
Dallas, August 18-22 Volume 20, Number 4, 1986
I I I

A C o n s i s t e n t H i e r a r c h i c a l R e p r e s e n t a t i o n f o r V e c t o r D a t a

Randa l C. Nelson
Hanan Samet

Compute r Science Department,
Center for Automat ion Research

University of Mary land
College Park, MD 20742

Abst rac t :

A consis tent hierarchical da t a s t ruc tu re for the
representa t ion of vector da t a is presented. It makes use of a
concept termed a line segment fragment to prevent da t a degra-
dat ion under spl i t t ing or clipping of vector primitives. This
means t ha t the insertion and subsequent deletion (and vice
versa) of a vector leaves the da ta unchanged. Vectors are
represented exactly and not as digital approximations. The
da ta is dynamically organized by use of simple probabil ist ic
spl i t t ing and merging rules. The use of the s t ruc ture for imple-
ment ing a geographic information system is described. Algo-
r i thms for cons t ruc t ing and manipula t ing the s t ruc ture are
provided. Results of empirical tests comparing the s t ruc ture to
other representa t ions in the l i terature are given.

CR Categories and Subject Descriptors: E.1]Data] : Da ta
S t ruc tures trees; 1.3.3 { C o m p u t e r G r a p h i c s] :
P ic tu re / Image Genera t ion - display algorithms; 1.3.5 [C o m -
p u t e r G r a p h i c s] : Computa t iona l Geometry and Object
Modeling - object representat ions; geometric a lgor i thms

General Terms: Algori thms, Da ta St ructures

Addi t ional Key Words and Phrases: vector data, quadtrees,
hierarchical da ta s t ructures , polygonal representa t ions

I. I n t r o d u c t i o n

Quadtrees are a useful s t ruc ture for represent ing cer-
tain types of geometric or geographic data . In particular, point
and region da t a have simple and na tura l representa t ions which
allow the efficient performance of operat ions involving locality
of reference, geometric calculations such as area computa t ion ,
and set operat ions such as region intersection. The representa-
tion of line data , on the o ther hand, is more complicated.
Several hierarchical s t ruc tures based on quadtrees have been
proposed, all with certain drawbacks, and none with the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M 0 - 8 9 7 9 1 - 1 9 6 - 2 / 8 6 / 0 0 8 / 0 1 9 7 $00.75

na tu ra l elegance of the adap ta t ions representing points and
lines. Our s tudy reviews the hierarchical representat ion of
vector da t a in the par t icular context of a geographic informa-
t ion system, b u t most of our requirements wou|d be necessary
in any applicat ion where vector d a t a is impor tan t . A good
vector representa t ion should have the following properties.
First , the da t a s t ruc ture mus t represent vectors precisely
r a the r than as digital approximations. This includes the abil-
ity to accurately represent any number of vectors intersect ing
at a single point. Secondly, the s t ruc ture mus t allow the da ta
to be updated consistently. For example, insertion and subse-
quent deletion of a vector should leave the da ta unchanged.
As a more complex example, it should be possible to compute
the intersect ion of a set of vectors with a region, and then
restore the information to its original s ta te by performing a
union wi th the complement of the original intersection. This
operat ion involves spl i t t ing and reassembling vector primitives.
Thirdly, the s t ruc tu re should allow the efficient performance of
primit ive operat ions such as insertion and deletion of vector
d a t a elements, and should facilitate the performance of more
complex operat ions such as edge following, intersection with a
region, or point-in-polygon though these are somewhat
appl icat ion-dependent . Previous hierarchical representa t ions
for vector da t a have been deficient in one or more of these
areas.

In this paper, we develop a da ta s t ruc ture for the
representa t ion of vector da ta which has the propert ies
described above. Section lI contains a brief overview of quad-
trees, while section III reviews quadtree s t ruc tures for s toring
vector data . Section IV presents a new da t a s t ruc ture termed
a P M R quadt ree and shows how it can deal with line segment
f ragments . Section V describes a simple implementa t ion of the
P M R quadt ree while section VI reports on empirical tests.
Conclusions and suggestions for future work are presented in
section VII.

H. Q u a d t r e e s a s G e o m e t r i c / G e o g r a p h i c D a t a S t r u c -
t u r e s

The quadtree (Sa~me84b] is a hierarchical, variable reso-
lution da t a s t ruc ture which recursively subdivides the plane
into blocks based on some decomposit ion rule. The technique
is general and Can be applied to three (octrees) and higher
dimensional spaces. It may be considered as a member of a
general class of hierarchical da t a s t ruc tures based on spatial
decomposit ion which includes k-d trees {Bent75], bintrees
{Know80, Same85a], and o ther s tructures. A dist inct ion is fre-
quently drawn between those s t ruc tures in which the subdivi-

197

/ / .~. S I G G R A P H '86

sion boundar ies are de termined by the da t a as in the classical
point quadtree [Fink74], and those in which the boundaries are
pre-determined by the da ta s t ruc ture as in the region quadtrec
[Klin71}. The la t ter is sometimes termed "regular decomposi-
t ion", and the s t ruc tures considered in this paper are of this
type.

Because of their explicitly spat ia l nature , quadtrees are
well suited for the representa t ion of geometric data . The sim-
plest example is the region quadtree where an image consisting
of a set of discrete regions is represented by recursivcly quar-
ter ing the image unt i l every block is uniform in color. In a
typical binary image, the number of blocks or leaf nodes in
such a representa t ion can be cons iderab ly less than the
n u m b e r of pixels in an array representa t ion of the same image.
Since many operat ions can be performed on a quadtree in t ime
propor t ional to the n u m b e r of nodes, it may be advantageous
in terms of speed to manipu la te da t a in quadtree form. Fur th -
ermore, the quadtree conta ins information regarding the large-
scale s t ruc tu re of the da t a which is not present in a low-level
representa t ion such as an array. For point data , an analogous
s t ructure , te rmed the P R quadtree is formed by recursively
quar te r ing the plane until no block contains more than one
da t a point.

