
Spatial Join Techniques

EDWIN H. JACOX and HANAN SAMET

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, Maryland 20742

jacox@cs.umd.edu and hjs@cs.umd.edu

A variety of techniques for performing a spatial join are reviewed. Instead of just summarizing
the literature and presenting each technique in its entirety, distinct components of the different
techniques are described and each technique is decomposed into an overall framework for per-
forming a spatial join. A typical spatial join technique consists of the following components:
partitioning the data, performing internal memory spatial joins on subsets of the data, and check-
ing if the full polygons intersect. Each technique is decomposed into these components and each
component is addressed in a separate section so as to compare and contrast the similar aspects of
each technique. The goal of this survey is to describe algorithms within each component in detail,
comparing and contrasting competing methods, thereby enabling further analysis and experimen-
tation with each component and allowing for the best algorithms for a particular situation to be
built piecemeal, or, even better, enabling an optimizer to choose which algorithms to use.

Categories and Subject Descriptors: H.2.4 [Systems]: Query processing; H.2.8 [Database Ap-

plications]: Spatial databases and GIS

General Terms: Algorithms,Design

Additional Key Words and Phrases: external memory algorithms, plane-sweep, spatial join

1. INTRODUCTION

This article presents an in-depth survey and analysis of spatial joins. A large body
of diverse literature exists on the topic of spatial joins. The goal of this article is
not only to survey the literature on spatial joins, but also to extract algorithms and
techniques from the literature and to present a coherent description of the state
of the art in the design of spatial join algorithms. Frequently, an article presents
a complete framework for performing a spatial join. Instead of summarizing each
complete framework individually, we decompose them into components in two ways.
First, if several methods are similar, then a common algorithm is extracted from
the frameworks to show specifically how each framework differs from the others.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0362-5915/2006/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, November 2006, Pages 1–45.

2 · E.H. JACOX and H. SAMET

Table I. Components of spatial join algorithms.
Internal Memory A.3 Nested Loop Join [Mishra and Eich 1992]
Methods A.3 Index Nested-Loop Join [Elmasri and Navathe 2000]

3.1 Plane Sweep [Arge et al. 1998; Preparata and Shamos 1985]
3.2 Z-Order [Aref and Samet 1994b; Orenstein 1986]

Section 4.1 External
Memory Methods

4.1.1 Hierarchical Traversal [Brinkhoff et al. 1993; Günther 1993;
Huang et al. 1997b; Kim et al. 1995]

(Both Datasets In-
dexed)

4.1.2 Non-Hierarchical Methods [Harada et al. 1990; Kitsuregawa
et al. 1989]
4.1.3 Multi-Dimensional Point Methods [Song et al. 1999]

Section 4.2 External 4.2.1 Construct a Second Index [Lo and Ravishankar 1994]
Memory Methods 4.2.2 The Index as Partitioned Data [van den Bercken et al. 1999;

Mamoulis and Papadias 2003]
(One Dataset Not In-
dexed)

4.2.3 The Index as Sorted Data [Arge et al. 2000; Gurret and
Rigaux 2000]

Appendix 4.3 External B.1 External Plane Sweep [Jacox and Samet 2003]
Memory Methods 4.3.1 Generic Partitioning Algorithm
(Neither Dataset B.2 Grid Partitioning [Patel and DeWitt 1996; Zhou et al. 1997]
Indexed) B.3 Strip Partitioning [Arge et al. 1998]

B.4 Size Partitioning [Koudas and Sevcik 1997; Arge et al. 1998]
B.5 Data Partitioning [Lo and Ravishankar 1995; 1996]

Appendix D D.1 Ordering Candidate Pairs [Abel et al. 1999]
Refinement D.2 Polygon Intersection Test [Preparata and Shamos 1985;

Brinkhoff et al. 1994]
D.3 Alternate Intersection Test [Brinkhoff et al. 1994]

Table II. Spatial join issues.
Fundamentals and Section 2 Spatial Join Basics
Concepts Appendix A.1 Minimum Bounding Rectangles

Appendix A.2 Linear Orderings

Processing Issues 4.1.4 Joining Data Nodes

Partitioning Issues 4.3.2 Determining the Number of Partitions
4.3.3 Repartitioning
4.3.4 Avoiding Duplicate Results

