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Abst rac t :  

A consis tent  hierarchical  da t a  s t ruc tu re  for the 
representa t ion of vector da t a  is presented.  It  makes  use of a 
concept  termed a line segment fragment to prevent  da t a  degra- 
dat ion under  spl i t t ing or clipping of vector primitives. This  
means t ha t  the insertion and subsequent  deletion (and vice 
versa) of a vector  leaves the da ta  unchanged.  Vectors are 
represented exactly and not  as digital approximations.  The  
da ta  is dynamically organized by use of simple probabil ist ic 
spl i t t ing and merging rules. The  use of the s t ruc ture  for imple- 
ment ing  a geographic information system is described. Algo- 
r i thms for cons t ruc t ing  and manipula t ing  the s t ruc ture  are 
provided. Results  of empirical tests  comparing the s t ruc ture  to 
other  representa t ions  in the  l i terature  are given. 

CR Categories  and Subject  Descriptors: E.1 ]Data] :  Da ta  
S t ruc tures  trees; 1.3.3 { C o m p u t e r  G r a p h i c s ] :  
P ic tu re / Image  Genera t ion  - display algorithms; 1.3.5 [ C o m -  
p u t e r  G r a p h i c s ] :  Computa t iona l  Geometry  and Object  
Modeling - object  representat ions;  geometric a lgor i thms 
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I. I n t r o d u c t i o n  

Quadtrees  are a useful s t ruc ture  for represent ing cer- 
tain types of geometric or geographic data .  In particular,  point 
and region da t a  have simple and na tura l  representa t ions  which 
allow the efficient performance of operat ions involving locality 
of reference, geometric calculations such as area computa t ion ,  
and set operat ions  such as region intersection. The  representa-  
tion of line data ,  on the o ther  hand,  is more complicated.  
Several hierarchical  s t ruc tures  based on quadtrees  have been 
proposed, all with certain drawbacks,  and none with the 
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na tu ra l  elegance of the adap ta t ions  representing points  and 
lines. Our  s tudy reviews the hierarchical  representat ion of 
vector da t a  in the par t icular  context  of a geographic informa- 
t ion system, b u t  most  of our  requirements  wou|d be necessary 
in any applicat ion where vector  d a t a  is impor tan t .  A good 
vector representa t ion  should have the following properties. 
First ,  the da t a  s t ruc ture  mus t  represent  vectors precisely 
r a the r  than  as digital approximations.  This  includes the abil- 
ity to accurately represent  any number  of vectors intersect ing 
at  a single point.  Secondly, the s t ruc ture  mus t  allow the da ta  
to be updated  consistently.  For example, insertion and subse- 
quent  deletion of a vector should leave the da ta  unchanged.  
As a more complex example, it should be possible to compute  
the intersect ion of a set  of vectors with a region, and then 
restore the  information to its original s ta te  by performing a 
union wi th  the  complement  of the original intersection. This  
operat ion involves spl i t t ing and reassembling vector primitives. 
Thirdly,  the  s t ruc tu re  should allow the  efficient performance of 
primit ive operat ions  such as insertion and deletion of vector 
d a t a  elements,  and  should facilitate the performance of more 
complex operat ions  such as edge following, intersection with a 
region, or point-in-polygon though these are somewhat  
appl icat ion-dependent .  Previous hierarchical representa t ions  
for vector da t a  have been deficient in one or more of these 
areas. 

In this  paper,  we develop a da ta  s t ruc ture  for the 
representa t ion of vector  da ta  which has the propert ies 
described above. Section lI contains  a brief  overview of quad- 
trees, while section III reviews quadtree  s t ruc tures  for s toring 
vector  data .  Section IV presents  a new da t a  s t ruc ture  termed 
a P M R  quadt ree  and  shows how it  can deal with  line segment  
f ragments .  Section V describes a simple implementa t ion  of the 
P M R  quadt ree  while section VI reports  on empirical tests. 
Conclusions and suggestions for future work are presented in 
section VII. 

H. Q u a d t r e e s  a s  G e o m e t r i c / G e o g r a p h i c  D a t a  S t r u c -  
t u r e s  

The  quadtree  (Sa~me84b] is a hierarchical,  variable reso- 
lution da t a  s t ruc ture  which recursively subdivides the plane 
into blocks based on some decomposit ion rule. The  technique 
is general and Can be applied to three (octrees) and higher 
dimensional  spaces. It may be considered as a member  of a 
general class of hierarchical  da t a  s t ruc tures  based on spatial  
decomposit ion which includes k-d trees {Bent75], bintrees 
{Know80, Same85a], and o ther  s tructures.  A dist inct ion is fre- 
quently drawn between those s t ruc tures  in which the subdivi- 
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sion boundar ies  are de termined by the da t a  as in the classical 
point  quadtree  [Fink74], and those in which the boundaries  are 
pre-determined by the da ta  s t ruc ture  as in the region quadtrec  
[Klin71}. The  la t ter  is sometimes termed "regular  decomposi- 
t ion",  and the s t ruc tures  considered in this  paper  are of this  
type. 

Because of their  explicitly spat ia l  nature ,  quadtrees  are 
well suited for the representa t ion of geometric data .  The  sim- 
plest  example is the region quadtree  where an image consisting 
of a set  of discrete regions is represented by recursivcly quar- 
ter ing the image unt i l  every block is uniform in color. In a 
typical  binary image, the number  of blocks or leaf nodes in 
such a representa t ion  can be cons iderab ly  less than the 
n u m b e r  of pixels in an array representa t ion of the same image. 
Since many  operat ions  can be performed on a quadtree  in t ime 
propor t ional  to the n u m b e r  of nodes, it may be advantageous  
in terms of speed to manipu la te  da t a  in quadtree  form. Fur th -  
ermore, the  quadtree  conta ins  information regarding the large- 
scale s t ruc tu re  of the da t a  which is not  present  in a low-level 
representa t ion  such as an array. For  point  data ,  an analogous 
s t ructure ,  te rmed the P R  quadtree  is formed by recursively 
quar te r ing  the plane until  no block contains  more  than  one 
da t a  point.  