We have used the above representa t ions for areal and
point d a t a in a prior implementa t ion of a geographic informa-
t ion sys tem (Same85d]. Such simple schemes do not, however,
work well for vector data . For example, a t t emp t ing to divide
the plane unt i l each subdivision contains only one vector ele-
men t leads to an unbounded decomposit ion if two vectors
intersect. This reflects a basic proper ty of lineal data . Namely,
while point and area da ta can be adequately represented by a
hierarchical decomposit ion of space t ha t s tores only a single
piece of informat ion per block, a similar representa t ion of vec-
tor da t a requires the ability to store an arbi t rary a m o u n t of
da t a per node. Specifically, for a one item per node represen-
ta t ion to work, the amoun t of information needed to describe
a block mus t decrease as the size of tha t block is reduced. An
intrinsic proper ty of lineal d a t a however, is t ha t large amoun t s
of informat ion can be concent ra ted at a single location (e.g.
when several vectors intersect at the same point). No amoun t
of subdivision will reduce this information. Thus it is not
surpr is ing t ha t hierarchical representa t ion of vector da ta
should be more difficult t han point or areal data . To set our
problem in a proper perspective, we review in the following,
several recent proposals for the hierarchical representa t ion of
vector d a t a t h a t have appeared in the l i terature.

III. Quadtree Structures for Storing Line Data

1. The MX Quadt ree

The M-X quadtree fHunt79], is probably the simplest
way of represent ing line data , and is a region quadtree in
which lines are represented by regions which are one pixel
wide. It can be viewed as a quadtree representa t ion of a
chaincode. Its advan tages are its relative simplicity, and the
abili ty to represent (more or less) arbi t rary space curves.
Disadvantages include lack of exact representa t ion, extreme
locality of reference, large s torage requirements since every
point on a line is stored as a separate pixel, and lack of any
s t ruc tu re related to the lineal na tu re of the data .

2. The Line Quadt ree

The line quadtree [Same84a] is also based on the region
quadtree, and represents curvcs by the boundar ies of the
encoded regions. This is accomplished by s tor ing addi t ional
information abou t the edges of the blocks. It has the advan-
tages of a relatively simple s t ructure , the abili ty to combine
region and boundary data, and is somewhat less local t han the
MX quadtree. The pr imary d isadvantages are the fact t h a t it
is l imited to recti l inear curves which demarca te regions, and
the lack of s t ruc ture based on lineal na ture of data .

3. The Edge Quadt ree

The edge quadt ree was originally developed by Shneier
[Shne81] as a method of approximat ing an edge in an image by
recursively spl i t t ing space into quad ran t s unt i l each block con-
ta ins at most a single section which can be approximated by a
line segment . This scheme deals only with single segments,
and hence some modification is necessary to make it sui table
for represent ing mult iple intersect ing lines. A va r i an t described
in Rosenfeld et al. [Rose83] known as the linear edge quadtree
achieves this by using the decomposit ion rule "spl i t unt i l no
block intersects more than one line segment or unt i l the resolu-
tion limit is reached". Nodes conta ining more than one seg-
men t at the highest resolution are assigned a special type
(point nodes), and a count of the n u m b e r of lines intersect ing
the block is associated with the node. T h u s point nodes indi-
cate those places where the vectors cons t i tu t ing the d a t a are
too close together to be resolved. Line segments are stored in
the o ther nodes by recording their local intersection with the
edges of the block. Advan tages include the ability to represent
a rb i t ra ry collections of line segments, some s t ruc tu re based on
the lineal na ture of the data , and a representa t ion t h a t stores
only one i tem per node (as opposed to the methods requiring
the use of variable size nodes described later in this paper).
Major d i sadvan tages are the complexity of the representa t ion
and consequent difficulty of performing operations, loss of
informat ion at intersect ions due to the use of single a special
value to label such nodes, locality of reference, and loss and
degradat ion of informat ion caused by separately calculat ing
the intersect ion of the da t a segment with every block th rough
which it passes.

4. P M quadtrees

T h e P M quadt ree was developed by Samet and Webber
[Same85c] and refers to a group of s t ruc tures which store
l inear da ta in the form of line segments . The basic idea is to
use some spl i t t ing rule to recursively par t i t ion the plane into
quadrants , and to store with each block all the segments pass-
ing th rough it. This generally requires the use of variable size
nodes, and for some spl i t t ing rules, the depth of decomposit ion
generated may exceed the resolution of the segment endpoin t s
by a considerable factor. Samet and Webber [Same85e]
describe the s t ruc tu res result ing from three decomposit ion
rules, which they refer to as PM1, PM2, and PM3.

The PM1 quadt ree is defined by the rule "qua r t e r unt i l
every block conta ins a single segment endpoint , or else it inter-
sects jus t one segment , or else it is empty" . The main draw-
back of the PM1 quadt ree is t ha t it has very bad worst case
behavior in t e rms of the max imum depth and the number of
nodes which may be generated. A one i tem per node var ia t ion
called the segment quadtree is described by Samet [Same85b].

The PM2 quadtree is defined by the rule "qua r t e r unti l
every block conta ins a single segment , or else all segments

198

Dallas, August 18-22 Volume 20, Number 4, 1986

intersected by it have a common endpoint, or else it is empty"
It has bet ter worst-case behavior than the PM1 formulation in
terms of maximum depth, but this depth is still considerably
higher than the resolution of the segment endpoints.

The PM3 quadtree uses the rule "quarter until no
block contains more than one endpoint" . The segments pass-
ing through each block are then recorded in the node. Note
tha t the split t ing rule is just the PR rule applied to the end-
points of the line segments. The rule for the PM3 quadtree is
the simplest of the three, and despite the fact that it does not
refer to vectors as lineal objects, but only to their endpoints, it
produces the most usable s tructure of the three. Figure 1 dep-
icts a set of line segments and its PM3 quadtree. Note that
the PM quadtrees essentially solve the problem of how to
represent vector data exactly in a hierarchical structure. The
price is the cost of implementing variable size nodes.

(a) (b)

F i g u r e 1. (a) Set of line segments and (b) corresponding PM3
quadtree.

