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ABSTRACT

We present an algorithm for converting from the
boundary representation of a solid to the correspond-
ing octree model. The algorithm utilizes an efficient
new connected components labeling technique. A no-
velty of the method is the demonstration that all
processing can be performed directly on linear quad-
and octree encodings. We illustrate the use of the
algorithm by an application to geometric mine model-
ing and verify its performance by analysis and practi-
cal experiments.

CR Categories and Subject Descriptors: 1.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling -- Solid and Object Representations,
Geometric Algorithms, Languages, and Systems

General Terms: Algorithms, Data Structures, Perfor-
mance

Additional Key Words and Phrases: Image Processing,
Octree, Conversion

1. Introduction

A solid modeler is a system for manipulating spatially
complete data on the geometric form of three-
dimensional solid objects. Each modeler uses one or
more solid representation schemes and conversion al-
gorithms between representations have become in-
creasingly important (Requicha and Voelcker 1983).

The main representation of constructive solid
geometry (CSG) modelers is a tree of set operations
and rigid motions applied to primitive building blocks
while boundary representation modelers define a solid
by a collection of faces, edges and vertices. A radi-
cally different approach, receiving increasing atten-
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tion, is exemplified by the octree scheme (Meagher
1982a) of hierarchic spatial enumeration. It divides a
region of space recursively into eight cubic parts un-
til each one is simple (empty or solid) or a fixed
maximal resolution is reached.

Relaxing some of the assumptions of the octree
model we shall more generally consider block models
or three-dimensional image trees. Figure 1-1 shows
a polyhedron with 588 facesa(a) gnd Rart of its block
model formed at resolution 2°x 2°x 2 (b).

(a) Polyhedron (b) Block Model

Figure 1-1
Polyhedron and Part of Corresponding Block Model

The methods used for analyzing the integral proper-
ties of solids and for converting between representa-
tions depend intimately on the underlying solid
representation as discussed by Lee and Requicha
(1982), whose algorithm converts efficiently from the
CSG scheme into a block model. We shall present a
technique for converting from a boundary representa-
tion into a block model. This topic has not been
much treated in the literature: neither Meagher
(1982b) nor Lee and Requicha (1982) nor Requicha
and Voelcker (1983) report efficient solutions. Our-
selves, we have heretofore used an algorithm reported
in (Tamminen et al. 1984).

Block models, and octrees in special, are direct
derivatives of the two-dimensional quadtree represen-
tation of images, originally introduced by Klinger
(1971). See (Samet 1983) for a comprehensive survey.
There exist many different encodings of quadtrees,
octrees and similar hierarchical data structures. The
explicit pointer based tree representation of a block
model is not well suited for external storage and or-
dinarily requires 20 to 40 times as much space as the
most compact linear tree representations (Kawaguchi
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and Endo 1980, Meagher 1982a, Gargantini 1982b,
Yamaguchi et al. 1983, Tamminen 1984).

The space .complexity of an octree corresponding to a
general polyhedron is proportional to the surface area
of the polyhedron measured at the chosen resolution
(Meagher 1982b). Even at moderate resolution the
block model may contain hundreds of thousands of
nodes. Thus, it is not always sufficient to formulate
a general conversion algorithm; it may be as impor-
tant that it supports a linear tree representation.

In (Samet and Tamminen 1983) we have presented a
new technique of determining geometric properties,
such as the perimeter, of linear quadtree encodings
and in (Samet and Tamminen 1984) the method has
been applied to 3-dimensional connected components
labeling. Now we show how the same approach can
be used in the conversion problem. The demonstra-
tion that all phases of our algorithm can operate
directly on linear tree representations without utiliz-
ing explicit neighbor finding techniques (Samet 1981)
is one of its main interests. )

The practical framework of our research is the
Geometric Workbench (Mantyla and Sulonen 1982), an
experimental solid modeler constructed at the Hel-
sinki University of Technology. The conversion prob-
lem originates from applying GWB to geometric mine
modeling (Karonen et al. 1983). Through the conver-
sion program, GWB has been connected to the octree
modeler OCTGRAS (Yamaguchi et al. 1984), made
available to us through co-operation with the Kunii
Laboratory of the University of Tokyo.

We first describe briefly the application and previous
conversion efforts. Section 3 defines linear image
tree representations. In Section 4 we formulate the
new conversion algorithm. Its performance is
analyzed in Section 5 and finally the claims verified
by experimental results.