Section 6 Uniform Dataset Estimates [Aref and Samet 1994a]
Selectivity Estimation Non-Uniform Dataset Estimates [Belussi and Faloutsos 1995; Das

et al. 2004; Faloutsos et al. 2000; Mamoulis and Papadias 2001b]

Appendix C Alternate
Filtering Techniques

C.1 False Hit Filtering [Brinkhoff et al. 1993; Koudas and Sevcik
1997; Veenhof et al. 1995; Zimbrao and de Souza 1998]
C.2 True Hit Filtering [Brinkhoff and Kriegel 1994a]
C.3 Non-Blocking Filtering [Luo et al. 2002]

For instance, there exist several methods for performing a spatial join on R-trees
[Guttman 1984], each using a hierarchical traversal method. From these different
algorithms, we create a generic hierarchical traversal algorithm and show how each
method slightly varies the generic algorithm (see Section 4.1.1). Thus, each method
is presented in a simpler manner that allows it to be more thoroughly compared
and contrasted with similar algorithms. By doing so, the strengths and weaknesses
of each competing algorithm become more apparent. The various components are
tabulated in Table I along with the sections in which they are discussed. The second
approach to decomposing the various methods is to extract common issues from

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 3

Table III. Specialized spatial joins.
Section 5.1 Multiway
Spatial Joins

5.1.1 Multiway Indexed Nested Loop [Mamoullis and Papadias
1998; Mamoulis and Papadias 2001a; Papadias et al. 1998]
5.1.2 Multiway Hierarchical Traversal [Mamoullis and Papadias
1998; Mamoulis and Papadias 2001a; Papadias et al. 1998]

Section 5.2 Parallel Parallel Hierarchical Traversal [Brinkhoff et al. 1996]
Spatial Joins Parallel Grid Partitioning Methods [Luo et al. 2002; Patel and

DeWitt 2000; Zhou et al. 1997]
Hypercube Spatial Joins [Hoel and Samet 1994]

Section 5.3 Distributed
Spatial Joins

Distributed Filter and Refine [Abel et al. 1995; Mamoulis et al.
2003]

each and address these issues in separate sections. For example, many of the spatial
join methods for handling unindexed data must deal with the issue of removing
duplicate results from the different stages of spatial join processing. Rather than
separately show how each framework handles duplicate results, different techniques
for handling duplicate results are described in a separate section (Section 4.3.4).
The sections dealing with issues that arise in algorithms are tabulated in Table II.
Furthermore, spatial joins for specialized environments are discussed in separate
sections, as tabulated in Table III.

The rest of the paper is organized as follows. Section 2 defines the spatial join op-
eration and discusses design parameters that influence the performance of a spatial
join. Typically, a spatial join is performed in two stages: the filter stage in which
complicated polygonal objects are approximated by rectangles and the refinement

stage which removes any results produced during the filtering stage that do not
satisfy the join condition [Orenstein 1989b]. Section 3 describes internal memory
filtering techniques, while Section 4 describes external memory filtering techniques.
Section 5 explains how spatial joins are handled in specialized situations, such as in
parallel architectures, while Section 6 discusses selectivity estimation. Concluding
remarks are drawn in Section 7. In addition, Appendix A describes the following
two concepts that are important to many spatial join algorithms: the minimum

bounding rectangle (also known as a minimum bounding box) and linear orderings.
Appendix B provides details of the methods that do not rely on the input datasets
being indexed. The remaining appendices elaborate further on the filter and refine
stages. In particular, Appendix C presents extended or alternate filtering tech-
niques, while Appendix D discusses the refinement phase.

2. SPATIAL JOIN BASICS

Given two datasets of multi-dimensional objects in Euclidean space, a spatial join
finds all pairs of objects satisfying a given relation between the objects that involves
the values of their spatial components, such as intersection. For example, a spatial
join answers such queries as find all of the rural areas that are below sea level,
given an elevation map and a land use map [Veenhof et al. 1995]. To illustrate the
concept further, a simplified version of a spatial join is as follows: given two sets of
rectangles, R and S, find all of the pairs of intersecting rectangles between the two
sets, that is, for each rectangle r in dataset R, find each intersecting rectangle, s,
from dataset S, as illustrated in Figure 1. The general spatial join problem, also

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

4 · E.H. JACOX and H. SAMET

r1
s2

y

x

s3

r3
r2s1

Fig. 1. A spatial join to find the intersecting objects of datasets R, consisting of objects r1, r2,
and r3, and S, consisting of objects s1, s2, and s3, will report the intersection of objects r1/s2,
r2/s2, r2/s3 and r3/s2.

known as a spatial overlay join, extends the simplified version in several ways:

(1) The datasets can be objects other than rectangles such as points, segments, or
polygons 1.