5. Edge EXCELL

A slightly different method called edge EXCELL is
described by Tamminen [Tamm83]. It is based on a regular
decomposition tha t splits the cells of a grid alternately along
different dimensions. A grid directory is used to map the cells
into storage areas of fixed capacity (buckets) which may reside
on disk. In each bucket are stored the segments tha t intersect
the corresponding cell. When a bucket associated with a single
cell overflows, every cell in the grid is split along one dimen-
sion. Overflow buckets are used to handle the case when more
segments intersect at a point than can be contained in a
bucket. Edge EXCELL is similar to the PM quadtree in that
it a t t empts to divide space into bins containing a manageable
amount of information, however it differs in that it uses fairly
large bucket sizes (i.e greater than 10 da ta elements), while the
various PM quadtrees use splitting rules which result in a low
average occupancy.

IV. T h e P M R quadtree and f ragments .

The structure tha t we propose uses a variant of the
PM quadtree, henceforth referred to as the P M R quadtree as
the means of controlling the amount of information stored per
node. We also generalize the concept of a line segment to
represent vector da ta in a manner tha t is exact and does not
degrade under operations which cause a vector feature to be
split or clipped. This generalization is referred to as a frag-
men t .

The PMR quadtree (for PM Random) is based on the
observation tha t any rule that divides up the line segments
among quadtree blocks in a reasonably uniform fashion can be
used as the basis for a PM-like quadtree. In fact, unless it is
required by the application, the structure need not be uniquely
determined by the data. Probabilistic split t ing rules can be
used as easily as any other. For instance, a rule such as "If
the number of segments in a block exceeds n when a segment
is added, split it once" in conjunction with a corresponding
deletion rule could be used to dynamically maintain a collec-
tion of line segments.

The PMR quadtree uses a pair of rules, one for split-
t ing and one for merging, to dynamically organize the data.
The split t ing rule, invoked whenever a line segment is added
to a node, s ta tes "if the number of segments in the node
exceeds n (four in the particular example studied,) then split
the node once into quadrants" . The corresponding merging
rule, invoked when a segment is deleted, states "merge while
the number of distinct line segments contained in the node
and its siblings is less than or equal to n (four) " Figure 2
shows the construction of a P1VIR quadtree with the threshold
n equal to two, for the segments in Figure 1. Note in figure
2b, that the insertion of segment 7 causes two blocks to split
(the NW and NE quadrants) since the capacity of each of
these blocks was exceeded by its insertion. Since a node is
split only once when the insertion of a segment causes the
threshold n to be exceeded, a node may contain more than n
segments. However, except in the unusual case where many
segments share an endpoint, the node occupancy is unlikely to
exceed the threshold by much. This scheme differs from the
structures previously considered here in that the quadtree for a
given da ta set is not unique, but depends on the history of
manipulat ions applied to the structure. Certain types of
analysis are thus more difficult than with uniquely determined
structures. On the other hand, this structure permits the
decomposition of space to be based directly on the lineal data
stored locally. The PMR quadtree was chosen for this reason,

(a)

(3)

(b) (c)

• " ' 'f-l.. ,(e77 f / \ \, '7]
5 / [4)1 (9) / " •

, / '< /

F i g u r e 2. Building PMR quadtree from segments of Figure 1 with threshold equal to two. (a) Three
segments have been inserted causing the plane to be quart, ered once as indicated by the small circle, (b)
Segments 4-7 inserted causing three blocks to split, (c) Segments 8 and g inserted calasing five more
blocks to split.

199

I
~. S I G G R A P H '86

I

We now address the problem of how to clip a segment
in such a way t ha t the operat ion may be reversed wi thout
da ta degradat ion should the missing portion be reinserted. In
geographical applications, segment t runcat ion arises when
line map is intersected with an urea. Since the borders of the
area may not correspond exactly with the endpoints of the seg-
ments defining the line data , certain segments may be clipped.
Such an intersection is i l lustrated in Figure 3. The partial line
segment produced is referred to as ~ fragment and the artificial
endpoin ts produced by such an intersection are referred to az
cut'points. The problem reduces to t ha t of representing frag-
ments . One possible solution is to represent a f ragment by
in t roducing new, in termedia te endpoin ts at the cut points,
creat ing a whole new segment. In cont inuous space, a new
segment which is colinear with the original one, bu t has at
least one different endpoint , can be exactly represented. In
discrete space (e.g., as a result of the digitization process), this
is not always possible because the cont inuous coordinates of
the cut point do not, in general, correspond exactly to any
coordinates in the discrete space. If the new line segment is
represented approximately in the discrete space, then the origi-
nal information is degraded, and the pieces cannot reliably be
rejoined. In addit ion, if an in termediate point is introduced to
produce new segments, then the new line segment descriptor
mus t be propagated to all remaining blocks containing the ori-
ginal segment. This is likely to be a very t ime-consuming
operation.

'~points
cutpoint

, i

(a) (b) (e)

F i g u r e 3. Definition of u f ragment (c) from the intersection
of a segment (a) with a region (b).

An al ternat ive solution is to retain the description of
the original segment, and use the spat ial properties of the
quadtree to specify what portions of the segment are actually
present. The underlying insight is t ha t a node may contain a
reference to a segment, even though the entire segment is not
present as a lineal feature. Rather , the segment descriptor
contained in a node can be in terpre ted as implying the pres-
ence of jus t t h a t port ion of the segment which intersects the
corresponding quadt ree block. Such an intersection of a seg-
ment with a block will be referred to as a q-edge, and the ori-
ginal segment will be referred to as the parent segment. The
presence or absence in the quadtree of a par t icular q-edge is
completely independent of the presence or absence of q-edges
represent ing o ther par t s of the parent segment. T h u s lineal
features corresponding to par t ia l segments (i.e., f ragments) can
be represented simply by insert ing the appropr ia te collection of
q-edges. Since the original descriptors are retained, a lineal
feature can be broken into pieces and rejoined wi thout loss or
degradat ion of information. In the quadtree s t ructure, q-edges
are combined to represent a rb i t ra ry f ragments of line seg-
ments . Since they all bear the same segment descriptor, they
are easily recognizable as deriving from the same parent seg-
ment . This solves the problem of how to split a !ine or u map
in an easily reversible manner . The use of this principle to
represent the lineal feature produced by the intersection of
Figure 3 is shown in Figure 4.

(a) i] I I /,, I I I I 1

L
• J

F i g u r e 4. Representa t ion of f ragment of Figure 3 using a col-
lection of q-edges. (a) Region quadtree for area with line seg-
men t superimposed, (b) set of five q-edges composing frag-
ment .