We have used the above representa t ions  for areal and 
point  d a t a  in a prior implementa t ion  of a geographic informa- 
t ion sys tem (Same85d]. Such simple schemes do not,  however, 
work well for vector  data .  For example, a t t emp t ing  to divide 
the  plane unt i l  each subdivision contains  only one vector ele- 
men t  leads to an unbounded  decomposit ion if two vectors  
intersect.  This  reflects a basic proper ty  of lineal data .  Namely,  
while point  and area da ta  can be adequately represented by a 
hierarchical  decomposit ion of space t ha t  s tores only a single 
piece of informat ion per  block, a similar representa t ion  of vec- 
tor da t a  requires the ability to store an arbi t rary  a m o u n t  of 
da t a  per node. Specifically, for a one item per node represen- 
ta t ion  to work, the amoun t  of information needed to describe 
a block mus t  decrease as the size of tha t  block is reduced. An 
intrinsic proper ty  of lineal d a t a  however, is t ha t  large amoun t s  
of informat ion can be concent ra ted  at  a single location (e.g. 
when several vectors  intersect  at  the same point).  No amoun t  
of subdivision will reduce this  information.  Thus  it is not  
surpr is ing t ha t  hierarchical  representa t ion of vector  da ta  
should be more difficult t han  point  or areal data .  To set our  
problem in a proper  perspective, we review in the following, 
several recent  proposals for the hierarchical  representa t ion of 
vector d a t a  t h a t  have appeared in the l i terature.  

III. Quadtree Structures for Storing Line Data  

1. The  MX Quadt ree  

The  M-X quadtree  fHunt79], is probably the  simplest  
way of represent ing line data ,  and is a region quadtree  in 
which lines are represented by regions which are one pixel 
wide. It can be viewed as a quadtree  representa t ion of a 
chaincode. Its advan tages  are its relative simplicity, and the 
abili ty to represent  (more or less) arbi t rary  space curves. 
Disadvantages  include lack of exact representa t ion,  extreme 
locality of reference, large s torage requirements  since every 
point  on a line is stored as a separate  pixel, and lack of any 
s t ruc tu re  related to the lineal na tu re  of the data .  

2. The  Line Quadt ree  

The  line quadtree  [Same84a] is also based on the region 
quadtree,  and represents  curvcs by the  boundar ies  of the 
encoded regions. This  is accomplished by s tor ing addi t ional  
information abou t  the edges of the blocks. It  has the  advan-  
tages of a relatively simple s t ructure ,  the abili ty to combine 
region and boundary  data,  and is somewhat  less local t han  the  
MX quadtree.  The  pr imary  d isadvantages  are the fact t h a t  it 
is l imited to recti l inear curves which demarca te  regions, and 
the lack of s t ruc ture  based on lineal na ture  of data .  

3. The  Edge Quadt ree  

The  edge quadt ree  was originally developed by Shneier  
[Shne81] as a method  of approximat ing  an edge in an image by 
recursively spl i t t ing space into quad ran t s  unt i l  each block con- 
ta ins  at  most  a single section which can be approximated  by a 
line segment .  This  scheme deals only with single segments,  
and hence some modification is necessary to make it  sui table  
for represent ing mult iple intersect ing lines. A va r i an t  described 
in Rosenfeld et al. [Rose83] known as the linear edge quadtree  
achieves this  by using the decomposit ion rule "spl i t  unt i l  no 
block intersects  more than  one line segment  or unt i l  the resolu- 
tion limit is reached".  Nodes conta ining more than one seg- 
men t  at  the highest  resolution are assigned a special type  
(point  nodes), and a count  of the n u m b e r  of lines intersect ing 
the block is associated with the  node. T h u s  point  nodes indi- 
cate those places where the vectors cons t i tu t ing  the d a t a  are 
too close together  to be resolved. Line segments  are stored in 
the o ther  nodes by recording their  local intersection with the 
edges of the  block. Advan tages  include the ability to represent  
a rb i t ra ry  collections of line segments,  some s t ruc tu re  based on 
the lineal na ture  of the data ,  and a representa t ion t h a t  stores 
only one i tem per node (as opposed to the methods  requiring 
the use of variable  size nodes described later  in this paper). 
Major  d i sadvan tages  are the complexity of the representa t ion  
and consequent  difficulty of performing operations,  loss of 
informat ion at intersect ions due to the use of single a special 
value to label such nodes, locality of reference, and loss and 
degradat ion  of informat ion caused by separately calculat ing 
the intersect ion of the da t a  segment  with every block th rough  
which it passes. 

4. P M  quadtrees  

T h e  P M  quadt ree  was developed by Samet  and Webber  
[Same85c] and refers to a group of s t ruc tures  which store 
l inear da ta  in the  form of line segments .  The  basic idea is to 
use some spl i t t ing rule to recursively par t i t ion  the plane into 
quadrants ,  and to store with each block all the  segments  pass- 
ing th rough  it. This  generally requires the use of variable  size 
nodes, and for some spl i t t ing rules, the depth  of decomposit ion 
generated may exceed the resolution of the segment  endpoin t s  
by a considerable factor. Samet  and Webber  [Same85e] 
describe the  s t ruc tu res  result ing from three decomposit ion 
rules, which they refer to as PM1, PM2, and PM3. 

The  PM1 quadt ree  is defined by the rule "qua r t e r  unt i l  
every block conta ins  a single segment  endpoint ,  or else it inter- 
sects jus t  one segment ,  or else it is empty" .  The  main draw- 
back of the PM1 quadt ree  is t ha t  it has very bad worst  case 
behavior  in t e rms  of the max imum depth  and the number  of 
nodes which may be generated.  A one i tem per node var ia t ion  
called the segment  quadtree  is described by Samet  [Same85b]. 

The  PM2 quadtree  is defined by the rule "qua r t e r  unti l  
every block conta ins  a single segment ,  or else all segments  
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intersected by it have a common endpoint,  or else it is empty"  
It has bet ter  worst-case behavior than the PM1 formulation in 
terms of maximum depth,  but  this depth is still considerably 
higher than the resolution of the segment endpoints.  

The PM3 quadtree uses the rule "quarter  until no 
block contains more than one endpoint" .  The segments pass- 
ing through each block are then recorded in the node. Note 
tha t  the split t ing rule is just  the PR rule applied to the end- 
points of the line segments.  The rule for the PM3 quadtree is 
the simplest of the three, and despite the fact that  it does not 
refer to vectors as lineal objects, but only to their endpoints,  it 
produces the most usable s tructure of the three. Figure 1 dep- 
icts a set of line segments  and its PM3 quadtree. Note that  
the PM quadtrees essentially solve the problem of how to 
represent vector data  exactly in a hierarchical structure.  The 
price is the cost of implementing variable size nodes. 