(2) The datasets might have more than two dimensions 2.

(3) The relationship between pairs of objects can be any relation between the
objects that involves the values of the spatial components, such as intersection,
nearness, enclosure, or a directional relation (for example, find all pairs of
objects such that r is northwest of s [Zhu et al. 2001]).

(4) There might be more than two datasets in the relation (a multiway spatial join)
or only one dataset (a self spatial join).

The problem of spatial join has been the subject of much attention in fields other
than spatial databases. In particular, its solutions make use of the same principles
as interference detection in robotics applications (for example, [Gottschalk et al.
1996]), game programming (for example, [Ulrich 2000]), and design rule checking
in VLSI applications (for example, [Rosenberg 1985]). These topics are beyond the
scope of this review, but for more details, the interested reader should consult texts
such as [Samet 2006].

Spatial joins are distinguished from a standard relational join [Mishra and Eich
1992] in that the join condition involves the multi-dimensional spatial attribute of
the joined relation. This property prevents the use of the more sophisticated rela-
tional join algorithms. For instance, because the data objects are multi-dimensional,
there is no ordering of the data that preserves proximity. Relational join techniques
that rely on sorting the data, such as the sort-merge join [Mishra and Eich 1992],
work because neighboring objects (those with the next higher and lower value) are
adjacent to each other in the ordering. However, in more than one dimension, the
data can not be sorted so that this property holds for all directions and dimensions.
For example, in two dimensions, the left and right neighbors can be adjacent to an

1An extensive amount of research has also examined the related operation, the segment join
[Balaban 1995; Brinkmann and Hinrichs 1998; Chazelle and Edelsbrunner 1992; Mairson and
Stolfi 1988; van Oosterom 1994], and the more general overlay operation which also addresses the
effects of the result of the spatial join on the way in which the combined attributes of the join are
handled [van Roessel 1987; 1991; 1994].
2A one dimensional version of the spatial join would be an interval join [Enderle et al. 2004].

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 5

object in an ordering, but then the top and bottom neighbors will need to go else-
where in the order (see Appendix A.2 for a further discussion of multi-dimensional
orderings).

Other relational join techniques are also inapplicable because the data objects
might have extent. For example, equijoin techniques [Mishra and Eich 1992] (for
example, hash joins), will not work with spatial data because they rely on grouping
objects with the same value, which is not possible when the objects have extent.
This is the same reason that equijoin techniques will not work with intervals (extent
in one dimension) or inequalities. As an example, for a one-dimensional hash join
on datasets R and S, a group of objects from R is mapped to the same bucket,
G, if their keys, key, are mapped by the hash function f(key) to the same value.
An object g in bucket G can only be paired with an object from S whose key is
also mapped to the same value (f(key)) by the same hash function. This property
does not hold for objects with extent, such as a rectangle, because the objects can
overlap each other and a disjoint grouping might not exist. In fact, an object from
dataset R could potentially intersect every object from dataset S. Because of these
two factors (that is, failure to satisfy proximity preservation and extent) relational
join algorithms cannot be used directly to perform a spatial join.

The computational geometry approach to solving the simplified spatial join (a
two-set rectangle intersection) is to use a plane-sweep technique [Preparata and
Shamos 1985] (see Section 3.1). In order to use the plane-sweep method for a
general spatial join, two problems must be overcome: the objects are not necessarily
rectangles and there might not be sufficient internal memory for the plane-sweep
algorithm. Furthermore, calculating whether two complex objects satisfy the join
condition, such as intersection, can be an expensive operation, and performing as
few of these operations as possible improves overall performance. To overcome these
problems, a spatial join is typically performed using a two stage filter-and-refine
approach [Orenstein 1989b].