2. Background

2.1. Why Conversions

We first briefly discuss an example application,
geometric mine modeling, to demonstrate why conver-
sions are needed.

The methods of this article were first motivated by
an experimental geometric mine modeling system im-
plemented together with a Finnish mining company,
Outokumpu Oy. The system operates on boundary
models representing entities, such as ore bodies, tun-
nels, or planned excavations. Three dimensional
solids describing ore bodies are constructed by con-
necting two-dimensional sections by a three-
dimensional boundary (Figure 1l-la).

The principal analysis task of mine design consists of
intersecting a planned excavation with an ore body
and determining the amount of minerals and side ma-
terial thus formed (Figure 2-1). This requires a
volume integration of the type:

0)] ff(x,y,z)dV,

where f(x,y,z) is the (unknown) function describing
mineral content at each point of space and S is the
solid modeling the extracted part of the ore body.
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Figure 2-1
Modeling Excavation by a Boolean Set Operation

The function f is empirical, in that it must be es-
timated at each relevant point separately by geosta-
tistical methods, or kriging (Journel and Huijbregts
1978). Therefore , discrete approximations (Lee and
Requicha 1982) must be employed to evaluate ().
The determination of one value of f(x,y,z) necessi-
tates a spatial search among the hundreds or
thousands of drill samples and is an expensive opera-
tion. i

Geostatistics is applied to the boundary representation
of an ore body by first converting into a block
model. Each block is estimated separately and the
results summed for a total value.

2.2. Existing Algorithms

There do not exist many publications on converting a
boundary representation into an octree. However,
such a component is used in. some practical systems
(Meagher 1983, Requicha and Voelcker 1983). The al-
gorithms utilized can be divided into two groups:
those based on connectivity (Meagher 1983) and those
based on explicit block classification (Tamminen et
al. 1984). A third approach would be to make M
sections of the polyhedron, convertZ each one of them
into a quadtree at resolution M~ a combine the
results into an octree at resolution M~ by the algo-
rithm of Yau and Srihari (1983).

Conversion algorithms based on connectivity reflect
the structure of the quadtree algorithm of Samet
(1980). They first determine the volume elements ly-
ing on the boundary of the solid. The partial tree
thus formed is then traversed and each unclassified
leaf is determined to be empty or full by inspecting
its neighbors. This approach can also be implemented
by using a connected components labeling algorithm.
For efficiency, the method has required an explicit
tree representation.

In the geometric mine modeling system we have util-
ized an algorithm where each leaf of the block model
is explicitly classified by a point-in-polyhedron test.
The main computational operations of this algorithm
are to determine whether a block intersects the
boundary of the solid and, if so, whether it is con-
tained in it. These operations typically have to be
performed tens of thousands of times with the boun-
dary model containing hundreds of faces. The tech-
nique has been made efficient by using a spatial in-
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dex based on the EXCELL method (Mantyla and Tam-
minen 1983). ' In practice computation time is almost
independent of the number of polygons defining the
polyhedron.

This method has not been a main bottleneck of the
mine modeling system. However, with the resuits of
Samet and Tamminen (1983), implementing the con-
nectivity approach has become justified.

3. Binary Image Trees

Solid modeling by spatial enumeration is closely relat-
ed to three-dimensional image processing, which will
be reflected in our terminology. This section per-
tains to both two- and three-dimensional images but,
for conciseness, we present mainly the three-
dimensional case.

3.1. Definitions

We shall consider two- (2D) and three dimensional
(3D) binary images (i.e., 2- or 3-dimensional matrices
of pixels, respectively voxels) and speak of the pixels
and voxels as image elements. We use the same
term also for the homogeneous blocks (leaves), which
are the basic elements of quadtrees and octrees. Let
M = 2" describe the resolution of the imagg so that
the total number of pixels (voxels) is M~ (M”)

An octree is defined as a recursive 8-ary partition of
a three-dimensional image into octants until homo-
geneous blocks (BLACK or WHITE) are reached
(Srihari 1981, Meagher 1982a, Jackins and Tanimoto
1980,1983). A three-dimensional binary image tree is
formed exactly analogously but by dividing only in
two parts at each level of recursion. We assume the
first partition to be in the x-direction with the y-,
z- and x-directions alternating thereafter. Figure
3-1 illustrates this concept. In the x-—partition we
postulate the left subtree to correspond to the
western (W-) half of the image; in the y-partition it
corresponds to the S-~half. Let us similarly speak of
the lower (L) and upper (U) halves of the z-partition.

