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Abstract 

An algorithm is given for processing pictorial query 
specifications that consist of a query image and a similarity 
level that must hold between the query image and database 
images. The similarity level specifies the contextual simi- 
larity (how well the content of one image matches that of 
another) as well as the spatial similarity (the relative loca- 
tions of the matching symbols in the two images). The algo- 
rithm differs from previous approaches in its ability to han- 
dle multiple instances of each object in both the query and 
database images by searching for isomorphic subgraphs. 
The running time of the algorithm is O(m 2m) in the worst 
case where all symbols in both the query and database im- 
age are from the same class, but falls far below this bound 
in the presence of spatial constraints. 

1. Introduction 

A basic requirement of an image database is the ability 
to query the database pictorially. One of the main issues 
is whether the similarity criteria used by the database sys- 
tem match those of the user. In [ 101 we presented a picto- 
rial query specification tool for spatially referenced image 
databases. Using this tool, a user can specify which ob- 
jects should or could appear in a target image as well as 
the number of occurrences of each object. Moreover, it is 
possible to impose spatial constraints on the distance and 
relative direction between objects. We also described an 
algorithm for finding database images that satisfy such pic- 
torial queries. In 11 11 we expanded this algorithm to handle 
multiple instances of symbols. This algorithm finds all im- 
ages that contain the desired symbols and then checks the 
spatial constraints for all possible matchings of query and 
database symbols. 

*The support of the National Science Foundation under Grants IRI-97- 
12715 and CDA-950-3994 is gratefully acknowledged. 

Most existing image database research has dealt with 
global image matching based on color and texture fea- 
tures [5,8]. There has also been some work on the specifi- 
cation of topological and directional relations among query 
objects 11-3,7,9]. The focus of this work has been on defin- 
ing spatial relations between objects and efficiently comput- 
ing them. The issue of multiple instances of objects and the 
complexity arising from it is at best mentioned as a prob- 
lem, and usually ignored. 

In this paper we describe a method for processing such 
pictorial queries using isomorphic subgraphs. Both the 
query image and the database images can be viewed as 
graphs. The vertices represent symbols and the edges rep- 
resent the relation between these symbols. There can be 
several subgraphs in the database image that match a given 
query graph since each image may have several instances of 
each symbol. Examining and matching each such subgraph 
is a very costly operation. This algorithm uses a bottom- 
up strategy to find all possible subgraphs of a database im- 
age that are isomorphic to a query image. The idea is that 
many potential subgraphs can be eliminated early on by the 
bottom-up process and thus do not need to be fully matched. 

In [6] another strategy for solving this matching problem 
has been presented using Error-Tolerant Subgraph Isomor- 
phism Detection. In the rest of this paper we review pic- 
torial query specification, and present our algorithm and an 
example of its usage. 

2. Notation and Definitions 

Let V be the set of all symbols in the database images 
and in the query image. Let D = (VD,ED), VD = 
{ d l ,  da, . . . , d m }  V be the graph of the symbols in 
one database image D. Let Q = (VQ,EQ), VQ = 
(41, q 2 ,  . . . , qn} C V be the graph of the symbols in the 
query image Q. We define three functions to denote the 
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basic properties of symbols in V: 

cl : v + c, Y * cl(v), 

~ O C  : V + R2, Y I-+ loc(w) = (x, Y ) ~ ,  
(1) 
(2) 

(3) 
cert : V + [O,1],  Y H cert(v) = 

Pr[cl(v) is the correct classification of U]. 

Function cl assigns a class name to every symbol in V. It 
can also be applied on sets of symbols. The result is the set 
of classes that occur in the respective set of symbols. Using 
the function cl we define the numbers 

m, = I {  d E VD I cl(d) = c } I  and (4) 

n, = I {  4 E VQ I cl(q) =cl/ ( 5 )  

for each c E cl(V). Function loc returns the location of 
a symbol in the 2-dimensional plane, and function cert re- 
turns the probability that the classification of a symbol is 
correct. 

3. Pictorial Query Specification 
3.1. Matching Similarity 

The matching similarity level is a value between 0 and 1. 
It specifies how certain the classification of a symbol in the 
database image must be, so that we take it into account. If 
cert(v) _> msl, then Y is considered similar with respect to 
the matching similarity level. 

3.2. Contextual Similarity 

We distinguish between four different contextual simi- 
larity levels that a database image D can satisfy. Their for- 
mal definition is 

1. VC E cl(vQ) : m, _> n,, and Cl(V0) = cl(vQ) 
2. Vc E Cl(vQ) : m, 2 n, 
3. cl(vD)\& cl(vQ) 
4. 3c E cl(vD) : C E cl(vQ). 

Let Rl = (01, P 2 ,  . . . } denote the set of images that 
satisfy csl=l for a certain query Q. For csl=l and cs1=2, 
multiple symbols from the same class act with an AND se- 
mantic, while for cs1=3 and cs1=4 they act with an OR se- 
mantic. This means that different numbers of instances of 
a certain class do not alter the sets Rs and R4, but they do 
alter R1 and R2. The query graph is always a subgraph of 
the graphs in database images in R1 and R2. Images in R3 

and R4 can also be subgraphs of the query image. 