(a) (b) 

F i g u r e  1. (a) Set of line segments and (b) corresponding PM3 
quadtree. 

5. Edge EXCELL 

A slightly different method called edge EXCELL is 
described by Tamminen [Tamm83]. It is based on a regular 
decomposition tha t  splits the cells of a grid alternately along 
different dimensions. A grid directory is used to map the cells 
into storage areas of fixed capacity (buckets) which may reside 
on disk. In each bucket are stored the segments tha t  intersect 
the corresponding cell. When a bucket associated with a single 
cell overflows, every cell in the grid is split along one dimen- 
sion. Overflow buckets are used to handle the case when more 
segments  intersect at a point than can be contained in a 
bucket. Edge EXCELL is similar to the PM quadtree in that  
it a t t empts  to divide space into bins containing a manageable 
amount  of information, however it differs in that  it uses fairly 
large bucket sizes (i.e greater than 10 da ta  elements), while the 
various PM quadtrees use splitting rules which result in a low 
average occupancy. 

IV. T h e  P M R  quadtree  and f ragments .  

The structure tha t  we propose uses a variant of the 
PM quadtree,  henceforth referred to as the P M R  quadtree  as 
the means of controlling the amount  of information stored per 
node. We also generalize the concept of a line segment to 
represent vector da ta  in a manner  tha t  is exact and does not 
degrade under operations which cause a vector feature to be 
split or clipped. This generalization is referred to as a frag-  
men t .  

The PMR quadtree (for PM Random) is based on the 
observation tha t  any rule that  divides up the line segments 
among quadtree blocks in a reasonably uniform fashion can be 
used as the basis for a PM-like quadtree. In fact, unless it is 
required by the application, the structure need not be uniquely 
determined by the data. Probabilistic split t ing rules can be 
used as easily as any other. For instance, a rule such as "If 
the number of segments  in a block exceeds n when a segment 
is added, split it once" in conjunction with a corresponding 
deletion rule could be used to dynamically maintain a collec- 
tion of line segments.  

The PMR quadtree uses a pair of rules, one for split- 
t ing and one for merging, to dynamically organize the data. 
The split t ing rule, invoked whenever a line segment is added 
to a node, s ta tes  "if the number of segments in the node 
exceeds n (four in the particular example studied,) then split 
the node once into quadrants" .  The corresponding merging 
rule, invoked when a segment is deleted, states "merge while 
the number  of distinct line segments contained in the node 
and its siblings is less than or equal to n (four) " Figure 2 
shows the construction of a P1VIR quadtree with the threshold 
n equal to two, for the segments in Figure 1. Note in figure 
2b, that  the insertion of segment 7 causes two blocks to split 
(the NW and NE quadrants)  since the capacity of each of 
these blocks was exceeded by its insertion. Since a node is 
split only once when the insertion of a segment causes the 
threshold n to be exceeded, a node may contain more than n 
segments.  However, except in the unusual case where many 
segments  share an endpoint,  the node occupancy is unlikely to 
exceed the threshold by much. This scheme differs from the 
structures previously considered here in that  the quadtree for a 
given da ta  set is not unique, but  depends on the history of 
manipulat ions applied to the structure.  Certain types of 
analysis are thus more difficult than with uniquely determined 
structures.  On the other  hand, this structure permits the 
decomposition of space to be based directly on the lineal data  
stored locally. The PMR quadtree was chosen for this reason, 

(a) 

(3) 

(b) (c) 
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F i g u r e  2. Building PMR quadtree from segments of Figure 1 with threshold equal to two. (a) Three 
segments have been inserted causing the plane to be quart, ered once as indicated by the small circle, (b) 
Segments 4-7 inserted causing three blocks to split, (c) Segments 8 and g inserted calasing five more 
blocks to split. 
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We now address the problem of how to clip a segment  
in such a way t ha t  the operat ion may be reversed wi thout  
da ta  degradat ion should the missing portion be reinserted. In 
geographical applications, segment  t runcat ion arises when 
line map is intersected with an urea. Since the borders of the 
area may not correspond exactly with the endpoints  of the seg- 
ments  defining the line data ,  certain segments  may be clipped. 
Such an intersection is i l lustrated in Figure 3. The partial  line 
segment  produced is referred to as ~ fragment and the  artificial 
endpoin ts  produced by such an intersection are referred to az 
cut'points. The problem reduces to t ha t  of representing frag- 
ments .  One possible solution is to represent  a f ragment  by 
in t roducing new, in termedia te  endpoin ts  at  the cut points,  
creat ing a whole new segment.  In cont inuous space, a new 
segment  which is colinear with the original one, bu t  has at  
least  one different endpoint ,  can be exactly represented.  In 
discrete space (e.g., as a result  of the digitization process), this 
is not always possible because the cont inuous coordinates of 
the cut  point  do not, in general, correspond exactly to any 
coordinates in the discrete space. If the new line segment  is 
represented approximately  in the discrete space, then the origi- 
nal information is degraded, and the pieces cannot  reliably be 
rejoined. In addit ion,  if an in termediate  point  is introduced to 
produce new segments,  then the new line segment descriptor 
mus t  be propagated to all remaining blocks containing the ori- 
ginal segment.  This  is likely to be a very t ime-consuming 
operation.  

'~points 
cutpoint 

, i 

(a) (b) (e) 

F i g u r e  3.  Definition of u f ragment  (c) from the intersection 
of a segment  (a) with a region (b). 