A node in a 3D binary image tree has six sides (W,
E, S, N, L, U) and a neighbor node (of equal size), in
each of these directions. In the ordering of nodes
induced by a preorder traversal of the binary tree all
the nodes in a W- or S- or L-neighbor of a given
node come before that node. We utilize binary im-
age trees mainly because tree traversal algorithms
become somewhat simpler than for octrees.

3.2. Representations

We use a linear tree representation that is based on
the preorder traversal of the binary image tree. The
traversal yields a string over the alphabet "(", "B",
"W" corresponding respectively to internal nodes
(GRAY), BLACK leaves, and WHITE leaves. We call
this string a DF-expression as Kawaguchi and Endo
(1980) do in the case of quadtrees. A different but
related representation is the linear octree of Gargan-
tini (1982). For the image of Figure 3-1 the DF-
expression becomes (B(B(BW. Its most straight-
forward bit-encoding requires two bits per node both
for octrees and binary image trees. Explicit pointer

a8 B8 B w

(a) Image (b) Binary tree
Figure 3-1
Three~-dimensional Binary Image Tree

based representations ordinarily require at least one
computer word per node (Meagher 1982b).

In (Tamminen 1984) we have reported methods of
compacting the DF-expression. First of all, encode
ll(ll by lll" am "BII and IIWII by “01" am "00"’ Iespa:_
tively. Further, at the lowest level of a condensed
tree there may exist only two types of node pairs,
"BW" and "WB". Thus these pairs may be encoded by
"0" and "1", respectively. In practice the above
method has required about one bit per node of a
three-dimensional binary image tree.

A binary image tree always contains at most as many
leaves (but often more nodes) than the cogresponding
octree. For instance, at resolution M = 2° the con-
densed binary tree of the surface of a unit sphere
contains 25600 leaves while the corresponding octree
has 43800 leaves.

4. Conversion Algorithm

4.1, General Outline

In Figure 4-1 we give the outline of an algorithm for
converting from a boundary representation to a 3D
image tree. The method supports multiple solids
without interior voids, but the 3D outside of the
solids must be connected.

First, in procedure COMBINE3(), each face is
separately converted into a linear image tree
representation. The trees are recursively
OVERLAY ‘ed in pairs to give the tree of the whole
boundary. In the second phase - FILL3() - the im-
age tree is traversed and its WHITE components,
which are not connected to the outside of the image
are extracted and changed to BLACK as described in
the next section. As there is not enough space for
detailed algorithms of all the (simple) subroutines of
Figure 4-1 we only present their outlines.

OVERLAY() forms the boolean union of two (linear)
binary image trees by traversing them synchronously
according to the following rules:

(1) If either of the nodes is BLACK the resulting
node is BLACK. The other subtree is skipped
(by sequential traversal).
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procedure BR_TO_BLOCKS3();
/* Convert boundary representation defined by face-
array FACES into binary image tree at resolution M
=2, *
begin
giobal value integer M,NFACES;
global pointer face array FACES[0:NFACES-1];
global pointer nodelist DF; /* DF—expression */
DF <- COMBINE3(0,NF ACES-1);
FILL3(); /* see Section 4.2 */
end;

pointer nodelist procedure COMBINE3(N1,N2);
/* Convert separately faces with indices between N1
and N2 to image trees and combine results into a
tree of the corresponding part of the boundary. */
begin
global value integer NFACES;
global pointer face array FACES[0:NFACES-1];
value integer N1,N2;
if N2 — N1 > 1 then
return{ OVER LA Y(COMBINE 3(N 1,(N 1+N 2)/2),
COMBINE3((N1+N2)/2+ 1,N2)));
else if N2 - N1 = 1 then
return{ OVER LA Y(CONVER T3(F ACES[N1]),
CONVERT3(FACES[N21);
/* CONVERT3() converts one face */
else return(CONVERT3(F ACES[N11));

Figure 4-1
Conversion Algorithm Outline

(2) If either of the nodes is WHITE the other subtree
is copied to the result (by sequential traversal).

(3) If both nodes are GRAY the result is also GRAY.

(4) Replace recursively (BB by B and (WW by W.

CONVERT3() converts one face with plane equation
P(x,y,z) = ax + by + cz + d = 0

into a binary image tree as follows:

(1) Choose a projection plane, say xy, so that the
remaining coefficient (¢} has maximal absolute
value.