In the filter-and-refine approach, the spatial join is first solved using approxi-
mations of the objects in the filtering stage and any incorrect results due to the
approximations are removed in the refinement stage using the full objects 3. In
the filtering stage, objects are typically approximated using minimum bounding

rectangles (see Appendix A.1), hereafter referred to as MBRs, which require less
storage space than the full object, resulting in faster processing and less expensive
I/O operations 4. For example, GIS objects might be polygons, each consisting of
thousands, or even millions, of points. Reading these objects in and out of memory
could easily be the dominant cost of performing a spatial join, depending upon the
available amount of internal memory and the ratio of I/O to CPU performance,
whereas a filter-and-refine approach alleviates this problem. Furthermore, a spatial
join on rectangles presents a more tractable problem. For smaller datasets, the
filtering stage of the spatial join can be solved using internal memory techniques,
which are described in Section 3. For larger datasets, external (secondary) memory

3While the filter and refine stages can be considered two phases of one technique, Park et al. [1999]
propose separating the filter and refinement steps for query optimization so that each stage can
be combined with non-spatial queries.
4Other approximations also can be used (see Appendix C).

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

6 · E.H. JACOX and H. SAMET

techniques are required for the filtering stage, which are described in Section 4.

The output of the filtering stage is a list of all pairs of objects whose approxi-
mations satisfy the join condition, which is referred to as the candidate set, and is
typically represented by pairs of object ids. The candidate set includes all of the
desired pairs, those whose full objects satisfy the join condition, but also includes
pairs whose approximations satisfy the join condition, but whose full objects do not.
The extra pairs appear because of the inaccuracy of the object approximations (see
Appendix A.1). The purpose of the refinement stage is to remove the undesired
pairs using the full objects, producing the final list of object pairs that satisfy the
given join condition. Refinement techniques are described in Appendix D.

As mentioned above, the dominant cost of a spatial join with very large objects
can be the I/O cost of reading the large objects, depending upon the amount
of internal memory and the ratio of I/O to CPU performance. Early filtering
techniques were dominated by I/O costs [Brinkhoff et al. 1993]. Later techniques
have improved I/O performance so that it is no longer an axiom that I/O costs
dominate the CPU costs [Patel and DeWitt 1996]. Even though filtering reduces
the I/O costs, reading large objects can still be the major cost of the refinement
stage, which is generally more expensive than the filtering stage [Patel and DeWitt
1996]. Furthermore, while the performance improvement from using a filter-and-
refine approach might be obvious for very large objects, it remains an open question
as to whether it is the best approach for smaller, simpler objects. As an example
of an alternative approach, Zhu et al. [2000a; 2000b] have proposed methods for
extending the plane-sweep algorithm (Section 3.1) to trapezoids and recti-linear
polygons, thereby avoiding the need for the filter-and-refine approach for objects
having such shapes.

Throughout the review of the spatial join techniques, we do not discuss experi-
mental results. Most of the methods described in this survey were shown to outper-
form some other method. Unfortunately, we found it difficult to compare methods
using only the literature since the techniques are compared with one or no other
technique, and the implementations of the techniques can vary dramatically, which
has a large impact on the experimental results. Furthermore, the variety of com-
puter hardware, software and networks used make it difficult to compare results
between methods. For these reasons, we do not discuss most experimental results.

Also, to simplify the discussion of the techniques, it is assumed that the data is
two dimensional and that we are interested in determining pairs of intersecting ob-
jects. Both of these assumptions are common in the literature. The two-dimensional
assumption is made because the applications of these techniques to higher dimen-
sional data has not been extensively addressed in the literature and many of the
techniques presented might not work or might not perform well in higher dimen-
sions. The intersection assumption is made only to simplify the discussion. We
believe that this assumption does not effect the generality of the algorithms. For
example, a nearness relation can easily be calculated by extending the size of the
MBRs so that nearness is calculated by an intersection test [Koudas and Sevcik
1998]. However, for some predicates, such as a directional predicate, the algorithms
need to be modified appropriately. For instance Zhu et al. [2001] use a modified
plane-sweep algorithm (see Section 3.1) to search for all objects in the desired di-

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 7

rection for a directional predicate. When appropriate, a generic join condition is
used, rather than intersection.

Furthermore, although many spatial join techniques depend on spatial indices,
the discussion of spatial indices is left to other work [Gaede and Günther 1998;
Samet 1990]. Knowledge of these structures can be crucial to a deeper understand-
ing of many of the techniques for processing spatial data. Where appropriate, these
index structures are described, but in general, the algorithms are presented in such
a way that little or no knowledge of the underlying spatial indices is required.