An al ternat ive  solution is to retain the description of 
the original segment,  and use the spat ial  properties of the 
quadtree  to specify what  portions of the segment  are actually 
present.  The underlying insight is t ha t  a node may contain a 
reference to a segment,  even though the entire segment  is not 
present  as a lineal feature. Rather ,  the segment  descriptor 
contained in a node can be in terpre ted  as implying the pres- 
ence of jus t  t h a t  port ion of the segment  which intersects  the 
corresponding quadt ree  block. Such an intersection of a seg- 
ment  with a block will be referred to as a q-edge, and the ori- 
ginal segment  will be referred to as the parent segment. The 
presence or absence in the quadtree of a par t icular  q-edge is 
completely independent  of the presence or absence of q-edges 
represent ing o ther  par t s  of the parent  segment.  T h u s  lineal 
features  corresponding to par t ia l  segments  (i.e., f ragments)  can 
be represented simply by insert ing the appropr ia te  collection of 
q-edges. Since the original descriptors are retained,  a lineal 
feature can be broken into pieces and rejoined wi thout  loss or 
degradat ion of information. In the quadtree  s t ructure,  q-edges 
are combined to represent  a rb i t ra ry  f ragments  of line seg- 
ments .  Since they all bear the same segment  descriptor,  they 
are easily recognizable as deriving from the same parent  seg- 
ment .  This  solves the problem of how to split a !ine or u map 
in an easily reversible manner .  The  use of this  principle to 
represent  the lineal feature produced by the intersection of 
Figure 3 is shown in Figure 4. 

(a) i] I I  /,, I I I I 1  

L 
• . . . . . . . . . . . . . . . . .  J 

F i g u r e  4. Representa t ion of f ragment  of Figure 3 using a col- 
lection of q-edges. (a) Region quadtree  for area with line seg- 
men t  superimposed,  (b) set  of five q-edges composing frag- 
ment .  

The  P M R  quadtree  can be used to represent  a collec- 
t ion of f ragments  by slightly modifying the  spl i t t ing and merg- 
ing rules to  reflect the insertion and deletion of f ragments  
instead of line segments.  The  spl i t t ing rule which is invoked 
whenever  a f ragment  is in t roduced into the s t ruc ture  now 
s ta tes  "quar t e r  unt i l  no block contains  a cut point  in i ts inte- 
rior (i.e., first localize the cut  points), and then once more if a 
block conta ins  more t han  n (four) q-edges." The  merge condi- 
tion is now invoked bo th  when a f ragment  is deleted, and 
when one is inserted (since a f ragment  may be inserted which 
restores the  larger segment  of which it is a par t )  and s ta tes  
"merge  while there are n (four) or fewer dist inct  pa ren t  seg- 
ments  in the four sibling blocks and the q-edges are cont inuous  
through the block produced by the merge".  Q-edges sat isfying 
this last  condit ion are said to be compatible. For example, see 
figure 5a where q-edges a,b and e are compatible,  whereas in 
figure 5b, q-edges a and b are incompatible.  Figure 6 shows a 
set of f ragments  produced by the intersection of the segments  
of Figure 1 with an area, and depicts the corresponding PMR 
quadtree  when n is equal to two. 

(a) 

F i g u r e  5. Sibling blocks containing (a) compat ible  and (b) in- 
compat ible  sets of q-edges. 

(a) 

} 

(b) 

i 3"~ Z 
i / 'z ~'e,,3~ 

F i g u r e  6. (a) Set of five f ragments  induced by the intersec- 
tion of a region with the  segments  of Figure I. (b) PMR-f  
quadtree  with bucket  size equal to two, for f ragments  of Fig- 
ure 9 inserted in indicated order .The three circled splits were 
caused by exceeding the threshold.  All others  are necessary to 
localize the cut points of the fragments.  
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The above procedure is s tated in terms of arbi t rary 
f ragments  considered as abs t rac t  objects, but  in practice some 
method is needed for specifying a f ragment  concretely, The 
easiest method is to restrict  ourselves to the insertion and dele- 
t ion of the restricted set of f ragments  corresponding to the 
intersection of line segments  with  all potent ia l  quadtree blocks. 
We will term these q-fragments in view of their  similarity to 
q-edges. Arbi t ra ry  f ragments  cart be specified to the resolution 
of the tree in te rms of component  q-fragments which thus 
form a set of building blocks. Note t ha t  a given fragment  may 
be represented by different collections of q-edges in different 
quadtrees. The  part icular  collection of q-edges t ha t  results 
from the insertion of any fragment  depends upon the s t ructure  
of the tree, Precise algori thms for insertion and deletion of q- 
f ragments  in P M R  trees are given in the next section. 

V. Implementation and algorithms. 

The PMR quadtree was implemented in a geographic 
information system as purl  of an ongoing investigation into 
the use of of hierarchical da ta  s t ructures  in the representat ion 
and processing of cartographic information of which only a 
brief description is given here. For a detailed description see 
[Same85d}. Since quadtrees are based on spatial  decomposi- 
tion, and geographical information is intrinsically spatial  in 
nature,  it was felt t ha t  quadtrees would be particularly 
appropr ia te  as a basic da ta  s t ructure  for this application. The  
current  system includes representat ions and primitive opera- 
t ions which can be used to efficiently handle queries such as 
" repor t  all wheat-growing regions within 50 miles of the Mis- 
sissippi River".  

Because of the large amoun t  of information contained 
in geographic features, most  of the da ta  must  be maintained in 
secondary storage. In the database  system, this is achieved by 
use of a s t ructure  called a linear quadtree IGurg82], which is a 
list of the quadtree leaf nodes in the order tha t  would be pro- 
duced by a preorder t raversal  of the tree. The leaf nodes are 
represented by a pair of numbers  collectively termed a loca- 
tional code. The first number  corresponds to the level of the 
node in the quadtree.  The second is composed of a sequence of 
two bit  directional codes t ha t  give the path  from the root of 
the quadtree  to the leaf. This  process is equivalent to taking 
the x-y coordinate of the pixel in one corner of the leaf and 
interleaving the bits. The  ordered list is mainta ined on disk as 
a B-tree [Come79] which is b rought  into core a few pages at a 
time. This  organization enables the efficient execution of any 
operat ion t ha t  can be performed by traversing the quadtree in 
preorder including calculation of area, overlay, display, and 
connected component  analysis. In fact almost any task which 
can be performed one scan line at  u time in an array represen- 
ta t ion can be done during a single traversal in a quadtree. 
The B-tree s t ruc ture  is mainta ined by a kernel of primitive 
funct ions which allows the user to manipula te  the s t ruc ture  as 
if it were an ordinary quadtree. The  system represents areal 
and point  da ta  as (linear) region and PR quadtrees respec- 
tively. The  similarity of these two da t a  s t ructures  allows easy 
implementa t ion of operat ions involving multiple da ta  types -- 
for example locating all the cities with population greater than 
5,000 within 20 miles of wheat-growing regions in Texas. 

