
/"Andre Folkers and Hanan Samet Aya Soffer
IBM Research Laboratory

Matam, Haifa 3 1905
Israel

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Science

College Park, Maryland 20742
E-mail: {folkers, hjs}@umiacs.umd.edu

/ '< /
fl' y

. /
I University of Maryland at College Park E-mail: ayas@il.ibm.com
i

Abstract

An algorithm is given for processing pictorial query
specifications that consist of a query image and a similarity
level that must hold between the query image and database
images. The similarity level specifies the contextual simi-
larity (how well the content of one image matches that of
another) as well as the spatial similarity (the relative loca-
tions of the matching symbols in the two images). The algo-
rithm differs from previous approaches in its ability to han-
dle multiple instances of each object in both the query and
database images by searching for isomorphic subgraphs.
The running time of the algorithm is O(m 2m) in the worst
case where all symbols in both the query and database im-
age are from the same class, but falls far below this bound
in the presence of spatial constraints.

1. Introduction

A basic requirement of an image database is the ability
to query the database pictorially. One of the main issues
is whether the similarity criteria used by the database sys-
tem match those of the user. In [101 we presented a picto-
rial query specification tool for spatially referenced image
databases. Using this tool, a user can specify which ob-
jects should or could appear in a target image as well as
the number of occurrences of each object. Moreover, it is
possible to impose spatial constraints on the distance and
relative direction between objects. We also described an
algorithm for finding database images that satisfy such pic-
torial queries. In 11 11 we expanded this algorithm to handle
multiple instances of symbols. This algorithm finds all im-
ages that contain the desired symbols and then checks the
spatial constraints for all possible matchings of query and
database symbols.

*The support of the National Science Foundation under Grants IRI-97-
12715 and CDA-950-3994 is gratefully acknowledged.

Most existing image database research has dealt with
global image matching based on color and texture fea-
tures [5,8]. There has also been some work on the specifi-
cation of topological and directional relations among query
objects 11-3,7,9]. The focus of this work has been on defin-
ing spatial relations between objects and efficiently comput-
ing them. The issue of multiple instances of objects and the
complexity arising from it is at best mentioned as a prob-
lem, and usually ignored.

In this paper we describe a method for processing such
pictorial queries using isomorphic subgraphs. Both the
query image and the database images can be viewed as
graphs. The vertices represent symbols and the edges rep-
resent the relation between these symbols. There can be
several subgraphs in the database image that match a given
query graph since each image may have several instances of
each symbol. Examining and matching each such subgraph
is a very costly operation. This algorithm uses a bottom-
up strategy to find all possible subgraphs of a database im-
age that are isomorphic to a query image. The idea is that
many potential subgraphs can be eliminated early on by the
bottom-up process and thus do not need to be fully matched.

In [6] another strategy for solving this matching problem
has been presented using Error-Tolerant Subgraph Isomor-
phism Detection. In the rest of this paper we review pic-
torial query specification, and present our algorithm and an
example of its usage.

2. Notation and Definitions

Let V be the set of all symbols in the database images
and in the query image. Let D = (VD,ED), VD =
{ d l , da, . . . , d m } V be the graph of the symbols in
one database image D. Let Q = (VQ,EQ), VQ =
(41, q 2 , . . . , qn} C V be the graph of the symbols in the
query image Q. We define three functions to denote the

51 0-7695-0750-6/00 $10.00 0 2000 IEEE

mailto:hjs}@umiacs.umd.edu
mailto:ayas@il.ibm.com

basic properties of symbols in V:

cl : v + c, Y * cl(v),

~ O C : V + R2, Y I-+ loc(w) = (x, Y) ~ ,
(1)
(2)

(3)
cert : V + [O,1], Y H cert(v) =

Pr[cl(v) is the correct classification of U].

Function cl assigns a class name to every symbol in V. It
can also be applied on sets of symbols. The result is the set
of classes that occur in the respective set of symbols. Using
the function cl we define the numbers

m, = I { d E VD I cl(d) = c } I and (4)

n, = I { 4 E VQ I cl(q) =cl/ (5)

for each c E cl(V). Function loc returns the location of
a symbol in the 2-dimensional plane, and function cert re-
turns the probability that the classification of a symbol is
correct.