Many factors contribute to the performance of a spatial join and influence the
design of algorithms. The foremost factor, of course, is the processor speed and
I/O performance, and in particular, the ratio of these two factors. Early spatial
joins algorithms were constrained by I/O, which dominated CPU time, and the
focus of improvements was on minimizing the amount of data that needed to be
read from and written to external memory. As spatial join algorithms improved,
experiments showed that CPU time accounted for an equal share of performance
and that the algorithms were no longer I/O dominated [Brinkhoff et al. 1993]. In
addition, ever increasing amounts of internal memory allow larger portions of the
data to reside in memory, which also improves the performance of the spatial join.
Today, algorithms need to account for both CPU performance and I/O performance.
These two factors can be balanced somewhat by tuning page sizes and buffer sizes
(the amount of internal memory available to the algorithm), two factors which also
play an important role in performance. However, as processor, I/O speeds, and
internal memory sizes continue to improve, algorithms need to account for these
factors and thus tuning will always be necessary for the best performance.

The characteristics of the datasets and whether the datasets are indexed are also
major influences on performance. The dataset sizes obviously effect overall perfor-
mance, but a more important issue is whether the dataset fits into the available
internal memory. If the entire dataset does fit in internal memory, then the spatial
join can be done entirely in memory (Section 3) 5, which can be significantly faster
than using external memory methods (Section 4). One of the most confounding
factors for spatial join design is the distribution of data. Algorithms for uniformly
distributed datasets are easy to develop, but the development of algorithms for
handling skewed datasets is significantly more complicated. A poorly designed al-
gorithm can thrash with skewed datasets by repeatedly reading the same data in
and out of external memory, which severely degrades performance. These factors
are mitigated if the data is indexed appropriately. If a dataset is indexed, then in
general, algorithms that use the index will be faster than those that do not. Sec-
tion 4 classifies spatial join algorithms by whether they assume that both datasets
are indexed (Section 4.1), only one dataset is indexed (Section 4.2), or neither of
the datasets are indexed (Section 4.3).

How the data is stored is another factor that contributes to the design of spatial
joins. Vectors (a list of vertices) are commonly used to store polygons, but raster
approaches are also used [Orenstein 1986]. The choice of storage method for the

5If the plane-sweep technique is used (Section 3.1), then the dataset can be processed in internal
memory even if its total size exceeds the size of the internal memory provided that the data is
already sorted and that the active set fits into internal memory.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

8 · E.H. JACOX and H. SAMET

full object mostly effects the complexity of the object intersection test during the
refinement stage, since an approximation of the full object is used during the filter-
ing stage. This article only discusses refinement techniques for the more common
vector representation. During the filtering stage, an object is represented by an
approximation and an object id or a pointer is used to access the full object. An
MBR is generally chosen as the approximation, but other approximations can also
be used (see Appendix C).

The environment in which the algorithm is executed also plays a role in the de-
sign of spatial join algorithms. In a demand-driven pipelined system [Graefe 1993],
which is typical for a DBMS, each stage of the spatial join algorithm needs to out-
put results continuously in order for the pipeline to run efficiently. In this case, each
stage is said to be non-blocking because the next stage does not need to wait for
results. Unfortunately, filtering methods that sort or partition the data are block-
ing, although there is a method to produce some results earlier (see Appendix C.3).
Also, specialized algorithms can be used to improve the performance of multiway
spatial joins, and modified algorithms are required to perform spatial joins that run
in parallel environments and distributed environments (see Section 5).

3. THE FILTERING STAGE – INTERNAL MEMORY

During the filtering stage, a spatial join is performed on approximations of the
objects. This section describes techniques for performing a spatial join without
using external memory, that is, no data is written to external memory (only read
once if necessary). In particular, we note that if there is insufficient internal memory
to process a spatial join entirely in memory, then external memory must be used
to store all or portions of the datasets during processing (see Section 4). Even so,
at some point, most external memory spatial join algorithms reduce the size of the
problem and process subsets of the data using internal memory techniques.

Two simple methods are not addressed here, but in Appendix A.3, which first
describes the brute force nested-loop join, and the related index nested-loop join,
which is presented as an internal memory method even though it can be used as an
external memory algorithm if the indices are stored in external memory. Two more
sophisticated approaches are described here: the plane-sweep algorithm, rooted in
computational geometry, in Section 3.1, and a variant of the plane-sweep that uses
a linear ordering of the data, in Section 3.2.