Since line da ta  const i tute  a th i rd  major  cartographic 
da ta  type, a line representat ion is desired which is similarly 
compatible. The search for such a s t ructure  led us to the 
development  of the PMR quadtree and the idea of fragments.  

The  first question is how to implement  the variable size 
nodes. Since the number  of line segments in a node is poten- 
tially unbounded,  a t rue variable-length storage scheme must  
be used. For pointer-based quadtrees, linked lists are one pos- 
sibility. An al ternat ive is a var iant  of a binary tree s t ruc ture  
tha t  reflects the position of the segments within the block (see 
Samet  and Webber  [Same85e]). The  second suggestion seems 
to be unnecessarily complicated for our application. One pro- 
perty of the PMR quadtree is tha t ,  a l though the maximum 
number  of q-edges occurring in a node is potentially 
unbounded,  the average occupancy remains low. For  random 
vectors, it can be shown tha t  the expected value is less than  n 
if n > l .  In our empirical tests, wi th  n ~ 4 ,  the average occu- 
pancy remained less than 3 in a}l cases. The low average occu- 
pancy makes a linear search through the q-edges of a node 
practical. For linear quadtrees, ordered by the locational codes 
of their  leaf nodes, the simplest way of implementing variable 
node sizes is to duplicate loeational codes. This is the method 
used in our application. The  q-edges intersecting a node are 
represented by a pointer  to a record describing the parent  seg- 
ment.  All q-edges with the same parent  share this descriptor~ 
which avoids unnecessary duplication of information. 

We now present  algori thms for the insertion and dele- 
tion of q-fragments  in the PMR quadtree. At  this point  we 
should emphasize, the terminological distinction between q- 
edges and q-fragments.  We use the  term q-edge, to refer to the 
information content  of a PMR quadtree node. Every node in 
the PMR quadtree contains zero or more q-edges representing 
the intersection of line segments  with the corresponding quad- 
tree block. We use the term q-fragment, on the other  hand,  to 
refer a member  of a convenient  set of primitive fragments,  
which jus t  happen to be the the intersections of line segments  
with potent ia l  quadtree blocks. 'The  Block is conceptual in 
t ha t  it may not  correspond to a leaf node in the quadtree into 
which the q-edge is being inserted. The  block may correspond 
to a node deeper than any t ha t  exist in the tree, in which case 
the plane must  be fur ther  subdivided. On the other  hand,  the 
block may correspond to u gray node in the quadtree in which 
ease, several q-edges mus t  be inserted. 

We assume tha t  a PMR quadtree is represented as a 
collection of pointers  to records of type node. These concep- 
tual nodes may contain a variable amount  of information since 
a node may contain several q-edges. We also assume some 
basic routines for manipula t ing  the s tructure.  In the following 
N is a pointer  to a quadtree node, L is a pointer  to a record 
representing a line segment,  and 13 refers to the locational code 
of a quadtree block. INSTALL(L,N) installs u q-edge in node 
N corresponding to the intersection of line segment L with the 
node N. REMOVE(L,N) removes q-edge corresponding to the 
intersection of L with N from node N (if it exists there). 
SPLIT(N) splits leaf node N into quadrants.  MERGE(N) 
merges leaf node N with its siblings if they are leaf nodes. 
FIND(B) takes a block and re turns  a pointer to the 
corresponding node n in the tree if it exists, or to the smallest 
subsuming node if it does not. SPLITCOND(N) re turns  true 
iff node n contains  more than (four) q-edges. 
MERGECOND(N)  re turns  true iff node N is a leaf node all of 
whose siblings are leaf nodes, and the siblings contain (four) or 
fewer paren t  segments,  and their q-edges are compatible. 
SON(13, direction) returns the locational code of the block 
which is the son of B in the given direction. SIZE(N) returns 
the size of a node N or block 13. 
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Insertion of a q-fragment, say F representing the inter- 
section of line segment L with block whose locational code is B 
is accomplished as follows. 

(1) 

(2) 

(3) 

If B corresponds to a leaf node then F is installed, and 
the node is checked for splitting or merging. Merging can 
occur if the inserted q-edge restores a larger fragment. 
An example of this is shown in Figure 7. 

If B corresponds to a gray node, then the q-fragments 
corresponding to the intersection of L with the sons of B 
are inserted recursively. Figure 8 shows this procedure. 

If B is subsumed by a leaf node, say N, then N is quar- 
tered until a leaf node is produced which corresponds to 
B, and F is then installed as in ease 1. This process is 
illustrated in Figure 9. 

(a) (5) (c) (d) 

Figure 7. Insertion in PMR quadtree of a q-fragment which 
causes merging of blocks. (a) Quadtree before insertion, (b) q- 
fragment to be inserted, (c) insertion produces sibling blocks 
with compatible q-edges, (d) Structure after merging. 

Ca) (b) 

1 (c) 
P 

F igure  8. Insertion in PMR quadtree. Large q-fragment is 
inserted by decomposing it in¢o smaller q-fragments. (a) Origi- 
nal quudtree, (b) q-fragment to be inserted, (e) q-fragment bro- 
ken into three, smaller q-fragments whose sizes match those of 
extant blocks. 

b0 (b) 
[] 

Figure  9. Insertion in PMR quadtree of small q-fragment 
into large block. (a) Original quadtree, (b) q-fragment to be 
inserted, (c) block quartered until size matches q-fragment. 

Moreformally, we have: 

recursive procedure INSERT(L,B); 
/* Insert the q-fragment corresponding to the intersection of 

line segment L with the quadtree block whose ]ocational 
code is B into the PMR quudtree */ 

begin 
value poin ter  line L; 
value locationcode B; 
pointer node N; 
q u a d r a n t  I; 
N ~-- FIND(B); 

if SIZE(N) ~- SIZE(B) then 
begin 

INSTALL(L,N); 
if SPLITCOND(N) then  SPLIT(N) 
else if MERGECOND(N) then  MERGE(N); 

end 
else if SIZECN) < SIZE(B) then 

begin 
for I in {'NW', 'NE', 'SW', 'SE'} 

do INSERT(L, SON(B,I)); 
end 

else 
begin 

while SIZE(N) > SIZE(B) do 
begin 

SPLIT(N); 
N *- FIND(B); 

erid; 
INSTALL(L,N); 
if SPLITCOND(N) then  SPLIT(N) 
else if MERGECOND(N) then  MERGE(N); 

end; 
end; 

Deletion of a q-fragment, say F, representing the inter- 
section of a line segment L with a block whose locationa! code 
is B, is accomplished by a similar procedure. Deletion of a q- 
fragment is interpreted as erasing a portion of the parent seg- 
ment. 

