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ABSTRACT
Computing with trajectories has become an important and practical
research topic. In many scenarios, the goal is to �nd similar trajecto-
ries. �e Fréchet distance is a very promising metric for measuring
trajectory similarity and yet limited in practical applications due
to its expensive computing complexity. In this paper, we demon-
strate an e�cient approach to retrieve similar trajectories using the
Fréchet distance. Essentially, the proposed method builds up a set
of R-trees for indexing trajectories and thereby enables multi-level
of positive and negative �ltering to speed up the similarity queries.
For answering 5,000 queries on a dataset of 20,000 trajectories, the
experimental results show that the proposed method achieves sig-
ni�cant speedups at certain �ltering levels while maintaining very
high precision and recall in retrieving similar trajectories.
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1 INTRODUCTION
Recently, the rising popularity of GPS embedded devices has gen-
erated an enormous amount of trajectory data. �us e�ciently
generating [1], querying [2–8] and matching [9–11] these trajec-
tories to extract relevant information has become an important
and practical research topic. For example, the rapid growth of ride
sharing requires that similar-path queries between di�erent users
must be answered in real-time for e�ective and e�cient carpools.

Many geometric de�nitions have been proposed and studied to
measure trajectory similarity [12–15]. Among these, the Fréchet
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distance has been particularly interesting due to its parameter-
ized trajectory representation. Although the Fréchet distance [14]
has revealed extensive advantages in many applications, like map
matching [16–18], its computation remains challenging. For exam-
ple, considering two polygonal trajectories P and Q with p and q
segments, respectively, the state-of-the-art solution for computing
their Fréchet distance has a time complexity of O(pqlog(pq)) [19].
�e major overhead lies in one of its subprocess, called decision
problem, which takes O(pq) to compute whether the two polygonal
curves are within a given distance threshold. In this paper, we fo-
cus on the query problem de�ned in the ACM SIGSPATIAL GIS Cup
20171. Given a set of polygonal trajectoriesD, a query trajectoryQ
and a distance threshold ε , we retrieve all trajectories P ⊆ D such
that each returned trajectory P ∈ P satis�es δF (P ,Q) ≤ ε , where
δF (P ,Q) denotes the Fréchet distance between P and Q .

�is paper exploits four observations with respect to the calcula-
tion of the decision problem. First, if two polygonal curves have a
Fréchet distance less than or equal to ε , the distance between their
respective starting and ending vertices must also be less than or
equal to ε . Second, for each vertex in a polygonal curve, there must
exist, in its circular range of a radius ε , at least one line segment
from another polygonal curve. �ird, it has been proven that the
Fréchet distance is within ε if the discrete Fréchet distance [20] of
the two polygonal trajectories is not larger than ε . �e discrete
Fréchet distance is an approximation of the Fréchet distance by
considering the positions only at the vertices of trajectories. Com-
puting this discrete variant takes O(pq) [20]. Fourth, the discrete
Fréchet distance is greater than or equal to the Fréchet distance,
but interpolating extra points on the trajectories as new vertices
may result in a lower value of the discrete Fréchet distance.

For each query, we build multiple levels of negative and posi-
tive �ltering to reduce the number of candidate trajectories. Our
contribution is summarized as follows:
• We generate an e�cient two-level R-tree for indexing the start/end

points and segments of trajectories. As a result, this data struc-
ture yields a signi�cant reduction in the number of candidates
to consider for answering a query.

• We exploit a positive �lter by using the discrete Fréchet distance
as an upper bound of the Fréchet distance. �is �lter further
reduces the number of uncertain candidate trajectories to only
2% in our experimental evaluation.

• We innovatively interpolate points on a query trajectory and its
candidate trajectories, which reduces the number of the uncer-
tain candidate trajectories.

1h�p://sigspatial2017.sigspatial.org/giscup2017/home
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2 RELATED WORK
A lot of studies have been developed to solve the Fréchet distance
computation problem due to its academic and industrial poten-
tial [16, 18–21]. However, directly computing this distance metric
between polygonal trajectories is very time-consuming [19, 22].
�erefore, some work focused on solving variants of the prob-
lem [21, 23–25]. For example, F. Cook Iv and Wenk [26] describe
a polynomial-time algorithm to compute the geodesic Fréchet dis-
tance between two polygonal curves in a simple polygon. Chambers
et al. [25] describe a polynomial-time algorithm to compute the
homotopic Fréchet distance between polygonal curves in the Eu-
clidean plane with obstacles. �e original de�nition of the Fréchet
distance continuously sweeps every point on the given curves in-
cluding the interior points on the edges. If we relax this requirement
by only examining the vertices positions of polygonal curves, we
have the so-called discrete Fréchet distance. Eiter and Mannila
[20] have presented a polynomial-time solution using dynamic
programming for computing the discrete Fréchet distance