The P M R quadtree can be used to represent a collec-
t ion of f ragments by slightly modifying the spl i t t ing and merg-
ing rules to reflect the insertion and deletion of f ragments
instead of line segments. The spl i t t ing rule which is invoked
whenever a f ragment is in t roduced into the s t ruc ture now
s ta tes "quar t e r unt i l no block contains a cut point in i ts inte-
rior (i.e., first localize the cut points), and then once more if a
block conta ins more t han n (four) q-edges." The merge condi-
tion is now invoked bo th when a f ragment is deleted, and
when one is inserted (since a f ragment may be inserted which
restores the larger segment of which it is a par t) and s ta tes
"merge while there are n (four) or fewer dist inct pa ren t seg-
ments in the four sibling blocks and the q-edges are cont inuous
through the block produced by the merge". Q-edges sat isfying
this last condit ion are said to be compatible. For example, see
figure 5a where q-edges a,b and e are compatible, whereas in
figure 5b, q-edges a and b are incompatible. Figure 6 shows a
set of f ragments produced by the intersection of the segments
of Figure 1 with an area, and depicts the corresponding PMR
quadtree when n is equal to two.

(a)

F i g u r e 5. Sibling blocks containing (a) compat ible and (b) in-
compat ible sets of q-edges.

(a)

}

(b)

i 3"~ Z
i / 'z ~'e,,3~

F i g u r e 6. (a) Set of five f ragments induced by the intersec-
tion of a region with the segments of Figure I. (b) PMR-f
quadtree with bucket size equal to two, for f ragments of Fig-
ure 9 inserted in indicated order .The three circled splits were
caused by exceeding the threshold. All others are necessary to
localize the cut points of the fragments.

200

Dallas, August 18-22 Volume 20, Number 4, 1986
I I

The above procedure is s tated in terms of arbi t rary
f ragments considered as abs t rac t objects, but in practice some
method is needed for specifying a f ragment concretely, The
easiest method is to restrict ourselves to the insertion and dele-
t ion of the restricted set of f ragments corresponding to the
intersection of line segments with all potent ia l quadtree blocks.
We will term these q-fragments in view of their similarity to
q-edges. Arbi t ra ry f ragments cart be specified to the resolution
of the tree in te rms of component q-fragments which thus
form a set of building blocks. Note t ha t a given fragment may
be represented by different collections of q-edges in different
quadtrees. The part icular collection of q-edges t ha t results
from the insertion of any fragment depends upon the s t ructure
of the tree, Precise algori thms for insertion and deletion of q-
f ragments in P M R trees are given in the next section.

V. Implementation and algorithms.

The PMR quadtree was implemented in a geographic
information system as purl of an ongoing investigation into
the use of of hierarchical da ta s t ructures in the representat ion
and processing of cartographic information of which only a
brief description is given here. For a detailed description see
[Same85d}. Since quadtrees are based on spatial decomposi-
tion, and geographical information is intrinsically spatial in
nature, it was felt t ha t quadtrees would be particularly
appropr ia te as a basic da ta s t ructure for this application. The
current system includes representat ions and primitive opera-
t ions which can be used to efficiently handle queries such as
" repor t all wheat-growing regions within 50 miles of the Mis-
sissippi River".

Because of the large amoun t of information contained
in geographic features, most of the da ta must be maintained in
secondary storage. In the database system, this is achieved by
use of a s t ructure called a linear quadtree IGurg82], which is a
list of the quadtree leaf nodes in the order tha t would be pro-
duced by a preorder t raversal of the tree. The leaf nodes are
represented by a pair of numbers collectively termed a loca-
tional code. The first number corresponds to the level of the
node in the quadtree. The second is composed of a sequence of
two bit directional codes t ha t give the path from the root of
the quadtree to the leaf. This process is equivalent to taking
the x-y coordinate of the pixel in one corner of the leaf and
interleaving the bits. The ordered list is mainta ined on disk as
a B-tree [Come79] which is b rought into core a few pages at a
time. This organization enables the efficient execution of any
operat ion t ha t can be performed by traversing the quadtree in
preorder including calculation of area, overlay, display, and
connected component analysis. In fact almost any task which
can be performed one scan line at u time in an array represen-
ta t ion can be done during a single traversal in a quadtree.
The B-tree s t ruc ture is mainta ined by a kernel of primitive
funct ions which allows the user to manipula te the s t ruc ture as
if it were an ordinary quadtree. The system represents areal
and point da ta as (linear) region and PR quadtrees respec-
tively. The similarity of these two da t a s t ructures allows easy
implementa t ion of operat ions involving multiple da ta types --
for example locating all the cities with population greater than
5,000 within 20 miles of wheat-growing regions in Texas.

Since line da ta const i tute a th i rd major cartographic
da ta type, a line representat ion is desired which is similarly
compatible. The search for such a s t ructure led us to the
development of the PMR quadtree and the idea of fragments.

The first question is how to implement the variable size
nodes. Since the number of line segments in a node is poten-
tially unbounded, a t rue variable-length storage scheme must
be used. For pointer-based quadtrees, linked lists are one pos-
sibility. An al ternat ive is a var iant of a binary tree s t ruc ture
tha t reflects the position of the segments within the block (see
Samet and Webber [Same85e]). The second suggestion seems
to be unnecessarily complicated for our application. One pro-
perty of the PMR quadtree is tha t , a l though the maximum
number of q-edges occurring in a node is potentially
unbounded, the average occupancy remains low. For random
vectors, it can be shown tha t the expected value is less than n
if n > l . In our empirical tests, wi th n ~ 4 , the average occu-
pancy remained less than 3 in a}l cases. The low average occu-
pancy makes a linear search through the q-edges of a node
practical. For linear quadtrees, ordered by the locational codes
of their leaf nodes, the simplest way of implementing variable
node sizes is to duplicate loeational codes. This is the method
used in our application. The q-edges intersecting a node are
represented by a pointer to a record describing the parent seg-
ment. All q-edges with the same parent share this descriptor~
which avoids unnecessary duplication of information.