3. Pictorial Query Specification
3.1. Matching Similarity

The matching similarity level is a value between 0 and 1.
It specifies how certain the classification of a symbol in the
database image must be, so that we take it into account. If
cert(v) _> msl, then Y is considered similar with respect to
the matching similarity level.

3.2. Contextual Similarity

We distinguish between four different contextual simi-
larity levels that a database image D can satisfy. Their for-
mal definition is

1. VC E cl(vQ) : m, _> n,, and Cl(V0) = cl(vQ)
2. Vc E Cl(vQ) : m, 2 n,
3. cl(vD)\& cl(vQ)
4. 3c E cl(vD) : C E cl(vQ).

Let Rl = (01, P 2 , . . . } denote the set of images that
satisfy csl=l for a certain query Q. For csl=l and cs1=2,
multiple symbols from the same class act with an AND se-
mantic, while for cs1=3 and cs1=4 they act with an OR se-
mantic. This means that different numbers of instances of
a certain class do not alter the sets Rs and R4, but they do
alter R1 and R2. The query graph is always a subgraph of
the graphs in database images in R1 and R2. Images in R3

and R4 can also be subgraphs of the query image.

3.3. Spatial Similarity

The spatial similarity level specifies how close the data-
base image D and the query image Q are with respect to
distance and directional relation between the symbols in the
query. We distinguish between five different levels which
are defined as

I
Figure 1. Similar directional relation

'\
1. exact same location
2. same relation, bounded distance
3. same relation, any distance
4. any relation, bounded distance
5. any relation, any distance. \

\ The case sd=l is ignored in the rest of this paper because
there is a more effective algorithm to check this spatial con-
straint than the one we propose in Section 4.2.

We use the Euclidean distance between the symbols
which is denoted by the function dist:

dist : V x V -+ R, (~ 1 , w2) r-$ dist(v1, YZ) (6)

To compare two directed egdes (q1,qz) E EQ ' q d
(dl , d2) E ED with respect to their directional relation we
relocate the vertices q1 and q2 so that loc(q1) = loc(d1).
The directional relation between (q1, q 2) and (dl, d2) is
similar with respect to a threshold angle 6 E [0,2n], de-
noted by (q1, q 2) -6 (d l , &), if the vertex d2 is located
within a sector with arc length 6. The center of this sector is
at loc(q1) and it is symmetric to the axis, which is defined
by the edge (q1,q2). In Figure 1 we see an example where
(4 > d2) -6 (41 , q 2) and (dl 7 d3) $6 (41 > q 2) holds.

4. Pictorial Query Processing
4.1. Generate the Set of Candidates Images

The function gencandidates computes the set RQ of
database images that satisfy the matching similarity level
and the contextual similarity level indicated by msl and csl.
The set R denotes all images in the database. At the be-
ginning, for each class c, the database images that contain
symbols of class c are stored in sets R,. If csl=l or csl=2,
then we have to intersect these sets to get all images that
contain at least one symbol of each class in Q. Otherwise,
we compute the union of the sets R, and get a set RQ of
images, where each image D contains at least one of the
symbols in Q. Note, that we have to eliminate duplicates in
R, during union or intersection of these sets.

I funct genCandidates(Q , msl, csl) : RQ E
2 foreach c E Cl(vQ)
3
4 cert(v) 2 msl}
s a

R, = { D E R I 3~ E VD : c ~ (Y) = c A

52

\

'\

6

7

8

9

10

11

I2

13

14

15

I6

- i f c s l = 1 V c s l = 2 t h e n R Q = n c R , f i
- ifcsl = ~ V C S ~ = ~ - R Q =U,R,fi
RE = 0
foreach D E RQ

-- then if cl(D)

-- then if 3c E Cl(vQ) : m, < nc

I* set of invalid candidates *I

- if csl = 1 V csl = 3

- if csl = 1 V csl = 2
cl(Q) then RE = RE U D fi fi

then RE = RE U D f i f i
&
RQ = RQ \RE.

4.2. Check Spatial Constraints
The algorithm given by function getIsoSubgraphs uses a

bottom-up strategy to find all possible subgraphs in D that
are isomorphic to Q with respect to the parameters of edges
and vertices. It is an adaptation of a more general algorithm
described in [4].