3.3. Spatial Similarity 

The spatial similarity level specifies how close the data- 
base image D and the query image Q are with respect to 
distance and directional relation between the symbols in the 
query. We distinguish between five different levels which 
are defined as 

I 
Figure 1. Similar directional relation 

'\ 
1. exact same location 
2. same relation, bounded distance 
3. same relation, any distance 
4. any relation, bounded distance 
5. any relation, any distance. \ 

\ The case sd=l is ignored in the rest of this paper because 
there is a more effective algorithm to check this spatial con- 
straint than the one we propose in Section 4.2. 

We use the Euclidean distance between the symbols 
which is denoted by the function dist: 

dist : V x V -+ R, ( ~ 1 ,  w2) r-$ dist(v1, YZ) (6) 

To compare two directed egdes (q1,qz) E EQ ' q d  
(dl  , d2) E ED with respect to their directional relation we 
relocate the vertices q1 and q2 so that loc(q1) = loc(d1). 
The directional relation between (q1, q 2 )  and (dl, d2) is 
similar with respect to a threshold angle 6 E [0,2n], de- 
noted by (q1, q 2 )  -6 ( d l ,  &), if the vertex d2 is located 
within a sector with arc length 6. The center of this sector is 
at loc(q1) and it is symmetric to the axis, which is defined 
by the edge (q1,q2). In Figure 1 we see an example where 
(4 > d2) -6 (41 , q 2 )  and (dl 7 d3) $6 (41 > q 2 )  holds. 

4. Pictorial Query Processing 
4.1. Generate the Set of Candidates Images 

The function gencandidates computes the set RQ of 
database images that satisfy the matching similarity level 
and the contextual similarity level indicated by msl and csl. 
The set R denotes all images in the database. At the be- 
ginning, for each class c, the database images that contain 
symbols of class c are stored in sets R,. If csl=l or csl=2, 
then we have to intersect these sets to get all images that 
contain at least one symbol of each class in Q. Otherwise, 
we compute the union of the sets R, and get a set RQ of 
images, where each image D contains at least one of the 
symbols in Q. Note, that we have to eliminate duplicates in 
R, during union or intersection of these sets. 

I funct genCandidates( Q ,  msl, csl) : RQ E 
2 foreach c E Cl(vQ) 
3 
4 cert(v) 2 msl} 
s a  

R, = { D  E R I 3~ E VD : c ~ ( Y )  = c A 
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11 

I2  

13 

14 

15 

I6  

- i f c s l = 1 V c s l = 2 t h e n R Q = n c R , f i  
- ifcsl = ~ V C S ~  = ~ - R Q  =U,R,fi 
RE = 0 
foreach D E RQ 

-- then if cl(D) 

-- then if 3c E Cl(vQ) : m, < nc 

I* set of invalid candidates *I 

- if csl = 1 V csl = 3 

- if csl = 1 V csl = 2 
cl(Q) then RE = RE U D fi fi 

then RE = RE U D f i f i  
& 
RQ = RQ \RE. 

4.2. Check Spatial Constraints 
The algorithm given by function getIsoSubgraphs uses a 

bottom-up strategy to find all possible subgraphs in D that 
are isomorphic to Q with respect to the parameters of edges 
and vertices. It is an adaptation of a more general algorithm 
described in [4]. 

I funct getlsoSubgraphs(Q, D, ssl)  : S 
2 

3 

4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 funct validExt(G, Q,  D, qe,  ssl)  : P E 
20 

21 

22 

23 P = 0  
24 foreachd, E VED 
25 

1" G is a set of pairs of isomorphic graphs GI ,  G2 *I 
V& = { d E V' I d is element of G2 } 
V E ~  = { d E VD 1 cl(d) = cl(qe) } \ V G ~  

if isValid(G, Q,  D, qe , d e ,  ssl)  
26 

27 &. then P = P U ( q e ,  d e )  fi 

getIsoSubgraphs retums a set S of pairs of isomorphic 
subgraphs for the parameter graph Q in D that satisfy the 
spatial constraints indicated by ssl. It computes only solu- 
tions where the whole graph Q is mapped onto a subgraph 
of D. As a consequence, getlsosubgraphs works only for 
queries where csl=l and cs1=2. Two isomorphic subgraphs 

are denoted by a pair of sequences of vertices, e.g., the pair 
( (q1, .  . . , q i ) ,  ( d l , .  . . , di)) denotes thatvertexqk ismapped 
onto vertex d k  ( k  = 1,. . . , i). 

First, an initial set S(l) of all isomorphic subgraphs with 
length 1 is created. It consists of pairs ( ( q l ) ,  ( d ) )  where 
each d E VD belongs to the same class as 41. Starting with 
this set, the main loop of the algorithm searches for isomor- 
phic subgraphs of size 2 and based on this, it looks for some 
of size 3 and so on. 