(2) Form the 2D binary image tree TWODT of the
projection of the face on the xy-plane by pro-
cedure BR_TO_BLOCKS2().

(3) The rest of the conversion is performed similarly
to forming the image tree of the whole plane
P(x,y,z) = 0, except that nodes, whose xy-
projection is WHITE in TWODT, become WHITE
in the result. The universe is halved recursively
by planes altematingly perpendicular to the x-,
y-y and z-axes while keeping track of the
minimum and maximum values of P(x,y,z) in
each block thus formed. To each block
corresponds a node N2 of TWODT so that the
block can be classified as WHITE, BLACK, or
GRAY as follows:

— if N2 is WHITE, the block is WHITE
— if zero does not lie between the minimum
and maximum of P(x,y,z) in the block, the

block is WHITE and N2 is skipped

- if the block is at voxel level and N2 is
BLACK then the block is BLACK (division
continues to voxel level on a face)

- otherwise the block is GRAY and is furth-
er subdivided.

(4) Replace recursively (BB by B and (WW by W.

The recursive halving directly produces the desired
DF —expression.

BR_TO_BLOCKS2() forms the 2D image tree of a po-
lygon. For simplicity we have implemented it com-
pletely analogously to BR_TO_BLOCKS3():

(1) Each edge of the face is converted into a 2D
image tree by CONVERT2() similarly to the
method applied in CONVERT3().

(2) The trees of the edges are recursively
OVERLAY ‘ed in pairs by COMBINE2().

(3) The WHITE components of the 2D image not con-
nected with the outside are changed to BLACK
by FILL2(). (If necessary, holes within a face
are treated by dividing the face into simply
connected parts.)

The main virtue of CONVERT3() is that, to classify a
block, we do not have to perform any point-in-
polygon test. Also, the P(x,y,z)-range within each
block can be efficiently computed during the recur-
sive subdivision and no sorting is required to arrive
at the correct DF-order of the blocks.

As a result of providing all xy-information in the 2D
image tree, some spurious BLACK leaves may result
when compared to the exact face/voxel -intersection
tests. This is not serious considering the overall na-
ture of the block model approximation. The choice
of the projection plane minimizes the occurrencies of
this event while guaranteeing that the inside of a
solid is never connected with the outside.

The boundary conversion method described above has
been satisfactory, even though we chose it mainly for
its simplicity. We do not want to emphasize it be-
cause other, potentially more efficient, techniques
can be imagined and combined with the core of our
approach, described in the next section.

4.2. Connectivity Labeling

As discussed in Section 2.2 a variant of connected
components labeling can be utilized in block model
conversion. We show how it can be applied to linear
tree representations.

Two elements of a 3D image are called (face-) con-
nected to each other if they share a boundary (called
adjacency) with non-zero area. Labeling the con-
nected components of a binary image is ordinarily de-
fined as transforming it into a symbolic image in
which every maximally connected subset of BLACK
elements is labeled by a distinct positive integer.
However, in our case the image elements intersecting
the boundary of the solid are BLACK and we want to
extract and change to BLACK the WHITE components
not connected to the outside of the image.
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Connected components labeling can be performed by
the union-find algorithm (Tarjan 1975). At the start
each image element is assumed to form a separate
component. The final components are determined by
processing once each adjacency between image ele-
ments. For each relevant adjacency we must deter-
mine the putative components of the two elements
(find). If they differ, they are combined (union).

The above algorithm, applied to a DF-expression,
must be able to determine adjacencies as the tree is
traversed in the fixed order. When processing a node
we know that its W-, S—, and L-—neighbors have
been processed. Therefore there must exist data
structures to record the information of respectively
the E-, N—, and U-sides of the processed part. Let
us call these data structures the active yz-, xz-, and
xy—-borders. They consist of active face elements.
(In the rest of this section "face" means an active
face of the above borders, not a face of the solid.)

The main change compared to the two-dimensional
connected components algorithm reported in (Samet
and Tamminen 1983) is that there are now three ac-
tive borders, instead of two and that the size of a
border element is defined as its area, not width.
Further, the active borders can be represented as
linked lists (instead of arrays), which is most impor-
tant in the three-dimensional case. See (Samet and
Tamminen 1984) for more details on connectivity la-
beling.