(I) If B corresponds to a leaf node which contains F, then 
the reference to F is removed and a check for merging is 
made on the node and its siblings. 

(3) If B corresponds to a gray node, then the q-edges formed 
by intersecting L with the sons of B are deleted recur- 
sively. 

(a) If B is subsumed by a leaf node, then that node is quar- 
tered until a leaf node is produced which corresponds to 
B, and F is deleted as in 1. 

More formally, we have 

recursive procedure  DELETE(L,B); 
/* Delete the q-fragment corresponding to the intersection of 

line segment L with the quadtree block whose locational 
code is B from the PMR quadtree */ 

begin 
value pointer line L; 
value locationcode B; 
pointer node N; 
q u a d r a n t  I; 
N ~- FIND(B); 
if SIZE(N) = SIZE(B) then  

begin 
REMOVE(L,N); 
if MERGECOND(N) then MERGE(N); 

end 
else i f  SIZECN ) < SIZE(D) then 

begin 
for I in ('NW', 'NE', 'SW', 'SE'} 

do DELETE(L, SON(B,I)); 
end 

else 
begin 
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w h i l e  SIZE(N) > SIZE(B) do 
b e g i n  

SPLIT(N); 
N ~ rIND(B);  

end ;  
R E M O V E ( L , N ) ;  
if  MERGECOND(N)  t h e n  MERGE(N);  

end ;  
end ;  

VI. Teats and Cornpa.risons 

In order t,o evaluate the performance of the proposed 
line representat ions,  tests were run using geographic data  on 
four different structures:  MX, edge, PM3, and PMR quadtrees. 
PM3 quadtrees were implemented using f ragments  in a manner  
analogous to our PMR implementat ion.  The  first two, as dis- 
cussed in earlier sections of this paper, have deficiencies tha t  
ul t imately make them unsuitable for the desired application. 
However, enough can be done with them to allow a meaningful 
comparison to be made for some operations. In particular,  if 
the performance of the P M  methods is far worse than  tha t  of 
methods known to be deficient other ways, we must  ask 
whether  the gain is worth the cost. The following tests were 
made, 

(1) Time required to build the quadtree structure.  
(2) Comparison of the storage requirements of the different 

representations.  
(3) Time required to perform an intersection with an area. 
(4) Comparison of the effect of different values for the split 

threshold n for PMR quadtrees. 

Three  different lineal da t a  sets were used in the tests. 
The  da ta  are in the form of connec ted  line segments  and 
correspond to maps of three different geographic features: a 
railroad line, a city boundary,  and a road map for the city. 
The  first is very simple and contain only 16 segments.  The  
city boundary is a simple closed curve containing 64 segments.  
The road map is fairly complex and contains 764 segments 
(figure 10). The  vector endpoints  were digitized onto  a 512 x 
512 grid which is the size of the space used for the experi- 
ments.  

F i g u r e  10. Set of 764 line segments  eonsi tut ing road map. 

1. Building test. 

The  building algori thm essentially tests  the efficiency of 
insertion into the s t ructure.  The three maps were built  for 
each of the four structures.  Results are displayed in Table  1. 
Utime refers to the actual runt ime of the algorithm. The  da ta  
indicate tha t  none of the methods is overwhelmingly superior 
in terms of insertion efficiency, but  the PMR representat ion 
has a definite if irregular lead in most  cases. In the ease of the 
road map, which represents  the most  realistic da ta  set, the 
MX, edge, and PMR representa t ions  are more or Iess 
equivalent,  and about  30% faster than the PM3. 

2. Tree sizes. 

The  final size of the s t ruc ture  is impor tan t  because it is 
the form in which the information is stored within the system. 
To a lesser extent,  the size is impor tan t  because many of the 
algori thms run in time proport ional  to the number  of nodes 
(i.e., the size) of the quadtree. However, the constants  of pro- 
port ionali ty may differ between different representations,  so a 
comparison in this respect is not  very meaningful wi thout  
addit ional  information.  The  results are tabulated in Table  1 
for the three maps and methods. The  term "leaves" refers to 
the number  of quadtree  leaf nodes for the MX and edge quad- 
trees, and to the sum of the number  of q-edges and the 
number  of empty nodes for the P M  quadtrees. A quadtree leaf 
and a q-edge pointer occupy the same amount of storage, so 
the numbers  represent  comparable quantities.  The  term 
"qnodes"  refers to the number  of nodes in the PM methods 
and is included to provide a feeling for the fullness of the 
nodes and to suppor t  the claim tha t  the average occupancy is 
indeed small  (less than three for all examples here), for realistic 
geographic da t a  sets. 

Map 
railroad 

city 

road 

Table  1: Building times an 

i St ructure  Utime 
MX 2.21 
edge 
PM3 
PMR 

MX 2.62 
edge 2.25 
PM3 2.36 
P M R  1.28 

MX 22.55 
edge 20.48 
PM3 29.38 
PMR 19.03 

and sizes 

Lea~ qnodes 
2101 . . . . .  

.63 301 . . . . .  

.63 92 70 

.30 35 19 
2347 . . . . .  
835 ..... 
310 214 
151 70 

19699 . . . . .  
7723 . . . . .  
3939 2350 
2078 874 

Examinat ion of the results reveals a steady decrease in 
the required storage from MX to edge to PM3 to PMR. The  
PMR representat ion is at  least eight times more efficient in its 
use of storage than the simple M X  in all the cases tested, but  
both  PM techniques improve the storage efficiency significantly 
over the other  two techniques. This  improvement  can be 
explained by noting tha t  the PM quadtrees use one- 
dimensional  primit ives which can extend over distances of 
many pixels ra ther  than the pixel by pixel representat ion tha t  
is used by the MX method exclusively, and by the edge 
method when segments  approached each other.  It should be 
ment ioned t ha t  these results are for collections of complete line 
segments  since no cut-points  were involved in the original 
maps, The  presence of cut-points  in the da t a  would be 
expected to reduce the storage efficiency, since fur ther  decom- 
position would be required to loeMize them. 
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3. Intersection test. 