We now present algori thms for the insertion and dele-
tion of q-fragments in the PMR quadtree. At this point we
should emphasize, the terminological distinction between q-
edges and q-fragments. We use the term q-edge, to refer to the
information content of a PMR quadtree node. Every node in
the PMR quadtree contains zero or more q-edges representing
the intersection of line segments with the corresponding quad-
tree block. We use the term q-fragment, on the other hand, to
refer a member of a convenient set of primitive fragments,
which jus t happen to be the the intersections of line segments
with potent ia l quadtree blocks. 'The Block is conceptual in
t ha t it may not correspond to a leaf node in the quadtree into
which the q-edge is being inserted. The block may correspond
to a node deeper than any t ha t exist in the tree, in which case
the plane must be fur ther subdivided. On the other hand, the
block may correspond to u gray node in the quadtree in which
ease, several q-edges mus t be inserted.

We assume tha t a PMR quadtree is represented as a
collection of pointers to records of type node. These concep-
tual nodes may contain a variable amount of information since
a node may contain several q-edges. We also assume some
basic routines for manipula t ing the s tructure. In the following
N is a pointer to a quadtree node, L is a pointer to a record
representing a line segment, and 13 refers to the locational code
of a quadtree block. INSTALL(L,N) installs u q-edge in node
N corresponding to the intersection of line segment L with the
node N. REMOVE(L,N) removes q-edge corresponding to the
intersection of L with N from node N (if it exists there).
SPLIT(N) splits leaf node N into quadrants. MERGE(N)
merges leaf node N with its siblings if they are leaf nodes.
FIND(B) takes a block and re turns a pointer to the
corresponding node n in the tree if it exists, or to the smallest
subsuming node if it does not. SPLITCOND(N) re turns true
iff node n contains more than (four) q-edges.
MERGECOND(N) re turns true iff node N is a leaf node all of
whose siblings are leaf nodes, and the siblings contain (four) or
fewer paren t segments, and their q-edges are compatible.
SON(13, direction) returns the locational code of the block
which is the son of B in the given direction. SIZE(N) returns
the size of a node N or block 13.

201

m ~. S I G G R A P H '86
I# ! III II

Insertion of a q-fragment, say F representing the inter-
section of line segment L with block whose locational code is B
is accomplished as follows.

(1)

(2)

(3)

If B corresponds to a leaf node then F is installed, and
the node is checked for splitting or merging. Merging can
occur if the inserted q-edge restores a larger fragment.
An example of this is shown in Figure 7.

If B corresponds to a gray node, then the q-fragments
corresponding to the intersection of L with the sons of B
are inserted recursively. Figure 8 shows this procedure.

If B is subsumed by a leaf node, say N, then N is quar-
tered until a leaf node is produced which corresponds to
B, and F is then installed as in ease 1. This process is
illustrated in Figure 9.

(a) (5) (c) (d)

Figure 7. Insertion in PMR quadtree of a q-fragment which
causes merging of blocks. (a) Quadtree before insertion, (b) q-
fragment to be inserted, (c) insertion produces sibling blocks
with compatible q-edges, (d) Structure after merging.

Ca) (b)

1 (c)
P

F igure 8. Insertion in PMR quadtree. Large q-fragment is
inserted by decomposing it in¢o smaller q-fragments. (a) Origi-
nal quudtree, (b) q-fragment to be inserted, (e) q-fragment bro-
ken into three, smaller q-fragments whose sizes match those of
extant blocks.

b0 (b)
[]

Figure 9. Insertion in PMR quadtree of small q-fragment
into large block. (a) Original quadtree, (b) q-fragment to be
inserted, (c) block quartered until size matches q-fragment.

Moreformally, we have:

recursive procedure INSERT(L,B);
/* Insert the q-fragment corresponding to the intersection of

line segment L with the quadtree block whose]ocational
code is B into the PMR quudtree */

begin
value poin ter line L;
value locationcode B;
pointer node N;
q u a d r a n t I;
N ~-- FIND(B);

if SIZE(N) ~- SIZE(B) then
begin

INSTALL(L,N);
if SPLITCOND(N) then SPLIT(N)
else if MERGECOND(N) then MERGE(N);

end
else if SIZECN) < SIZE(B) then

begin
for I in {'NW', 'NE', 'SW', 'SE'}

do INSERT(L, SON(B,I));
end

else
begin

while SIZE(N) > SIZE(B) do
begin

SPLIT(N);
N *- FIND(B);

erid;
INSTALL(L,N);
if SPLITCOND(N) then SPLIT(N)
else if MERGECOND(N) then MERGE(N);

end;
end;

Deletion of a q-fragment, say F, representing the inter-
section of a line segment L with a block whose locationa! code
is B, is accomplished by a similar procedure. Deletion of a q-
fragment is interpreted as erasing a portion of the parent seg-
ment.

(I) If B corresponds to a leaf node which contains F, then
the reference to F is removed and a check for merging is
made on the node and its siblings.

(3) If B corresponds to a gray node, then the q-edges formed
by intersecting L with the sons of B are deleted recur-
sively.

(a) If B is subsumed by a leaf node, then that node is quar-
tered until a leaf node is produced which corresponds to
B, and F is deleted as in 1.

More formally, we have

recursive procedure DELETE(L,B);
/* Delete the q-fragment corresponding to the intersection of

line segment L with the quadtree block whose locational
code is B from the PMR quadtree */

begin
value pointer line L;
value locationcode B;
pointer node N;
q u a d r a n t I;
N ~- FIND(B);
if SIZE(N) = SIZE(B) then

begin
REMOVE(L,N);
if MERGECOND(N) then MERGE(N);

end
else i f SIZECN) < SIZE(D) then

begin
for I in ('NW', 'NE', 'SW', 'SE'}

do DELETE(L, SON(B,I));
end

else
begin

202

Dallas, August 18-22 Volume 20, Number 4, 1986
1111

w h i l e SIZE(N) > SIZE(B) do
b e g i n

SPLIT(N);
N ~ rIND(B);

end ;
R E M O V E (L , N) ;
if MERGECOND(N) t h e n MERGE(N);

end ;
end ;

VI. Teats and Cornpa.risons

In order t,o evaluate the performance of the proposed
line representat ions, tests were run using geographic data on
four different structures: MX, edge, PM3, and PMR quadtrees.
PM3 quadtrees were implemented using f ragments in a manner
analogous to our PMR implementat ion. The first two, as dis-
cussed in earlier sections of this paper, have deficiencies tha t
ul t imately make them unsuitable for the desired application.
However, enough can be done with them to allow a meaningful
comparison to be made for some operations. In particular, if
the performance of the P M methods is far worse than tha t of
methods known to be deficient other ways, we must ask
whether the gain is worth the cost. The following tests were
made,

(1) Time required to build the quadtree structure.
(2) Comparison of the storage requirements of the different

representations.
(3) Time required to perform an intersection with an area.
(4) Comparison of the effect of different values for the split

threshold n for PMR quadtrees.