3.1 Plane Sweep

A two-dimensional plane-sweep [Preparata and Shamos 1985] of a set of axis-aligned
rectangles finds all of the rectangles that intersect. The algorithm has two passes.
The first pass sorts the rectangles in ascending order on the basis of their left sides
(i.e., x coordinate values) and forms a list. The second pass sweeps a vertical scan
line through the sorted list from left to right, halting at each one of these points, say
p. At any instant, all rectangles that intersect the scan line are considered active

and are the only ones whose intersection needs to be checked with the rectangle
associated with p. This means that each time the sweep line halts, a rectangle
becomes active, causing it to be inserted into the set of active rectangles, and
any rectangles entirely to the left of the scan line are removed from the set of

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 9

1 procedure PLANE SWEEP(setA, setB)

2 begin

3 listA←SORT BY LEFT SIDE(setA);

4 listB←SORT BY LEFT SIDE(setB);

5 sweepStructureA←CREATE SWEEP STRUCTURE();

6 sweepStructureB←CREATE SWEEP STRUCTURE();

7 while NOT listA.END() OR NOT listB.END() do

8 /* get leftmost rectangle from the two lists */

9 if listA.FIRST() < listB.FIRST() then

10 sweepStructureA.INSERT(listA.FIRST());

11 sweepStructureB.REMOVE INACTIVE(listA.FIRST());

12 sweepStructureB.SEARCH(listA.FIRST());

13 listA.NEXT();

14 else

15 sweepStructureB.INSERT(listB.FIRST());

16 sweepStructureA.REMOVE INACTIVE(listB.FIRST());

17 sweepStructureA.SEARCH(listB.FIRST());

18 listB.NEXT();

19 endif;

20 enddo;

21 end;

Fig. 2. A two set plane-sweep algorithm to find the intersections between two sets of rectangles.

active rectangles 6. Thus, the key to the algorithm is its ability to keep track of
the active rectangles (actually, just their vertical sides), as well as performing the
actual intersection test.

To keep track of the active rectangles, the plane-sweep algorithm uses a structure
(referred to as a sweep structure or sweepStructure in Figure 2) that supports
three operations needed to track the active rectangles. The first, INSERT, inserts
a rectangle by adding it to the active set. The second, referred to as REMOVE -

INACTIVE, removes from the active set all rectangles that do not overlap a given
rectangle (or line). These rectangles become inactive when the sweep line halts.
The third operation, SEARCH, searches for all active rectangles that intersect a given
rectangle and outputs them. Examples of structures that support these operations
are discussed later in this section.

The classical rectangle intersection problem, given a set of rectangles, S, deter-
mines the pairs of intersecting rectangles in S. A spatial join, given two sets of
rectangles, A and B, determines all pairs of intersecting rectangles in A and B —
that is, for each rectangle r in A, find all of the rectangles in B intersected by r.
To apply the plane-sweep algorithm, a sweep structure is needed for both A and B.
Rectangles from A are inserted into A’s sweep structure and rectangles from B are
inserted into B’s sweep structure. Also, a rectangle r from A will perform a search
on B’s sweep structure, thereby finding all the intersections with the rectangles in
B, and vice versa. Such an algorithm in given in Figure 2.

The data structure used to implement the sweep structures in Figure 2 can have a
significant impact on performance, as Arge et al. [1998] show in their performance

6A variant of the plane-sweep algorithm also stops at the right sides of each rectangle, which also
must be included in the original sorted list, and removes that rectangle from the active set.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

10 · E.H. JACOX and H. SAMET

studies. The choice of a simple list structure or a block list structure (multiple
objects in each list entry) [Arge et al. 1998] is appropriate for smaller datasets,
where the overhead of more sophisticated structures is not needed [Dittrich and
Seeger 2000]. For larger datasets or highly skewed datasets, more sophisticated
structures are appropriate. Some examples of data structures that will work as
sweep structures are:

(1) A simple linked list [Cormen et al. 1990].

(2) Interval tries [Knuth 1973], as used by Dittrich and Seeger [2000].

(3) A dynamic segment tree [Cormen et al. 1990].

(4) An interval tree [Edelsbrunner 1983] with a skip list [Pugh 1990], as described
by Hanson [1991] and used by Arge et al. [1998].

(5) A dynamic priority search tree [McCreight 1985].