The  intersection function is a high level geographic 
computa t ion  which involves processing the ent ire  da ta  struc- 
ture. In the case of the PM quadtrees,  it tests  the efficiency of 
the f ragment  representat ion,  because the previously in tac t  line 
segments  are now cut where they cross an area boundary.  
Because the P M / f r a g m e n t  methods  enable the performance of 
operat ions  not  possible with  the local methods (e.g., reassem- 
bling split  lines wi thou t  degradat ion of data)  it is no t  entirely 
clear t ha t  the different intersection computa t ions  are compar- 
a~ble: however, the results may give a general idea of the prac- 
ticality of high level operations.  The  intersections were per- 
formed using the roudmap as the lineal da ta  set (the others  
being too small  to provide u reasonable intersection,) and three 
binary maps and thei r  complements,  represented in the form 
of area quadtrees,  as templates .  The use of the complements  
is intended to permi t  the effects of the size and shape of the 
templates  to be dist inguished from the overall efficiency of the 
different algori thms.  This  precaution is necessary because the 
intersect ion algori thm used with the P M  s t ruc tures  works 
differently than  the one used with the two other  methods,  and 
is affected differently by changing the shape of the template.  
In part icular ,  the intersection procedure for the MX and edge 
quadtrees  works by insert ing into a blank map all linear sec- 
t ions t h a t  intersect  the template ,  while the procedure for the 
P M  quadtrees  works by erasing the sections of the line map 
which do not  intersect the template.  It turns  out  t ha t  inser- 
tion and deletion of q-edges are operat ions of comparable  com- 
plexity. For a map produced by erasing portions of a preexist- 
ing map,  the n u m b e r  of deletions corresponds to the number  
of insert ions necessary to produce the complementary  map 
since the same q-edges are involved. Hence it is more 
appropr ia te  to compare the intersect ions of the first two 
representa t ions  with the complementary  intersections of the 
P M / f r a g m e n t  representat ions.  

The  three templates  used are referred to as center,  
stone, and pebble, and represent  a floodplain in register with 
the road map,  and unrelated binary images derived from thres- 
holded photographs  of s tones and pebbles respectively. Only 
the floodplain map has any geographic relevance. The  other  
two were used with the in tent ion of giving the system a more 
s t r ingent ,  if less realistic, test. In particular,  the degree of 
f ragmenta t ion  induced by the pebble map probably exceeds 
any t h a t  would normally arise in a geographic application. 

The  results  of the tests  are given in raw form in Table  
2, and are apparent ly  ambiguous. In some cases the PM 
methods  take much longer than  the NiX and edge schemes, 
bu t  in o thers  they take less t ime ( though not correspondingly 
so). This  inconsistency is due to the complementary  effect of 
the  different intersection algori thms discussed above. Table  3 
reorganizes the da t a  so tha t  the appropr ia te  complements  are 
compared,  and a consis tent  t rend is now apparent .  The  time 
needed to perform an intersection generally increases from MX 
to edge to PM3 to PMR with the PM methods  taking some- 
where around twice as long as thei r  competitors.  Note tha t  
the order  in which the intersection times increase is the same 
in which the s t ruc ture  sizes decrease suggesting t h a t  we are 
observing a t ime versus space trade-off. 

Tab le  2 also gives the sizes of the s t ructures  represent- 
ing the intersections.  Compar ing  the sizes of the resulting 
maps  reveals that ,  as predicted above, the improvement  in 
storage requirements  from /VLX to PMR is less d ramat ic  than 
when no cut points  were present.  The degree of f ragmenta t ion  

varies, bu t  in the case of intersections with the pebble map 
and its complement ,  it is probable t ha t  few if any of the origi- 
nal segments  are intact .  Since addit ional  spl i t t ing is required 
to localize the f ragment  ends, the representat ion is not  as 
efficient as for da t a  t h a t  contains  no cut points. The  improve- 
men t  is still present,  however, with the P M  methods  generally 
requiring between one half and one quarter  of the space of the 
MX, and significantly less than the edge quadtree.  The  order 
of decreasing sizes from MX to PMR which was noted for the 
segment  da ta  remains the same. 

Table  2: Intersect ion times and sizes 
In tersection 

road & center  

road & centercomp 

road & stone 

road & s tonecomp 

road & pebble 

road & pebblecomp 

St ruc ture  Utime Leafs qnodes 

MX 4.10 3094 . . . . .  
edge 5.60 1759 . . . . .  
PM3 15.50 1019 874 
P M R  14.60 910 775 

M_X 16.90 17314 . . . . .  
edge 14.50 8320 . . . . .  
PM3 6.83 4275 2677 
P M R  1 8.02 2568 1402 

v 

MX 4.90 3397 . . . . .  
edge 8.70 2344 . . . . .  
PM3 22.40 2011 1774 
P M R  28.10 1853 1651 
/k/iX 19.70 17776 . . . . .  
edge 19.60 8803 . . . . .  
PM3 15.30 4684 3244 
P M R  22.00 3270 2122 

MX 11.45 9022 . . . . .  
edge 17.25 5653 . . . . .  
PM3 32.20 4530 3760 
P M R  47.00 4034 3370 

MX 16.95 13564 . . . . .  
edge 20.80 7459 . . . . .  
PM3 30.20 5086 4078 
P M R  42.00 4250 3436 

Table  3: Reordered intersection t imes 

Intersect ion St ruc ture  Ut ime 
road & center  MX 4.10 

edge 5.60 
road 2z. eentercomp PM3 6.~3 

P M R  8.02 

road & centercomp M_X 16.90 
edge , 14.50 

road & center  PM3 , 15.50 
PMR 14.60 

road & stone MX 4.90 
edge 8.70 

road & s tonecomp PM3 15.30 
P M R  22.OO 

road & s tonecomp MX 19.70 
edge 19.60 

road & stone PM3 22.40 
P M R  28.10 

road & pebble MX 11.45 
edge 17.25 

road & pebblecomp PM3 30.20 
P M R  42.00 

road & pebblecomp MiX 16.95 
edge 20.80 

road & pebble PM3 32.20 
PMR 47.00 
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At first glance, the results seem disappointing because 
we have come to expect, since so many quadtree algorithms 
can be made to run in time proportional to the number  of 
nodes, tha t  a decrease in the size of a structure will imply a 
corresponding decrease in execution time for operations per- 
formed using that  structure.  There is however, no reason to 
expect this property to hold across different structures,  since 
the amount  of work done per node will certainly differ. On 
the other  hand, the increased execution time is by no means 
severe enough to damage the value of the representation. This 
is especially true in light of the fact that  the PM/ f r agmen t  
s t ructures  have capabilities and a certain elegance tha t  the 
MX and edge quadtrees completely lack. This is worth a cer- 
tain price. 