Three different lineal da t a sets were used in the tests.
The da ta are in the form of connec ted line segments and
correspond to maps of three different geographic features: a
railroad line, a city boundary, and a road map for the city.
The first is very simple and contain only 16 segments. The
city boundary is a simple closed curve containing 64 segments.
The road map is fairly complex and contains 764 segments
(figure 10). The vector endpoints were digitized onto a 512 x
512 grid which is the size of the space used for the experi-
ments.

F i g u r e 10. Set of 764 line segments eonsi tut ing road map.

1. Building test.

The building algori thm essentially tests the efficiency of
insertion into the s t ructure. The three maps were built for
each of the four structures. Results are displayed in Table 1.
Utime refers to the actual runt ime of the algorithm. The da ta
indicate tha t none of the methods is overwhelmingly superior
in terms of insertion efficiency, but the PMR representat ion
has a definite if irregular lead in most cases. In the ease of the
road map, which represents the most realistic da ta set, the
MX, edge, and PMR representa t ions are more or Iess
equivalent, and about 30% faster than the PM3.

2. Tree sizes.

The final size of the s t ruc ture is impor tan t because it is
the form in which the information is stored within the system.
To a lesser extent, the size is impor tan t because many of the
algori thms run in time proport ional to the number of nodes
(i.e., the size) of the quadtree. However, the constants of pro-
port ionali ty may differ between different representations, so a
comparison in this respect is not very meaningful wi thout
addit ional information. The results are tabulated in Table 1
for the three maps and methods. The term "leaves" refers to
the number of quadtree leaf nodes for the MX and edge quad-
trees, and to the sum of the number of q-edges and the
number of empty nodes for the P M quadtrees. A quadtree leaf
and a q-edge pointer occupy the same amount of storage, so
the numbers represent comparable quantities. The term
"qnodes" refers to the number of nodes in the PM methods
and is included to provide a feeling for the fullness of the
nodes and to suppor t the claim tha t the average occupancy is
indeed small (less than three for all examples here), for realistic
geographic da t a sets.

Map
railroad

city

road

Table 1: Building times an

i St ructure Utime
MX 2.21
edge
PM3
PMR

MX 2.62
edge 2.25
PM3 2.36
P M R 1.28

MX 22.55
edge 20.48
PM3 29.38
PMR 19.03

and sizes

Lea~ qnodes
2101

.63 301

.63 92 70

.30 35 19
2347
835
310 214
151 70

19699
7723
3939 2350
2078 874

Examinat ion of the results reveals a steady decrease in
the required storage from MX to edge to PM3 to PMR. The
PMR representat ion is at least eight times more efficient in its
use of storage than the simple M X in all the cases tested, but
both PM techniques improve the storage efficiency significantly
over the other two techniques. This improvement can be
explained by noting tha t the PM quadtrees use one-
dimensional primit ives which can extend over distances of
many pixels ra ther than the pixel by pixel representat ion tha t
is used by the MX method exclusively, and by the edge
method when segments approached each other. It should be
ment ioned t ha t these results are for collections of complete line
segments since no cut-points were involved in the original
maps, The presence of cut-points in the da t a would be
expected to reduce the storage efficiency, since fur ther decom-
position would be required to loeMize them.

203

~. S I G G R A P H '86
II

3. Intersection test.

The intersection function is a high level geographic
computa t ion which involves processing the ent ire da ta struc-
ture. In the case of the PM quadtrees, it tests the efficiency of
the f ragment representat ion, because the previously in tac t line
segments are now cut where they cross an area boundary.
Because the P M / f r a g m e n t methods enable the performance of
operat ions not possible with the local methods (e.g., reassem-
bling split lines wi thou t degradat ion of data) it is no t entirely
clear t ha t the different intersection computa t ions are compar-
a~ble: however, the results may give a general idea of the prac-
ticality of high level operations. The intersections were per-
formed using the roudmap as the lineal da ta set (the others
being too small to provide u reasonable intersection,) and three
binary maps and thei r complements, represented in the form
of area quadtrees, as templates . The use of the complements
is intended to permi t the effects of the size and shape of the
templates to be dist inguished from the overall efficiency of the
different algori thms. This precaution is necessary because the
intersect ion algori thm used with the P M s t ruc tures works
differently than the one used with the two other methods, and
is affected differently by changing the shape of the template.
In part icular , the intersection procedure for the MX and edge
quadtrees works by insert ing into a blank map all linear sec-
t ions t h a t intersect the template , while the procedure for the
P M quadtrees works by erasing the sections of the line map
which do not intersect the template. It turns out t ha t inser-
tion and deletion of q-edges are operat ions of comparable com-
plexity. For a map produced by erasing portions of a preexist-
ing map, the n u m b e r of deletions corresponds to the number
of insert ions necessary to produce the complementary map
since the same q-edges are involved. Hence it is more
appropr ia te to compare the intersect ions of the first two
representa t ions with the complementary intersections of the
P M / f r a g m e n t representat ions.

The three templates used are referred to as center,
stone, and pebble, and represent a floodplain in register with
the road map, and unrelated binary images derived from thres-
holded photographs of s tones and pebbles respectively. Only
the floodplain map has any geographic relevance. The other
two were used with the in tent ion of giving the system a more
s t r ingent , if less realistic, test. In particular, the degree of
f ragmenta t ion induced by the pebble map probably exceeds
any t h a t would normally arise in a geographic application.