We give the filling algorithm in three parts. In the
~ main program (Fig. 4-2) the three face element lists

are first initialized so tI}at each contains one WHITE
face element of size M. The solid can be imagined
as situated in the positive octant of coordinate space
with all the other octants having been processed and
WHITE. This mirrors the state of the active borders
at the start of processing any node: its W-, S—, and
L.—neighbors have been processed and their color and
component information is contained in the active
border. Then procedure TRAVERSE() (Fig. 4-4) is
called to traverse the DF-expression of the binary
image tree. Finally PHASEIK) traverses the tree
once more. For each WHITE leaf it checks whether
the leaf is in the component of the outside. If not,
its color is changed to BLACK.

The main function of TRAVERSE() is to provide, at
each call to its sub—procedures, a pointer to the
parts of the active face element lists bordering that
subtree. It calls itself twice recursively at each
intermal node. At each leaf node it calls procedure
INCREMENT() three times to perform the actual up-
dating of the active borders and the connected com-
ponents. If a WHITE leaf is not identified with any
existing component then a putative new component is
formed. Labels of WHITE leaves are stored for pro-
cessing by PHASEII(). After processing a leaf each
list of active face elements is advanced to the ele-
ment following it.

To illustrate the working of the algorithm we show,
in Figure 4--3, the state of the active xy—border and
the start of the sublist XYL when entering and leav-
ing TRAVERSE() at each of its calls corresponding to
leaf nodes of Figure 3-1.

procedure FILL 3();
/* First compute connected WHITE components of a
binary tree of an M by M by M (M = 2™ three-
dimensional image represented by preorder traversal
DF. Then change components not connected with out-
side of image to BLACK in PHASEII). Each active
border surface xy, xz and yz is represented as a
linked list of records of type facelist, which contain
pointers to the active faces comprising the border.
Each active face is represented as a record of type
face with four fields SIZ, LAB, COL, and CRD,
which give respectively, the size (area), the com-
ponent label, the color, and the value of the third
coordinate (z for an xy border) of a face. A record
of type facelist has two fields, DATA and NEXT,
containing respectively, a pointer to a face and a
pointer to the next element in the list. */
begin

global value integer M;

global value pointer nodelist DF; .

pointer facelist XYL, XZL, YZL; /* borders */

pointer face XY,XZ,YZ;

XYL <- create(facelist); XZL. <- create(facelist);

YZL <- create(facelist);

DATA(XYL) <~ XY <- create(face);

DATA(XZL.) <~ XZ <~ create(face);

DATA(YZL) <— YZ <- create(face);

SIZ(XY) <= SIZ(XZ) <- SIZ(YZ) <- M*M;

LAB(XY) <- LAB(XZ) <~ LAB(YZ) <~ outside;

COL(XY) <~ COL(XZ) <~ COL(YZ) <- WHITE;

CRD(XY) <~ CRD(XZ) <~ CRD(YZ) <~ 0;

if not empty(DF) then begin

TRAVERSE (M,M,M, XYL, XZL,YZL);
PHASEII() /* change inside to BLACK */

end
end;
Figure 4-2
Main Procedure for Filling Inside
Leaf Entering Leaving
=
XY XYL
1: ;\
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Figure 4-3

State of XYL at Each Call to TRAVERSE()

The purpose of procedure INCREMENT() (Figure 4-5)
is to process all the active face elements bordering a
face of a new leaf. Whenever an adjacency between
WHITE faces is encountered, the connected com-
ponents information is updated. Processing divides
into three cases. In each of them INCREMENT() per-

47
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procedure TRAVERSE(SX,SY,SZ,XYL,XZL,YZL);

/* Process SX by SY by SZ segment of image where
DF presents the preorder traversal of its binary tree.
XYL, XZL, and YZL are pointers to the lists of ac-
tive faces on the xy, xz-, and yz-borders of this
part of the image. Once the three faces of a leaf
that are adjacent to the active borders have been

processed, XYL, XZL, and YZl.. are advanced to point .