�e most related work are those presented at ACM SIGSPATIAL
GIS Cup 2017, which is a competition on e�ciently retrieving sim-
ilar trajectories from a large set of data. Baldus and Bringmann
[27] propose a three-phase algorithm to solve the competition prob-
lem. �ey �rst build a quadtree like data structure to enumerate
the candidate trajectories whose starting and ending points are
close to the query trajectory. �en, they apply several heuristics
to �nd the true positive and negative candidates by only examin-
ing the distances between vertices from two trajectories. Finally,
they run an exact Fréchet distance decision problem to �nalize the
results. Similar to [27], Buchin et al. [28] also start with identify-
ing trajectories whose starting and ending points are within ε to
the ones of the query trajectory but using a spatial hash instead,
which is essentially grid division. Next, they compute several levels
of simpli�cation of trajectories. In each level, they calculate the
equal-time distance to �nd positive candidates, or further apply the
decision procedure to �nalize the results if necessary. Dütsch and
Vahrenhold [29]’s method also exploits the strategy of �lter-and-
re�nement, but it uses minimum bounding boxes to �rst exclude
negative candidates. �en, it examines the distance between start-
ing points and ending points between pair of trajectories and, �nally,
uses the decision procedure to get the exact results.

Di�erently from the above methods, we: (i) generate an e�cient
two-level hierarchical R-tree for indexing the start/end points and
segments of trajectories; (ii) exploit a positive �lter based on the
discrete Fréchet distance; and (iii) interpolate points on a query
trajectory and its candidate trajectories.

3 PRELIMINARIES
3.1 �e Fréchet Distance
Let P be a polygonal curve in R2, a continuous and piecewise
linear mapping from the interval [0,p] into R2, where p is the
number of segments formed its vertex sequence 〈u0,u1 · · ·up 〉. �is
curve can be seen as parameterized by a point in the interval [0,p].
Similarly, letQ be another polygonal curve with the vertex sequence
〈v0,v1 · · ·vq〉 and the mapping range [0,q]. Formally, the Fréchet
distance between two trajectories P : [0,p]→ R2, Q : [0,q]→ R2

is de�ned as

δF (P ,Q) := inf
α :[0,1]→[0,p]
β :[0,1]→[0,q]

max
t ∈[0,1]

‖P (α (t )) −Q(β(t ))‖

where α and β are continuous and non-decreasing time-warping
functions with α (0) = β(0) = 0, α (1) = p, and β(1) = q, which may
be seen as re-parameterizations of the curves P and Q . �erefore,
calculating the Fréchet distance consists of �nding an in�mum over
all possible re-parameterizations α and β . A popular intuitive de�-
nition of the Fréchet distance between two curves is the minimum
length of a leash required to connect a dog and its walker, con-
strained on two separate paths, as they walk without backtracking
along respective curves from one endpoint to another.

3.2 Computing the Fréchet Distance
A novel polynomial time algorithm to determine the Fréchet dis-
tance between two polygonal curves was �rst proposed by Alt and
Godau [19]. �e core part of this algorithm is a decision problem
and a set of critical values for ε .

3.2.1 Decision Problem. For a given distance threshold ε , the
decision problem decides whether δF (P ,Q) ≤ ε . In order to solve
this, the algorithms builds the free space diagram of P and Q with
respect to ε .

�e free space of two polygonal curves P : [0,p] → R2, Q :
[0,q]→ R2 is de�ned as:

Fε (P ,Q) := {(s, t ) ∈ [0,p] × [0,q] | ‖P (s) −Q(t )‖≤ ε} (1)

Region [0,p]×[0,q] is therefore partitioned into free space and non-
free space. �e free space of two line segments is a full or partial
ellipse, and the free space diagram of two polygonal curve of p and
q segments is a p × q segment-segment free space diagram [19].
It has been shown that δF (P ,Q) ≤ ε if and only if there exists a
path within Fε (P ,Q) from the lower le� corner (0, 0) to the upper
right corner (p,q), which is monotone in both coordinates [19].
�is path induces functions α and β in the de�nition of δF (P ,Q).
Constructing the free space diagram and determining the existence
of a monotone path for two polygonal curves takes O(pq).