The results of the tests are given in raw form in Table
2, and are apparent ly ambiguous. In some cases the PM
methods take much longer than the NiX and edge schemes,
bu t in o thers they take less t ime (though not correspondingly
so). This inconsistency is due to the complementary effect of
the different intersection algori thms discussed above. Table 3
reorganizes the da t a so tha t the appropr ia te complements are
compared, and a consis tent t rend is now apparent . The time
needed to perform an intersection generally increases from MX
to edge to PM3 to PMR with the PM methods taking some-
where around twice as long as thei r competitors. Note tha t
the order in which the intersection times increase is the same
in which the s t ruc ture sizes decrease suggesting t h a t we are
observing a t ime versus space trade-off.

Tab le 2 also gives the sizes of the s t ructures represent-
ing the intersections. Compar ing the sizes of the resulting
maps reveals that , as predicted above, the improvement in
storage requirements from /VLX to PMR is less d ramat ic than
when no cut points were present. The degree of f ragmenta t ion

varies, bu t in the case of intersections with the pebble map
and its complement , it is probable t ha t few if any of the origi-
nal segments are intact . Since addit ional spl i t t ing is required
to localize the f ragment ends, the representat ion is not as
efficient as for da t a t h a t contains no cut points. The improve-
men t is still present, however, with the P M methods generally
requiring between one half and one quarter of the space of the
MX, and significantly less than the edge quadtree. The order
of decreasing sizes from MX to PMR which was noted for the
segment da ta remains the same.

Table 2: Intersect ion times and sizes
In tersection

road & center

road & centercomp

road & stone

road & s tonecomp

road & pebble

road & pebblecomp

St ruc ture Utime Leafs qnodes

MX 4.10 3094
edge 5.60 1759
PM3 15.50 1019 874
P M R 14.60 910 775

M_X 16.90 17314
edge 14.50 8320
PM3 6.83 4275 2677
P M R 1 8.02 2568 1402

v

MX 4.90 3397
edge 8.70 2344
PM3 22.40 2011 1774
P M R 28.10 1853 1651
/k/iX 19.70 17776
edge 19.60 8803
PM3 15.30 4684 3244
P M R 22.00 3270 2122

MX 11.45 9022
edge 17.25 5653
PM3 32.20 4530 3760
P M R 47.00 4034 3370

MX 16.95 13564
edge 20.80 7459
PM3 30.20 5086 4078
P M R 42.00 4250 3436

Table 3: Reordered intersection t imes

Intersect ion St ruc ture Ut ime
road & center MX 4.10

edge 5.60
road 2z. eentercomp PM3 6.~3

P M R 8.02

road & centercomp M_X 16.90
edge , 14.50

road & center PM3 , 15.50
PMR 14.60

road & stone MX 4.90
edge 8.70

road & s tonecomp PM3 15.30
P M R 22.OO

road & s tonecomp MX 19.70
edge 19.60

road & stone PM3 22.40
P M R 28.10

road & pebble MX 11.45
edge 17.25

road & pebblecomp PM3 30.20
P M R 42.00

road & pebblecomp MiX 16.95
edge 20.80

road & pebble PM3 32.20
PMR 47.00

204

Dallas, August 18-22 Volume 20, Number 4, 1986

At first glance, the results seem disappointing because
we have come to expect, since so many quadtree algorithms
can be made to run in time proportional to the number of
nodes, tha t a decrease in the size of a structure will imply a
corresponding decrease in execution time for operations per-
formed using that structure. There is however, no reason to
expect this property to hold across different structures, since
the amount of work done per node will certainly differ. On
the other hand, the increased execution time is by no means
severe enough to damage the value of the representation. This
is especially true in light of the fact that the PM/ f r agmen t
s t ructures have capabilities and a certain elegance tha t the
MX and edge quadtrees completely lack. This is worth a cer-
tain price.

4. Different splitting thresholds.

In our implementat ion of the PMR quadtree, we chose
n ~ 4 as the threshold at which to split a node. It was clear
from the s tar t that both very low and very high thresholds
would degrade the performance of the structure. For low
spli t t ing thresholds, say one or two, the storage requirements
would tend to be high, since a large amount of split t ing would
take place in a futile a t t empt to separate intersecting vector
features. Conversely, a high average occupancy would unduly
increase the amount of effort involved in processing each node,
the extreme example being a single node containing a list of all
the vector features, which would completely nullify any
benefits obtained from the spatial decomposition. We initially
selected a threshold of four because that was the greatest
number of roads likely to intersect at a single point. Tests
were run for thresholds of 1,2,4,8,16 and 32 on two da ta sets:
the road map, and a collection of 100 randomly intersecting
line segments. The segments for the road map form a planar
graph, but no such restriction was imposed upon the random
segments of the second da ta set.

The times and sizes for the building and intersection
algorithms are given in tables 4 and 5. For the roadmap, the
results are as expected. There is a slow decrease in building
time, and a rapid decrease in storage requirements as the
threshold increases. T h i s is not surprising since generally less
decomposition is being done. For the intersection algorithm,
the time increases for both high and low thresholds as
predicted, with a minimum at n ~ 4 . The storage requirements
of the PMR quadtree representing the intersection decrease to
an asymptot ic value as the threshold increases. This is the
point at which all decomposition is due to the localization of
f ragment .endpoints, and further changes in the threshold con-
sequently have no effect.

The results for the random segments are very similar.
The optimal threshold for the intersection algorithm is 8
instead of 4, but the difference is very small. The somewhat
greater sensitivity of the s tructure storage requirements to the
threshold is due to the fact that the road map contains many
very short segments with the result tha t there are fewer oppor-
tunit ies for merging when the threshold is increased. The fact
that the performance of PMR quadtree is similar for radically
different types of vector data, suggests tha t it would provide a
robust, general vector representation.

Table 4a: Results of building P M R road map
using different thresholds.

Threshold Utime Leaves

1
2
4
8

16
32

26.9
22.5
16.6
14.7
13.7
15.6

5765
4082
2078
1396
1145
1001

Qnodes

3745
2404

874
346
163

73

Table 4b: Intersection of PMR road map with
center using different thresholds.

Threshold Utime Leaves Qnodes
1
2
4
8

16
32

14.7
13.5
12.0
13.8
17.8
22.0

1069
968
910
897
895
895

925
829
775
763
760
760

Table 5a: Results of inserting 100 random
segments using different thresholds

Threshold Utime Leaves Qnodes

1 31.1 9189 6508
2 20.4 5970 3433
4 11.6 3031 1114
8 6.3 1407 262

16 4.2 763 79
32 3.4 452 25

Table 5b: Intersection of 100 random segments
with center using different thresholds.