I funct getlsoSubgraphs(Q, D, ssl) : S
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19 funct validExt(G, Q, D, qe, ssl) : P E
20

21

22

23 P = 0
24 foreachd, E VED
25

1" G is a set of pairs of isomorphic graphs GI , G2 *I
V& = { d E V' I d is element of G2 }
V E ~ = { d E VD 1 cl(d) = cl(qe) } \ V G ~

if isValid(G, Q, D, qe , d e , ssl)
26

27 &. then P = P U (q e , d e) fi

getIsoSubgraphs retums a set S of pairs of isomorphic
subgraphs for the parameter graph Q in D that satisfy the
spatial constraints indicated by ssl. It computes only solu-
tions where the whole graph Q is mapped onto a subgraph
of D. As a consequence, getlsosubgraphs works only for
queries where csl=l and cs1=2. Two isomorphic subgraphs

are denoted by a pair of sequences of vertices, e.g., the pair
((q1, . . . , q i) , (d l , . . . , di)) denotes thatvertexqk ismapped
onto vertex d k (k = 1,. . . , i).

First, an initial set S(l) of all isomorphic subgraphs with
length 1 is created. It consists of pairs ((q l) , (d)) where
each d E VD belongs to the same class as 41. Starting with
this set, the main loop of the algorithm searches for isomor-
phic subgraphs of size 2 and based on this, it looks for some
of size 3 and so on.

The function validExt retums extensions of form (qe , d e)
where qe is fixed as it is given as a parameter. The subgraphs
that we want to extend are given in G = (GI, G2). GI is the
sequence of vertices of the current subgraph of Q, while G2
is the sequence of vertices of the current subgraph of D. By
construction, qe is always a new vertex that does not occur
in GI. We compute the set V E ~ of remaining vertices which
could be used as extensions to the sequence in G2 (line 22)
because we do not want a vertex of VD to occur twice in
sequence G2.

Every possible extension pair is tested by function
isValid to determine if it satisfies the spatial constraints.
If yes, then it is added to the set P. Depending on the
ssl value, the function isValid checks for k = 1,. . . , i, if
dist(dk, de) I dist(qk, q e) , or if (4, d e) -6 (q k , q e) , or if
both hold, and retums the result. It just retums true if ssl=5.

The function getlsoSubgraphs retums the complete re-
sult only for csl=l and cs1=2. If cs1=3 or cs1=4, then we
also have to return the mappings of all subgraphs of Q onto
subgraphs of D. The brute force approach to compute these
mappings is to call getlsosubgraphs for each subgraph of Q
and to take a union of all of the results. Since Q is usually
a small graph we can use this brute force approach

4.3. Execution Time
First, we derive the worst case complexity of function

getlsoSubgraphs, assuming that Q has n and D has m ver-
tices, which are all from the same class. We count how often
the union operations in lines 5 and 12 are executed. During
initialization, we have m union operations. The main loop
has n- 1 iterations and in the i-th iteration, i = 1,. . . , n- 1,
we get (T) (m - i) union operations. This is because the
maximal number of elements in S(i) is (T) and validExt
retums at most m - i extension pairs, which actually occurs
if ssl=5. Therefore, after some transformations and exploit-
ing that n < m, we get an upper bound on the number of
union operations:

This implies a worst case complexity in O (m 2m) for csl=l
or cs1=2. For cs1=3 and csl=4, we get an additional factor
of 2n since we invoke getlsosubgraphs this many times.
The worst case complexity is 0 (m 2n+m).

53

Once we add spatial constraints, the order in which the
vertices of Q are processed can affect the running time sig-
nificantly. Choosing a vertex qi so that its edges with the
vertices (41, . . . , q i - 1) are the most restrictive ones with
respect to the spatial constraints leads to a shorter running
time for gefIsoSubgraphs (see the example in Section 4.4).

4.4. Finding the Isomorphic Subgraphs
We want to show how function getIsoSubgrapbs finds

the possible mappings. In Figure 2 we see a query
graph Q = ({ a , b, c}, EQ) and a result graph D =
({a , p, y, o}, ED). The distance between the vertices is in-
dicated by the number next to the respective edge. In this
example, all vertices are members of the same class. There-
fore, each vertex in Q can be mapped onto each vertex in D.

