They can communicate before the game
but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful
 and can use random coins if they want. They can even use
 the same random coins.

4.1 If $x = y$ and $c_x = c_y$, A&B win.
4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.

4. 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
4. 4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
4. 4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.
 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.
 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
 4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
A Graph Coloring Game

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have $x = y$).
2. A gets x, B gets y. They do not communicate.
3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
4. 4.1 If $x = y$ and $c_x = c_y$, A&B win.
 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
 4.3 If $x = y$ and $c_x \neq c_y$, A&B lose.
 4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.
How this Game Relates to Graph Coloring

If \(\chi(G) \leq k \) then A&B can WIN.

If \(\chi(G) \geq k + 1 \) then the probability that A&B win is < 1.

One could have defined \(\chi(G) \) in terms of this game.
How this Game Relates to Graph Coloring

If $\chi(G) \leq k$ then A&B can WIN
How this Game Relates to Graph Coloring

- If $\chi(G) \leq k$ then A&B can WIN
- If $\chi(G) \geq k + 1$ then the probability that A&B win is < 1.
How this Game Relates to Graph Coloring

▶ If \(\chi(G) \leq k \) then A&B can WIN
▶ If \(\chi(G) \geq k + 1 \) then the probability that A&B win is \(< 1\).

One could have defined \(\chi(G) \) in terms of this game.
For any graph, A&B can get \(\frac{n(n-1)}{n^2} = \frac{n-1}{n} \).
For any graph, A&B can get \(\frac{n(n-1)}{n^2} = \frac{n-1}{n} \).

A always picks 1
B always picks 2
For any graph, A&B can get \(\frac{n(n-1)}{n^2} = \frac{n-1}{n} \).

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is
For any graph, A&B can get \(\frac{n(n-1)}{n^2} = \frac{n-1}{n} \).

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

\[
\frac{n(n-1)}{n^2} = \frac{n-1}{n}.
\]
For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

Are there any graphs where A&B can do better? I do not know.
What if A&B could Communicate?

If A&B could communicate $\lceil \log n \rceil$ bits then can reveal to each other which node they got, so A&B could win with prob 1, even if $k = 2$.

If A&B could communicate a bits then might be able to increase their chance of winning (has not been looked at).

If A&B could share QUANTUM STUFF I DO NOT UNDERSTAND THAT INVOLVES ENTANGLEMENT then there are graphs G with $\chi(G) = k$ such that A&B win with Prob 1 using $k' < k$.

What if A&B could Communicate?

- If A&B could communicate \(\lceil \lg n \rceil\) bits then can reveal to each other which node they got, so A&B could win with prob 1, even if \(k = 2\).
What if A&B could Communicate?

- If A&B could communicate \(\lceil \lg n \rceil\) bits then can reveal to each other which node they got, so A&B could win with prob 1, even if \(k = 2\).
- If A&B could communicate \(a\) bits then might be able to increase their chance of winning (has not been looked at).
What if A&B could Communicate?

- If A&B could communicate $\lceil \lg n \rceil$ bits then can reveal to each other which node they got, so A&B could win with prob 1, even if $k = 2$.
- If A&B could communicate a bits then might be able to increase their chance of winning (has not been looked at).
- If A&B could share QUANTUM STUFF I DO NOT UNDERSTAND THAT INVOLVES ENTANGLEMENT then there are graphs G with $\chi(G) = k$ such that $A&B$ win with Prob 1 using $k' < k$.
One Case that is Known and Impressive

Notation if \(x, y \in \{0, 1\}^n \) then \(d(x, y) \) is the number of places they differ. This is also called the **Hamming Distance**.
Notation if $x, y \in \{0, 1\}^n$ then $d(x, y)$ is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** H_n is

$V = \{0, 1\}^n$ (n is even)

$E = \{(x, y): d(x, y) = \frac{n}{2}\}$
One Case that is Known and Impressive

Notation if $x, y \in \{0, 1\}^n$ then $d(x, y)$ is the number of places they differ. This is also called the Hamming Distance.