3.2.2 Critical Values. A�er solving the decision problem, a bi-
nary search is performed on a set of candidate ε values which the
decision procedure examines whether they are larger or smaller
than the Fréchet distance. �e set of candidate ε values to perform
search is called critical values, which represent the cases where the
existence of a monotone path occurs. �ere are three cases of such
critical values, namely:

(1) �e distances between the two starting points and the two
ending points of P and Q , respectively.

(2) �e distances from a vertex in one curve to line segments of
the other.

(3) �e common distance of two vertices of one curve to the
intersection point of their bisector with some line segment of
the other.

Together, there are O(p2q + q2p) critical values in total.
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3.3 �e Discrete Fréchet Distance
�e discrete Fréchet distance [20], also known as the coupling
distance, is an upper bound of the continuous Fréchet distance.
Di�erently from the Fréchet distance, that considers the interior
points on each segment of a polygonal curve, the discrete Fréchet
distance addresses only the vertex positions at the two polygonal
curves. Eiter and Mannila [20] give a dynamic programming algo-
rithm that calculates the discrete Fréchet distance with O(pq) time
complexity. More importantly, they have shown that:

δF (P ,Q) ≤ δdF (P ,Q) ≤ δF (P ,Q) +max{D(P ),D(Q)} (2)
where δdF (P ,Q) is the discrete Fréchet distance between P and
Q , and D(P ) and D(Q) refer to the maximal lengths of the line
segments in P and Q , respectively. �is is an important theorem as
it guarantees the Fréchet distance is within ε if the ε ≥ δdF (P ,Q).

4 METHOD
Given a query trajectory Q = 〈u0,u1 · · ·uq〉 and a candidate trajec-
tory in the database P ∈ D with vertices 〈v0,v1 · · ·vp 〉, in order to
determine whether δF (P ,Q) ≤ ε , our method uses multiple levels
of positive �ltering and negative �ltering as follows.
• Level 0: P is a negative candidate if ε ≤ max (‖u0,v0‖, ‖uq ,vp ‖),

which implies δF (P ,Q) > ε . It corresponds to the �rst type of
critical values described in Section 3.2.2.

Figure 1: A screenshot of multi-level �ltering.

• Level 1: P is a negative candidate if either of the following two
conditions are not satis�ed: i) for each vertex u in Q , there
exists at least one line segment vivj in P such that the distance
from u to vivj is within ε ; ii) for each vertex v in P , there exist
at least one line segment uiuj in Q such that the distance from
v touiuj is within ε . �is is a negative �ltering and corresponds
to the second type of critical values described in Section 3.2.2.

• Level 2: From Equation 2, we can deduce that δF (P ,Q) ≤ ε
if δdf (P ,Q) ≤ ε , in which case P is a positive candidate; or
δF (P ,Q) > ε if δdF (P ,Q) − max{D(P ),D(Q)} ≥ ε , in which
case P is a negative candidate. We implement the dynamic
programming solution in [20] to calculate the discrete Fréchet
distance. �is is a composite level which contains both positive
and negative �ltering.

• Level 3: A�er interpolating extra points along the line segments
ofQ and P at every distance of ε , we apply the �ltering in Level
2 again on Q ′ and P ′, which denote the two new trajectories
with extra points, respectively. �e rationale is that the discrete
Fréchet distance only addresses the positions of vertices on the
trajectories, excluding the internal points. �erefore, interpo-
lating extra points on the line segments of trajectories reduces
the length of the longest segments, which are the upper bounds
of the discrete Fréchet distance and therefore result in smaller
discrete Fréchet distance.

• Level 4: We use the exact decision procedure in Section 3.2.1
to conclude whether δF (P ,Q) ≤ ε .

Note that in order to support the �ltering in Level 0 and Level 1,
we construct a two-level R-tree [30] to index the trajectories in the
database. �e R-tree in the �rst level indexes the starting and ending
points of trajectories in D so that, given the query trajectory Q , it
only returns a subset trajectories of D whose starting (and ending)
point is within ε distance to P ’s starting point. �is is implemented
by enlarging P ’s starting (and ending) point to a square with side
length of ε when performing the search in the R-tree. Instead of
indexing on vertices, the R-tree in the second level now indexes on
the line segments of candidate trajectories and only needs to build
for the trajectories who passes Level 0. Indexing the line segments
of a trajectory in R-tree is implemented by inserting a minimum
bounding box for each of its segments.