4. Different splitting thresholds. 

In our implementat ion of the PMR quadtree, we chose 
n ~ 4  as the threshold at which to split a node. It was clear 
from the s tar t  that  both very low and very high thresholds 
would degrade the performance of the structure.  For low 
spli t t ing thresholds, say one or two, the storage requirements 
would tend to be high, since a large amount  of split t ing would 
take place in a futile a t t empt  to separate intersecting vector 
features. Conversely, a high average occupancy would unduly 
increase the amount  of effort involved in processing each node, 
the extreme example being a single node containing a list of all 
the vector features, which would completely nullify any 
benefits obtained from the spatial decomposition. We initially 
selected a threshold of four because that  was the greatest  
number  of roads likely to intersect at a single point. Tests  
were run for thresholds of 1,2,4,8,16 and 32 on two da ta  sets: 
the road map, and a collection of 100 randomly intersecting 
line segments. The segments  for the road map  form a planar 
graph, but  no such restriction was imposed upon the random 
segments  of the second da ta  set. 

The times and sizes for the building and intersection 
algorithms are given in tables 4 and 5. For the roadmap, the 
results are as expected. There is a slow decrease in building 
time, and a rapid decrease in storage requirements as the 
threshold increases. T h i s  is not surprising since generally less 
decomposition is being done. For the intersection algorithm, 
the time increases for both high and low thresholds as 
predicted, with a minimum at n ~ 4 .  The storage requirements 
of the PMR quadtree representing the intersection decrease to 
an asymptot ic  value as the threshold increases. This is the 
point at which all decomposition is due to the localization of 
f ragment  .endpoints, and further  changes in the threshold con- 
sequently have no effect. 

The results for the random segments are very similar. 
The optimal threshold for the intersection algorithm is 8 
instead of 4, but  the difference is very small. The somewhat  
greater sensitivity of the s tructure storage requirements to the 
threshold is due to the fact that  the road map contains many 
very short  segments  with the result tha t  there are fewer oppor- 
tunit ies for merging when the threshold is increased. The fact 
that  the performance of PMR quadtree is similar for radically 
different types of vector data, suggests tha t  it would provide a 
robust,  general vector representation.  

Table 4a: Results of building P M R  road map 
using different thresholds. 

Threshold Utime Leaves 

1 
2 
4 
8 

16 
32 

26.9 
22.5 
16.6 
14.7 
13.7 
15.6 

5765 
4082 
2078 
1396 
1145 
1001 

Qnodes 

3745 
2404 

874 
346 
163 

73 

Table 4b: Intersection of PMR road map with 
center using different thresholds. 

Threshold Utime Leaves Qnodes 
1 
2 
4 
8 

16 
32 

14.7 
13.5 
12.0 
13.8 
17.8 
22.0 

1069 
968 
910 
897 
895 
895 

925 
829 
775 
763 
760 
760 

Table 5a: Results of inserting 100 random 
segments  using different thresholds 

Threshold Utime Leaves Qnodes 

1 31.1 9189 6508 
2 20.4 5970 3433 
4 11.6 3031 1114 
8 6.3 1407 262 

16 4.2 763 79 
32 3.4 452 25 

Table 5b: Intersection of 100 random segments 
with center using different thresholds. 

Threshold Utime Leaves Qnodes 
1 
2 
4 
8 

16 
32 

23.5 2496 
17.9 2159 
16.1 1880 
15.8 1807 
19.3 1774 
27.2 1774 

2131 
1804 
1582 
1540 
1531 
1531 

V H .  C o n c l u s i o n s  

The P M R  quadtree used to store segment fragments  
provides a hierarchical vector representation tha t  satisfies the 
conditions set forth at the beginning of this paper. It is exact 
(i.e., non digitized). It allows consistent updat ing of the data,  
and permits  primitive vector features to be manipulated as 
well as cut or clipped and reconstructed without  data  degrada- 
tion. It facilitates efficient insertion and deletion of vector ele- 
ments,  and the performance of high level operations such as 
area intersection. Since the endpoints  of the vectors are not 
used to direct the spatial  decomposition, both planar and 
non-planar  graphs can be efficiently represented. 

The basic technique, is not however, limited to 
representing lineal data  in two dimensions. The idea of using 
probabilistic split t ing and merging rules to recarsively decom- 
pose the space and dynamically organize the da ta  into bins of 
manageable average size is a powerful general notion. The 
PMR quadtree generalizes immediately to the representation of 
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lines or faces in three or more dimensions. For some recent 
work involving PM quadtrees in 3 dimensions, see [Aya185, 
Carl85, Fuji85]. Moreover, the object represented by the q- 
edge need not be a line segment, but  could be any entity for 
which there exists a descriptor, and which has definite spatial 
extent. The representation of lineal data  could be extended 
for example, by having "generalized q-edges" represent the 
intersection of the blocks with cubic splines rather than simply 
with line segments. As another example, consider an image 
processing environment where a generalized q-edge could 
represent the presence or absence of a proposed object in the 
block. Several hypotheses could be maintained simultane- 
ously, and updated as processing progressed. As a third exam- 
ple, the generalized q-edge could represent the intersection of a 
rectangular region with the block in a system for VLSI design 
rule checking. 

To sum up, the PM quadtrees using fragments provide 
a conceptually clean representation for lineal data  which expli- 
citly addresses its one-dimensional character. For the geo- 
graphic information system, the structures compare favorably 
in performance with the cruder MX and edge qu~dtrees in 
cases where they can be compared, and resolve the problems of 
loss of information and degradation of data  which encumbered 
the latter. Finally, the structures have the potential for use as 
a general representation in any application where the spatial 
relationship of objects is important.  
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