Definition The Hadamard graph H_n is

$V = \{0, 1\}^n \ (n \text{ is even})$

$E = \{(x, y): d(x, y) = \frac{n}{2}\}$

Theorem
One Case that is Known and Impressive

Notation if \(x, y \in \{0, 1\}^n \) then \(d(x, y) \) is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** \(H_n \) is

\[
V = \{0, 1\}^n \text{ (} n \text{ is even)} \nonumber
\]

\[
E = \{(x, y) : d(x, y) = \frac{n}{2}\} \nonumber
\]

Theorem

1. \(\chi(H_n) = \Theta(2^n) \). (This is an old classical result.)
One Case that is Known and Impressive

Notation if \(x, y \in \{0, 1\}^n \) then \(d(x, y) \) is the number of places they differ. This is also called the Hamming Distance.

Definition The Hadamard graph \(H_n \) is

\[
V = \{0, 1\}^n \quad (n \text{ is even}) \\
E = \{(x, y) : d(x, y) = \frac{n}{2}\}
\]

Theorem

1. \(\chi(H_n) = \Theta(2^n) \). (This is an old classical result.)
2. If A&B can share **QUANTUM STUFF I DO NOT UNDERSTAND THAT INVOLVES ENTANGLEMENT** then A&B can win with prob 1 the Game with \(H_n \) and \(k = n \). So EXPONENTIAL improvement.
Easy Ramseyesque Theorem

A set is **homog** if every element has the same color.
A set is **rainbow** if every element has a different color.

Known And Easy
Easy Ramseyesque Theorem

A set is **homog** if every element has the same color.
A set is **rainbow** if every element has a different color.

Known And Easy

- There exists a finite colorings of \{1, \ldots, 9\} with NO 4 homog and NO 4 rainbow.

```
1 2 3 4 5 6 7 8 9
1 2 3 1 2 3 1 2 3
```
Easy Ramseysque Theorem

A set is **homog** if every element has the same color.
A set is **rainbow** if every element has a different color.

Known And Easy

- There exists a finite colorings of \{1, \ldots, 9\} with NO 4 homog and NO 4 rainbow.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

- For all finite colorings of \{1, \ldots, 10\} there will be either 4 homog or 4 rainbow.
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
2. E picks \(a, b, c, d \in [10]\) at random and gives \(a\) to A etc.
3. A, B, C, D each simul say a color in \([4]\).
4. 4.1 If all colors same or all colors different then A, B, C, D loses.
4.2 In any other case A & B win.

Classically A, B, C, D have prob \(< 1\) of winning.

What if they DO QUANTUM STUFF I DO NOT UNDERSTAND?
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
1. A, B, C, D are on one team. E is on the other.
2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc.
 a, b, c, d are all different.
3. A, B, C, D each simul say a color in [4].
4. If all colors same or all colors different then A, B, C, D loses.
 In any other case A & B win.
1. A, B, C, D are on one team. E is on the other.

2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc.
 a, b, c, d are all different.

4. 4.1 If all colors same or all colors different then A,B,C,D loses.
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
2. E picks \(a, b, c, d \in [10]\) at random and gives \(a\) to A etc. \(a, b, c, d\) are all different.
3. A,B,C,D each simul say a color in [4].
4. 4.1 If all colors same or all colors different then A,B,C,D loses.
 4.2 In any other case A&B win.
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
3. A,B,C,D each simul say a color in [4].
4. 4.1 If all colors same or all colors different then A,B,C,D loses.
 4.2 In any other case A&B win.

Classically A,B,C,D have prob < 1 of winning.
First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.
2. E picks \(a, b, c, d \in [10]\) at random and gives \(a\) to A etc.
 \(a, b, c, d\) are all different.
3. A,B,C,D each simul say a color in [4).
4. 4.1 If all colors same or all colors different then A,B,C,D loses.
 4.2 In any other case A&B win.

Classically A,B,C,D have prob < 1 of winning.
What if they DO QUANTUM STUFF I DO NOT UNDERSTAND?
Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate Quantum Questions. Then answer them!
Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate Quantum Questions.
Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate Quantum Questions.

Then answer them!