We implement the above multi-level �ltering in C++. To be�er
understand what types of trajectories got �ltered out or kept in
each level of �ltering, we wrap the implementation with a Java GUI
application, as illustrated in Figure 1. �e bold red polygonal curve
represents the query trajectory with its name and Fréchet distance
threshold speci�ed in the drop-down menu proceeded by a label
“Show a �ery”. �e other trajectories represent the output up to
the current �ltering level, which is set to “Level 3” in the slider
located at the right side of the screenshot. �e colors of trajectories
distinguish overlapped trajectories in the drawing. In addition, the
slider in the top-le� corner is to zoom in/out the map. Above it is a
�le selector that chooses the �le containing all the queries.

Implementation Remark: To enable fast read/write of trajectories
from/to disks, we use memory map to read/write every n �les in
batch, wheren is con�gured according to the hardware memory size.
A�er that, a pool of threads are allocated to utilize the hardware
concurrency throughout the multi-level of �ltering.
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5 EVALUATION
�e trajectory dataset in GISCUP 2017 is used for the evaluation,
which contains 20, 198 trajectories in total. We randomly select
5, 000 trajectories to form a query set: 〈Qi , εi 〉, i = 1 . . . 5, 000,
where Qi is query trajectory and the εi is its Fréchet distance
threshold. Each εi is, thus, chosen from a set of random numbers
uniformly distributed in the range of [123.40, 2099.86]. �e experi-
ment is performed on a computer with an Intel Xeon E5 CPU and a
64GB RAM.

Table 1: Evaluation Results on 5000 queries

Step Output (pair of trajectories) Time (ms)True Positive Undecided Total
Load Data 100990000 100990000 91.33
Build R-tree of
Starting and
Ending Points

74.18

Level 0 10171 10171 206.99
Build R-tree of
Line Segments 125.02
Level 1 9151 9151 683.67
Level 2 9031 120 9151 17.12
Level 3 9031 4 9035 23.14
Level 4 9035 0 9035 3700.09

Table 1 reports the results of processing 5000 queries. Assuming
that each query trajectory and each of its positive candidates form
a “trajectory pair”, there are 9035 of such correct pairs in total.
�e column “True Positive” speci�es how many of these trajectory
pairs are found by a speci�c Level. �e column “Undecided” shows
how many candidate trajectory pairs remain to check whether they
satisfy the query. �e column “Time” highlights the computation
time by each procedure or �ltering level, and is reported as the
mean time of running 5 iterations of the program.

�e results show that the �ltering at Level 0 is able to reduce sig-
ni�cantly the number of candidate trajectory pairs to check. How-
ever, it is unable to give positive determination on the queries and
thereby le� its output undecided. �e �ltering in Level 1 improves
slightly than Level 0 but takes much more time. �e signi�cant
change happens at the �ltering of Level 2 when it starts using dis-
crete Fréchet distance to help determine which trajectories are true
positives. �e results show that it manages to verify most of the
undecided trajectory pairs in Level 1 and only takes 17 ms. By in-
terpolating extra points, the �ltering in Level 3 further reduces the
number of undecided trajectory pairs from 120 to 4, even though
no positive candidate is found. �e worst part happens at Level
4, where we only run the exact decision procedure for 4 pairs of
trajectories and the consuming times signi�cantly increases, almost
four-times. It indicates that, without appropriate �ltering, directly
applying the decision problem to answer the queries will takes a
considerably long time.

6 CONCLUSIONS
Our proposed idea of multi-level �ltering to retrieve similar trajec-
tories can achieve signi�cant improvement on running time and
meanwhile gets a very close output to the correct results, even
without running the exact decision problem. In particular, we �nd
that applying discrete Fréchet distance and using the given distance
threshold for interpolation are two critical techniques for reducing

the number of uncertain trajectories. �ere is, however, quite a
few other �ltering criteria that can be explored and incorporated
to add more levels of re�nement such as equal-time distance of
trajectories [28], minimum and maximum coordinate values check-
ing [31] and minimum bounding box expansion [29]. We leave the
implementation of these criteria for the future work. Other future
work includes the incorporation into a spatial browser [32–34].
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via the Fréchet Distance. SODA ’09.
[22] K. Bringmann. Why Walking the Dog Takes Time: Fréchet Distance Has No
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�eries Under the Fréchet Distance (GIS Cup). SIGSPATIAL’17.
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