Threshold Utime Leaves Qnodes
1
2
4
8

16
32

23.5 2496
17.9 2159
16.1 1880
15.8 1807
19.3 1774
27.2 1774

2131
1804
1582
1540
1531
1531

V H . C o n c l u s i o n s

The P M R quadtree used to store segment fragments
provides a hierarchical vector representation tha t satisfies the
conditions set forth at the beginning of this paper. It is exact
(i.e., non digitized). It allows consistent updat ing of the data,
and permits primitive vector features to be manipulated as
well as cut or clipped and reconstructed without data degrada-
tion. It facilitates efficient insertion and deletion of vector ele-
ments, and the performance of high level operations such as
area intersection. Since the endpoints of the vectors are not
used to direct the spatial decomposition, both planar and
non-planar graphs can be efficiently represented.

The basic technique, is not however, limited to
representing lineal data in two dimensions. The idea of using
probabilistic split t ing and merging rules to recarsively decom-
pose the space and dynamically organize the da ta into bins of
manageable average size is a powerful general notion. The
PMR quadtree generalizes immediately to the representation of

205

S I G G R A P H '86

lines or faces in three or more dimensions. For some recent
work involving PM quadtrees in 3 dimensions, see [Aya185,
Carl85, Fuji85]. Moreover, the object represented by the q-
edge need not be a line segment, but could be any entity for
which there exists a descriptor, and which has definite spatial
extent. The representation of lineal data could be extended
for example, by having "generalized q-edges" represent the
intersection of the blocks with cubic splines rather than simply
with line segments. As another example, consider an image
processing environment where a generalized q-edge could
represent the presence or absence of a proposed object in the
block. Several hypotheses could be maintained simultane-
ously, and updated as processing progressed. As a third exam-
ple, the generalized q-edge could represent the intersection of a
rectangular region with the block in a system for VLSI design
rule checking.

To sum up, the PM quadtrees using fragments provide
a conceptually clean representation for lineal data which expli-
citly addresses its one-dimensional character. For the geo-
graphic information system, the structures compare favorably
in performance with the cruder MX and edge qu~dtrees in
cases where they can be compared, and resolve the problems of
loss of information and degradation of data which encumbered
the latter. Finally, the structures have the potential for use as
a general representation in any application where the spatial
relationship of objects is important.

Acknowledgments This work was supported in part by the
National Science Foundation under Grant DCR-83-02118. We
have benefited greatly from discussions with Clifford A. Shaffer
and Robert E. Webber.

References

1. [Aya185] - D. Ayala, P. Brunet, R. Juan, and I. Navazo,
Object representation by means of nonminimal division quad-
trees and octrees, A C M Transactions on Graphics 4, l (January
1985), 41-59.

2. [Bent751 - J.L. Bentley, A survey of techniques for fixed
radius near neighbor searching, SLAC Report No. 186, Stan-
ford Linear Accelerator Center, Stanford University, Stanford,
CA, August 1975.

3. [Carl85] - I. Carlbom, I. Chakravarty, and D. Vandersehel,
A hierarchical data structure for representing the spatial
decomposition of 3-D objects, IEEE Computer Graphics and
Applications 5, 4(April 1985), 24-31.

4. [Come79] - D. Comer, The Ubiquitous B-tree, ACM Com-
puting Surveys 11, 2(June 1979), 121-137.

5. [Fink74] - R.A. Finkel and J.L. Bentley, Quad trees: a data
structure for retrieval on composite keys, Acts Informatica 4,
1(1974), 1o9.

6. [Fuji85] - K. Fuj imura and T.L. Kunii, A hierarchical space
indexing method, Proceedings of Computer Graphics'85,
Tokyo, 1985, T1-4, 1-14.

7. [Garg82] - 1. Gargantini, An effective way to represent
quadtrees, Communications of the ACM 25, 12(December
1982), 905-910.

8. [Hunt79] - G.M. Hunter and K. Steiglitz, Operations on
images using quad trees, IEEE Transactions on Pattern
Analysis and Machine Intelligence 1, 2(April 1979), 145-153.

9. [Klin71] - A. Klinger, Pat terns and Search Statistics, in
Optimizing Methods in Statistics, J.S. Rustagi, Ed., Academic
Press, New York, 1971, 303-337.

10. [Rose83} - A. Rosenfeld, H. Samet, C. Shaffer, and R.E.
Webber, Application of hierarchical data structures to geo-
graphicM information systems phase II, Computer Science T R
1327, University of Maryland, College Park, MD, September
1983.

11. [Same84a] - H. Samet and R.E. Webber, On encoding
boundaries with quadtrees, IEEE Transactions on Pattern
Analysis and Machine Intelligence 6,'3(May 1984), 365-369.

12. [Same84b] - H. Samet, The quadtree and related hierarchi-
cal data structures, A C M Computing Surveys 16, 2(June 1984),
187-260.

13. [Same85a] - H. Samet and M. Tamminen, Efficient com-
ponent labeling of images of arbitrary dimension, Computer
Science TR-1480, University of Maryland, College Park, MD,
February 1985.

14. [Same85b] - H. Samet, C.A. Shaffer, and R.E. Webber,
The segment quudtree: a linear qnadtree-based representation
for linear features, Proceedings of Computer Vision and Pat-
tern Recognition 85, San Francisco, June 1985, 385-389.

15. [Same85c] - H. Samet and R.E. Webber, Storing a collec-
tion of polygons using quadtrees, A C M Transactions on
Graphics 4, 3(July 1985), 182-222.

16. [Same85d] - H. Samet, A. Rosenfeld, C.A. Shaffer, R.C.
Nelson, Y-G. Huang, and K. Fujimura, Application of
hierarchical data structures to geographic information systems:
phase IV, Computer Science TR-1578, University of Maryland,
College Park, MD, December 1985.

17. [Shne81] - M. Shneier, Calculations of geometric properties
using quadtrees, Computer Graphics and Image Processing 16,
3(July 1981), 296-302.

18. ITamm83] - M. Tamminen, Performance analysis of cell
based geometric file organizations, Computer Vision, Graphics,
and Image Processing 24, 2(November 1983), 168-181.

206