to the portion of the active border that is adjacent
to the image element to be processed next. The list
LL stores the putative labels of WHITE nodes for
PHASEII()., */
begin
value integer SX,SY,S5Z7;
reference pointer facelist XYL,XZL,YZL;
global pointer nodelist DF;
global pointer labellist LL;
pointer facelist T; /* auxiliary */
pointer node L;
L. <~ create(node);
COL(L) <~ next_node(DF);
if COL(.) = GRAY then begin
if SX = SZ then begin /* partition on x */
T <~ YZL; /* save start of yz border ¥/
TRAVERSE(SX/2,5Y,5Z,XYL,XZL,YZL);
TRAVER SE(SX/2,5Y,SZ,XYL,XZL,T)
end
else if SZ = SY then begin /* on y */
T <— XZL; /* save start of xz border */
TRAVERSE(SX,5Y/2,5Z,XYL,XZL,YZL);
TRAVERE(SX,5Y/2,5Z,XYL,T,YZL)
end
else begin /* partition on z */
T <- XYL; /* save start of xy border */
TRAVERSE(SX,S5Y,5Z/2,XYL,XZL,YZL );
TRAVERSE(SX,SY,5Z/2,T,XZL,YZL)
end
end
else begin /* A leaf node. */
LAB{L) <~ unknown;
INCREMENT(L,XYL,SX*SY,S5Z); /* xy- border */
INCREMENT(L,XZL.,SX*SZ,5Y); /* xz- border */
INCREMENT(L,YZL,SY*SZ,5X); /* yz- border */
if COL(L) = WHITE then begin
if LAB(L) = unknown then /* new label */

LAB(L) <~ create(label);

/* update active borders with label: */
LAB(DATA(XYL)) <- LABL)
LAB(DATA(XZL)) <~ LABWL);
LAB(DATA(YZL)) <~ LAB(L);
add_to_list(LL,L AB(L)) /* for PHASEII() */

end
XYL <= NEXT(XYL); /* advance lists */
XZL <= NEXT(XZL); YZL <- NEXT(YZL)
end
end;

Figure 4-4
Tree Traversal

forms the necessary union operations and updates the
active border as follows with the face of the new
leaf:

(1) The entering face is larger than the corresponding
first element of the active border. Neighboring
face elements are determined from the size
(area) of the new face. The new face replaces
the last neighboring element and all others are
disposed of.

(2) The entering face is equal in size with the first
border element, which it replaces.

(3) The entering face is smaller than the first border
element, which it replaces. A new active face
"is created to account for the rest of the old
border element.

Finally the data of the border element corresponding
to the new face are updated. For simplicity we have
omitted the disposal of active face elements touching
the outside of the image.

procedure INCREMENT(L FL,S,W);
/* Process a leaf L of area S in the present direc-
tion (xy, xz, or yz) and width W in the perpendicular
direction. The leaf is adjacent to the first element
of the border represented by FL, pointer to a list of
active faces. See (Sedgewick 1983) for the imple-
mentation of union(), a combined find and union
operation. */
begin
value pointer node L;
value pointer facelist FL;
value integer S,W;
global value integer M;
integer L /* auxiliary */
pointer facelist P,Q; /* auxiliary */
if S > SIZIDATA(FL)) then begin /* case 1 */
1 <~ 0; P <~ FL;
while I < S do begin /* all bordering elements */
if COLQL) = WHITE
and COL(DATA(P)) = WHITE then
LAB(L) <~ union{LAB(L),LAB(DATA(P)));
I <-1 + SIZIODATAP));
P <~ NEXT(P)
end;
Q <~ NEXTFL); NEXTFL) <~ P; /* delete and */
facelist_dispose(Q,P) /* reclaim storage for
elements from Q up to but not including P */
end
else begin /* cases 2 and 3 */
if COLL) = WHITE
and COL(DATAFL)) = WHITE then
LABQL) <~ union(LAB(L),LAB(DATAFL)));
if S < SIZ(DATA(FL)) then begin /* case 3 */
P <- create(facelist); /* new element = */
DATA(P) <~ create(face); /* rest of old one */
SIZ(DATAP)) <~ SZ(DATAFL)) ~ S;
COL(DATA(P)) <~ COL(DATA(FL));
LAB(DATA(P)) <~ LAB(DATAFL));
CRD(DATAP)) <~ CRD(DATAFL));
NEXT(P) <~ NEXTFL);
NEXTFL) <~ P; /* insert into list */
end
end;
SIZ(DATAFL)) <~ S /* update first element */
COL(DATAFL)) <~ COL(L);
CRD(DATA{FL)) <- CRD(DATAFL)) + W;
if CRD(DATAFL)) = M /* touches outside */
and COL(L) = WHITE then
LAB(L) <- union{lLAB(L),outside)
end;

Figure 4-5
Processing one Side of a Leaf
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5. Analysis

Let us analyze separately the procedures OVERLAY(),
CONVERT2(), COMBINE2(), FILL2(), CONVERT3(),
COMBINE3(), and FILL3(0 focusing on the effect of
using linear tree representations.