Except for the linked list implementation, the search operation on the sweep struc-
ture is O(log(n)), where n is the size of the combined datasets (na + nb), giving
a running time for the plane-sweep algorithm of O(n · log(n)), which includes the
initial sort of the data.

Arge et al. [1998] modify the plane-sweep algorithm slightly to dramatically in-
crease the size of datasets that can be processed without resorting to external
memory. The traditional version of the plane-sweep algorithm assumes that all of
the data is in internal memory. If the data is in external memory, then the entire
dataset is first read into internal memory before performing the plane sweep. Arge
et al. [1998], revisiting work by Güting and Schilling [1987], observed that only the
data in the sweep structures needs to be kept in internal memory. If the data is in
external memory and sorted, then each object can be read one at time from external
memory, inserted into the sweep structure, and then purged from internal memory
when it is deleted from the sweep structure. In this way, only the data intersecting
the sweep line needs to be kept in internal memory, reducing the internal mem-
ory requirements of the algorithm and increasing the size of datasets that can be
processed without resorting to more sophisticated spatial join techniques. A rough
calculation estimates that a typical dataset will have O(

√
n) objects intersecting

the sweep line [Ottmann and Wood 1986], meaning that datasets of size O(m2),
can be processed, where m is the number of objects that can fit in internal memory.
The plane-sweep technique can also be extended to process datasets of any size by
using external memory (see Appendix B.1).

3.2 Z-Order Methods

The plane-sweep method described in Section 3.1 only uses input sorted in one di-
mension, but can be adapted to use more than one dimension using a more general
linear ordering that sorts the points using multiple dimensions (see Appendix A.2).
Thus, instead of a sweep line, a point or grid cell is swept over the data space, cre-
ating an active border [Aref and Samet 1994b; Dillencourt and Samet 1996]. Since
fewer objects will intersect a point than will intersect a line, the sweep structure
will be kept smaller, decreasing search times and the amount of internal memory
needed. However, since the enclosing cells used for a linear ordering are bigger
than MBRs, the number of objects in the sweep structure will increase, thereby

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 11

a2

a1

a4

a3

b1

A
B

Fig. 3. Objects are shown from dataset A and dataset B in the order in which they appear in the
Z-order, where large objects are encountered first (that is, in the following order: a1, a2, a3, a4,
b1). Since the stack for the B dataset will be empty until b1 is inserted, a2 and a4 do not need to
be inserted into A’s stack. In other words, when b1 is inserted into B’s stack, a1 and a3 are the
only elements in A’s stack, and a2 and a4 will never be in A’s stack when an element of B is in
B’s stack. Therefore, a2 and a4 do not need to be inserted into A’s stack.

offsetting some of the benefit. Orenstein [1986] first used a variation of the Z-order
method in his work on spatial joins. This section shows how to adapt the plane-
sweep method to use a Z-order (a Peano-Hilbert order would work as well) and
relates the algorithm to Orenstein’s work.

The Z-order algorithm is nearly identical to the plane-sweep algorithm, shown in
Figure 2, and this section only describes the two minor modifications needed for the
Z-order algorithm, rather than presenting the entire algorithm. First, the objects
from both datasets are assigned to Z-order grid cells (see Appendix A.2). Next, the
objects are sorted in Z-order rather than one-dimensionally. The remainder of the
Z-order algorithm, which consists of creating the sweep structures and the while

loop, is identical to the plane-sweep algorithm, shown in Figure 2. In this case, the
active set, instead of being the objects that intersect the sweep line, are the enclosing
cells of the objects that intersect the current Z-order grid cell. Since a sufficiently
fine grid cell will intersect fewer objects, the active set will be smaller and the sweep
structure can be simpler, such as a linked list [Cormen et al. 1990]. Also, the sweep
structure can be modified to take advantage of the regular decomposition of the
Z-order cells. All of the objects in the active set (sweep structure), which are the
enclosing Z-order grid cells, will have either a containment relation to each other
or be identical. In early work on spatial joins, Orenstein [1988] used a stack which
he called a nest to implement the sweep structure. Because the input is sorted in
Z-order, large objects can be inserted into the sweep structure before the smaller
objects that are enclosed by the object. These small objects will be removed before
their enclosing objects are removed. This LIFO property makes a stack the natural
choice for the sweep structure. The INSERT and REMOVE INACTIVE methods will
be simple because they either push elements on to the stack or pop elements from
the stack, respectively. The SEARCH method is also simple since all objects in the
stack will intersect the input object. If the enclosing cells intersect, the MBRs can
also be checked for intersection to further filter false hits from the candidate set,
assuming the MBRs are available.