Query Q Result D
mm

Figure 2. Sample Query and Result

We want to find all subgraphs in D that satisfy
query Q, when ss1=4. First, we describe a short run
of function getlsosubgraphs. We choose q1 = a as
the starting vertex and build the initial set S(l) =
{ ((a) , (d)) I d = a , p , y , u } . Then we choose qe = b
in the main loop. For both isomorphic subgraphs G =
((a), (a)) and G = ((a), (p)), validExt returns only one
extension pair. The remaining two values for G, i.e.,
((a) , (7)) and ((a) , (c)), do not lead to any more extension
pairs and are excluded from further processing. Therefore,
S(2) contains only two elements, when we reach the third
iteration where qe is set to c. Each pair in S(') also has
only one extension pair and so we get two elements in S (3) ,
which is retumed as the result.

This is a short run of getlsosubgraphs because many
subgraphs are excluded early in the process; e.g., all sub-
graphs where a is mapped onto y or CT are excluded in the
first iteration. The reason for these early exclusions is that
we chose a, whose outgoing edges are the most restrictive
ones, as the first vertex.

If we start with q1 = c and continue with qe = b
in the main loop, the running time of getIsoSubgrapbs is
longer. For both pairs ((c), (a)) and ((c), (p)) the func-
tion validExf retums three valid extensions, while for the
pairs ((c), (7)) and ((c), (g)) it returns two valid exten-
sions, respectively. All together we get ten elements in
S (2) and only two possible subgraphs are excluded, because
dist(y, a) > dist(c, b) . So, in the third iteration where qe

is set to a, we get ten calls to validExt compared with only
two in the short run. We call this a long run, because most
of the invalid subgraphs are excluded in the last iteration.

5. Concluding Remarks and Future Work

The computation of subgraph isomorphism is known to
be NP-complete [4]. Therefore, we cannot expect to find an
efficient algorithm that solves our problem fast in all cases.
Future work consists of exploiting the spatial constraints
and finding more strategies to reduce the search space in
addition to the ones we described,

References
[l] S. K. Chang, Q. Y. Shi, and C. Y. Yan. Iconic indexing by

2-D strings. IEEE PAMI, 9(3):413428, May 1987.
[2] A. Del Bimbo and P. Pala. Visual image retrieval by elastic

matching of user sketches. IEEE PAMI, 19(2): 121-132, Feb.
1997.

Query processing in spatial-query-by-
sketch. Journal of Visual Languages and Computing,
8(4):403-424, Aug. 1997.

[4] R. Englert and J. Seelmann-Eggebert. P-subgraph isomor-
phism computation and upper bound complexity estimation.
Technical Report IAI-TR-97-2, Institute of Computer Sci-
ence 111, University of Bonn, Jan. 1997.

[5] C. Faloutsos, R. Barber, W. Equitz, M. Flickner, W. Niblack,
and D. Petkovic. Efficient and effective querying by image
content. Journal of Intelligent Information Systems, pages
231-62, 1994.

[6] B. T. Messmer and H. Bunke. A new algorithm for error-
tolerant subgraph isomorphism detection. IEEE PAMI,
20(5):493-504, May 1998.

language. Journal of Visual Languages and Computing,

Photobook
Content-based manipulation of image databases. In Pro-
ceedings of the SPIE, Storage and Retrieval of Image and
Video Databases 11, volume 2185, pages 34-47, San Jose,
CA, Feb. 1994.

191 A. P. Sistla, C. Yu, and R. Haddad. Reasoning about spa-
tial relationships in picture retrieval systems. In J. Bocca,
M. Jarke, and C. Zaniolo, editors, 20th Intern. Conf. on Very
Large Data Bases, pages 570-581, Santiago, Chile, Sept.
1994.

[lo] A. Soffer and H. Samet. Pictorial query specification for
browsing through spatially referenced images databases.
Journal of Visual Languages and Computing, 9(6):567-596,
Dec. 1998.

[111 A. Soffer and H. Samet. Query processing and optimiza-
tion for pictorial query trees. In D. P. Huijsmans and
A. Smeulders, editors, 3rd Intern. Conf. on Visual lnforma-
tion Systems, pages 60-67, Amsterdam, The Netherlands,
June 1999. (Also Springer-Verlag Lecture Notes in Com-
puter Science 1614).

[3] M. J. Egenhofer.

171 D. Papadias and T. K. Sellis. A pictorial query-by-example

6(1):53-72, Mar. 1995.
[8] A. Pentland, R. W. Picard, and S. Sclaroff.

54