The function validExt retums extensions of form (qe , d e )  
where qe is fixed as it is given as a parameter. The subgraphs 
that we want to extend are given in G = (GI, G2). GI is the 
sequence of vertices of the current subgraph of Q, while G2 
is the sequence of vertices of the current subgraph of D.  By 
construction, qe is always a new vertex that does not occur 
in GI.  We compute the set V E ~  of remaining vertices which 
could be used as extensions to the sequence in G2 (line 22) 
because we do not want a vertex of VD to occur twice in 
sequence G2. 

Every possible extension pair is tested by function 
isValid to determine if it satisfies the spatial constraints. 
If yes, then it is added to the set P. Depending on the 
ssl value, the function isValid checks for k = 1,. . . , i, if 
dist(dk, de) I dist(qk, q e ) ,  or if (4, d e )  -6 ( q k ,  q e ) ,  or if 
both hold, and retums the result. It just retums true if ssl=5. 

The function getlsoSubgraphs retums the complete re- 
sult only for csl=l and cs1=2. If cs1=3 or cs1=4, then we 
also have to return the mappings of all subgraphs of Q onto 
subgraphs of D. The brute force approach to compute these 
mappings is to call getlsosubgraphs for each subgraph of Q 
and to take a union of all of the results. Since Q is usually 
a small graph we can use this brute force approach 

4.3. Execution Time 
First, we derive the worst case complexity of function 

getlsoSubgraphs, assuming that Q has n and D has m ver- 
tices, which are all from the same class. We count how often 
the union operations in lines 5 and 12 are executed. During 
initialization, we have m union operations. The main loop 
has n- 1 iterations and in the i-th iteration, i = 1,. . . , n- 1, 
we get (T) (m - i) union operations. This is because the 
maximal number of elements in S(i)  is (T) and validExt 
retums at most m - i extension pairs, which actually occurs 
if ssl=5. Therefore, after some transformations and exploit- 
ing that n < m, we get an upper bound on the number of 
union operations: 

This implies a worst case complexity in O ( m  2m) for csl=l 
or cs1=2. For cs1=3 and csl=4, we get an additional factor 
of 2n since we invoke getlsosubgraphs this many times. 
The worst case complexity is 0 (m 2n+m). 
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Once we add spatial constraints, the order in which the 
vertices of Q are processed can affect the running time sig- 
nificantly. Choosing a vertex qi so that its edges with the 
vertices (41, . . . , q i - 1 )  are the most restrictive ones with 
respect to the spatial constraints leads to a shorter running 
time for gefIsoSubgraphs (see the example in Section 4.4). 

4.4. Finding the Isomorphic Subgraphs 
We want to show how function getIsoSubgrapbs finds 

the possible mappings. In Figure 2 we see a query 
graph Q = ( { a ,  b,  c}, EQ) and a result graph D = 
( {a ,  p, y, o}, ED). The distance between the vertices is in- 
dicated by the number next to the respective edge. In this 
example, all vertices are members of the same class. There- 
fore, each vertex in Q can be mapped onto each vertex in D. 

Query Q Result D 
mm 

Figure 2. Sample Query and Result 

We want to find all subgraphs in D that satisfy 
query Q,  when ss1=4. First, we describe a short run 
of function getlsosubgraphs. We choose q1 = a as 
the starting vertex and build the initial set S(l) = 
{ ( (a) ,  (d ) )  I d = a , p , y , u } .  Then we choose qe = b 
in the main loop. For both isomorphic subgraphs G = 
((a), (a))  and G = ((a), (p)),  validExt returns only one 
extension pair. The remaining two values for G, i.e., 
( ( a ) ,  (7)) and ( (a) ,  (c)), do not lead to any more extension 
pairs and are excluded from further processing. Therefore, 
S(2)  contains only two elements, when we reach the third 
iteration where qe is set to c. Each pair in S(') also has 
only one extension pair and so we get two elements in S ( 3 ) ,  
which is retumed as the result. 

This is a short run of getlsosubgraphs because many 
subgraphs are excluded early in the process; e.g., all sub- 
graphs where a is mapped onto y or CT are excluded in the 
first iteration. The reason for these early exclusions is that 
we chose a, whose outgoing edges are the most restrictive 
ones, as the first vertex. 

If we start with q1 = c and continue with qe = b 
in the main loop, the running time of getIsoSubgrapbs is 
longer. For both pairs ((c), (a ) )  and ((c), (p) )  the func- 
tion validExf retums three valid extensions, while for the 
pairs ((c), (7)) and ((c), (g)) it returns two valid exten- 
sions, respectively. All together we get ten elements in 
S ( 2 )  and only two possible subgraphs are excluded, because 
dist(y, a)  > dist(c, b ) .  So, in the third iteration where qe 

is set to a, we get ten calls to validExt compared with only 
two in the short run. We call this a long run, because most 
of the invalid subgraphs are excluded in the last iteration. 

5. Concluding Remarks and Future Work 

The computation of subgraph isomorphism is known to 
be NP-complete [4]. Therefore, we cannot expect to find an 
efficient algorithm that solves our problem fast in all cases. 
Future work consists of exploiting the spatial constraints 
and finding more strategies to reduce the search space in 
addition to the ones we described, 
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