With linear tree representations OVERLAY() clearly
inspects once each node of both trees and its com-
plexity is thus proportional to the total number of in-
put nodes, which is also a bound on the number of
output nodes. With explicit tree representations the
complexity of OVERLAY() is at most proportional to
the size of the smaller input tree.

CONVERT2() performs a fixed amount of computation
for each node of the 2D image tree of an edge seg-
ment and directly outputs the DF-expression. The
analysis of COMBINE2() and FILL2() for each face
corresponds closely to that of COMBINE3() and
FILL3() given below.

CONVERT3() also performs a fixed amount of compu-
tation for each node of the output tree, except for
the case where an output leaf is WHITE and the
corresponding portion of the 2D tree must be skipped.
(In this case the brother of the leaf will not be
WHITE.) Because of the choice of the projection
plane, the amount of skipping can be at most propor-
tional to the number of output nodes. With explicit
tree representations the skipping could be performed
more efficiently. However, its contribution to pro-
cessing time is minor.

When there are N faces, COMBINE3() calls OVER-
LAY() N — 1 times. Each node resulting from CON-
VERT3() passes thrqugh OVERLAY{) at most [log(N)]
times (logarithms are to base 2). This follows from
the remark above on the size of the output of
OVERLAY(). Thus for a total of I input nodes in the
image trees of the faces the complexity of all the
OVERLAY ‘s is at most Iflog(N)]. Of course, the
elementary operations are very simple. COMBINE3()
requires at most twice the amount of space needed
for storing the image trees of the faces. Using
techniques similar to extermal sorting, disk storage
may be used for this purpose.

FILL3() performs a fixed amount of work for each
node, except for the contribution of the union-find
—algorithm. Tarjan (1975) has shown that this contri-
bution is almost linear in the number of operations
performed. Thus the complexity of FILL3() is very
nearly linear in the number of nodes. The worst
case complexity of FILL3() is better than that of the
connected components algorithm of (Samet 1981).
However, the boundary determination method of Jac-
kins and Tanimoto (1983) could be applied to achieve
equal performance with explicit tree structures.

The worst case space complexiEy of the connectivity
labeling algorithm is about 3M”~ face elements: It is
easy to construct 3D checkerboard-like images, which
would require the active borders to contain only face
elements at voxel level. The union-find -algorithm
requires a label array with size determined by the
highest label used. In practice, central memory re-
quirements are somewhat difficult to determine 2
priori. In the following section we report some ex-
periences.

6. Experiences

We have programmed the conversion algorithm in C
language and run it on a VAX 11/750 (without a
floating point accelerator), under Unix to determine
its practical efficiency. Even though processing costs
depend heavily on implementation details we report
below various cost components to give an indication
of their relative magnitudes.

Detailed performance testing is based on the follow~
ing solids:

(1) B(100) - ball approximated by 100 faces
(2) B(400) - ball approximated by 400 faces
(3) Ore ~ the ore body of Figure 1-la (588 faces)

(4) Exc. — an excavation (Figure 6—1, 40 faces).

Figure 6-1
Test Solid, an Excavation

The effect of the theoretical non-linearity of the
union—-find -algorithm is so small that we can com-
bine the experimental results into the following
overall average costs per node.

(1) OVERLAY() requires about 17 microseconds per
input node. Thus to COMBINE N trees contain-
ing a total of I  nodes, the summed
OVERLAY “ing time is at most 17I[log(N)] mi-
croseconds.

(2) CONVERT2() requires about 170 microseconds per
output node.

(3) CONVERT3() requires about 130 microseconds per
output node. (The subroutine has been optim-
ized further than CONVERT2().)

(4) FILL3(0 requires about 380 microseconds per input
node and the resource requirements for FILL2()
are a bit smaller.

The implementations, save that of OVERLAY(), use
recursion so that subroutine calls account for much
of the above costs.

To help appreciate the unit costs we note that the
condensed bigary image tree of a unit sphere at reso-
lution M = 2" contains 208000 nodes. (A correspond-
ing condensed completely BLACK ball only contains
117000 nodes!)
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Tables 1 and 2 compare the run times (in VAX
11/750 CPU seconds) of the new method and the old
one reported in (Tamminen et al. 1984). Alas, we
have not found other publications to compare to.

B(100) B(400) Ore(588) Exc.(40)

New method 165 237 245 22
Old method 1350 1400 1600 324

Table 1. Processing Time at Resolution 128
B(100) B(400) Ore(588) Exc.(40)

New method 53 100 100 8
Old method 380 400 410 79

Table 2. Processing Time at Resolution 64

Tables 3 and 4 help in a detailed evaluation of the
choices made in constructing the algorithm. Table 3
shows the contribution of each phase (in CPU
seconds) to total processing time. Table 4 gives
summed sizes (number of nodes) of the various kinds
of image trees: Output is the final result, Boundary
(3D) is the boundary of the final result, Faces
denotes the trees of all faces taken separately, Proj.
faces the 2D projections of faces, Boundary (2D) the
trees of polygon boundaries, Segments the trees of
polygon edges taken separately, and Overlay the
number of nodes passing through the various invoca-
tions of OVERLAY().

B(100) B(400) Ore(588) Exc.(40)

FILL 30 79.6 84.0 62.2 7.7
CONVERT3() 32.3 46.3 47.4 4.9
OVERLAY() 29.7 45.1 40.7 2.8
FILL 20) 16.9 32.1 41.6 3.2
CONVERT2() 9.2 23.0 29.2 2.6

Table 3. Processing Costs at Resolution 128

B(100) B(400) Ore(588) Exc.(40)

Output 116711 122485 98947 12331
Boundary (3D) 201668 207794 169108 20880
Faces 259758 346778 360062 34403
Proj. faces 29022 68692 92664 7825
Boundary (2D) 41370 90350 117034 10299
Segments 54088 142552 179604 15090
Overlay 1650000 2580000 2390000 180000

Table 4. Summed Sizes of Trees at Resolution 128

From Table 3 we see that the main part of the time
is taken by determining the image tree of the boun-
dary of the polyhedron. Our approach to this task
was chosen for its uniformity (2D and 3D phases are
almost identical) and robustness. However, there is
much room for improvement by using different tech-
niques.

The only part of our algorithm, whose efficiency is
seriously affected by the use of linear tree represen-
tations, is OVERLAY(). Its contribution to the total
run time is generally less than 20%. Also, a more
efficient (in the expected case) FILL3() is conceivably
possible with an explicit tree structure. This is be-
cause we need not form exact connected components
but only extract the part connected to the outside.
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This can be performed using depth first search for
leaves lying on the image border and recursive neigh-
bor finding, starting from each unlabeled one of
them.

The central memory requirements of FILL3() for
B(400) at resolution 128 consist of about 3500 records
for active faces. This compares favorably to the
worst case of about 50000 records. Further, about
1500 tentative labels are formed. As resolution is
increased by a factor of two the size of the output
tree grows by a factor of four. The same holds for
processing time of the connectivity labeling phase and
for the number of putative labels. However, the
number of active faces seems to grow only linearly
with resolution.

The number of nodes in the two-dimensional image
trees depends on the summed length of edges meas-
ured at the chosen resolution and to a lesser extent
on the number of edges of the polyhedron. The
length of edges grows linearly with resolution. Simi-
larly, the summed size of the three-dimensional im-
age trees depends on the surface area of the po-
lyhedron and its number of faces. The surface area
grows with the square of resolution. The processing
time of the new algorithm is affected by both the
above factors and thus grows somewhat more slowly
than that of the old one, whose cost depends almost
exclusively on the number of leaves output.

Our connected components labeling technique seems
to outperform that of Lumia (1983), based on the
voxel matrix representation, by orders of magnitude,
in cases typical of the conversion problem (Samet and
Tamminen 1984). This is mainly explained by the
lesser amount of image elements in our representa-
tion.

The constituent parts of our algorithm can be con-
nected in various ways. We recommend keeping the
conversion of the boundary and the final connectivity
labeling as separate programs communicating through
a Unix pipe. With this structure the first phase can
be easily replaced by another one, say, for processing
curved surfaces.

7. Conclusions

We have presented an algorithm, efficient in practice,
for converting a polyhedron into an octree-like block
model. A characteristic of the algorithm is that all
its phases operate directly on linear tree representa-
tions.

We believe that the method presented can be applied
as a general conversion tool in boundary representa-
tion modelers. Up to the present conversion seems
to have been possible in practice only for basic build-
ing block solids, which have then been combined on
the octree side by using boolean set operations. The
conversion program links our modeler (GWB) with that
of (Yamaguchi et al. 1984). An interesting practical
research problem is to find the optimal division of
labor between boundary representations and octrees in
similar combined systems.
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Our experiences on applying the solid modeling tech-
niques described here to mine modeling have been
very encouraging but will be reported in more detail
elsewhere.
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