Aref and Samet [1994c] further improved the use of the sweep structure by avoid-
ing some insertions, using a technique similar to a zig-zag join [Garcia-Molina et al.
2000]. They point out that if one stack is empty, for example, sweepStructureB,
then it might not be necessary to insert elements into the other stack, sweep-

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

12 · E.H. JACOX and H. SAMET

Fig. 4. An object can be decomposed into multiple cells.

StructureA. The objects to skip can be determined by examining the next object
to be inserted into the empty stack. For example, in Figure 3, if dataset A contains
the objects a1, a2, a3 and a4, then objects a2 and a4 will not intersect any objects
in dataset B, which contains only b1. The objects a2 and a4 do not need to be in-
serted into A’s stack. If one stack, sweepStructureB, is empty, then the algorithm
can look ahead to the next element, say bT op, that will be inserted into the empty
stack, and avoid inserting any elements into the other stack, sweepStructureA,
that do not intersect bT op. In Figure 3, sweepStructureB will be empty until b1 is
encountered, which becomes bT op. Therefore, a2 and a4 do not need to be inserted
into the stack for dataset A, sweepStructureA. In a further extension, Aref and
Samet [1996] modify the Z-order sweep to report larger pairs first, at each stopping
point (iteration of the while loop), by reporting from the bottom of the stack up,
rather than from the top. Thus, the output is already in Z-order, which can be
useful for performing a cascaded join.

One drawback of the Z-order sweep method is that the stacks can be filled with
objects that have large enclosing cells, even when the objects are small. For in-
stance, any object that overlaps the center point of the space will be contained in
the highest level enclosing cell, which encloses the entire space. Such an object will
be one of the first objects to enter a stack and will remain in the stack until the
algorithm is through processing. This increased stack size will impair performance.
To alleviate this problem, Orenstein [1989a] suggested decomposing objects into
multiple cells, as shown in Figure 4. This decomposition not only reduces the size
of the stack, but creates a more accurate approximation of the object, which reduces
the number of false hits. However, these benefits are offset by the increased number
of objects introduced by the redundancy and the need to remove duplicate results
(see Appendix A.1). Even so, Orenstein [1989a] found that performance rapidly
improves with a modest amount of decomposition. In a further study, Gaede [1995]
developed a formula for determining the optimal amount of redundancy.

4. THE FILTERING STAGE – EXTERNAL MEMORY

The internal memory techniques mentioned in Section 3 require sufficient levels
of internal memory in order to operate efficiently. For instance, to perform the
nested-loop join (Appendix A.3), both datasets need to be in internal memory in
order to avoid repeatedly reading the same objects in and out of external memory.
To efficiently process datasets of any size, an algorithm must use external memory
to store subsets of the data (or references to the data) during processing or the

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 13

data must be indexed. This section describes filtering methods that use external
memory to efficiently process datasets of any size.

If the data is already indexed, then it is generally advantageous to use the index
for the filtering stage of a spatial join. Section 4.1 describes techniques for filtering
when both datasets are indexed. Even if there is sufficient internal memory to use
the internal memory techniques from Section 3, if both datasets are indexed, then
it can be faster to use the two-index filtering techniques 7. Section 4.2 addresses the
case where only one of the datasets is indexed. Of course, the unindexed dataset can
be indexed and the two-index techniques from Section 4.1 can be used. Another
approach, if only one dataset is indexed, is to consider the index as a source of
sorted or partitioned data and use the techniques for performing a spatial join
when neither dataset is indexed, which are addressed separately, in Section 4.3. If
neither dataset is indexed, then it might not be efficient to build indices in order to
do a spatial join, especially if the indices will not be used again and immediately
discarded, as is the case if the spatial join is an intermediate step in solving a
complex query.

Even though the internal memory techniques in Section 3 cannot be used directly,
at some point during processing, two subsets of the data that do fit in internal
memory are joined. These subsets can be two pages from indices, as in Section 4.1.1,
or subsets created by partitioning the data, as in Section 4.3. In these cases, when
the internal memory techniques from Section 3 become applicable, the reader is
referred to that section, rather than elaborating on the in-memory join aspects of
the particular algorithm.

4.1 Both Datasets Indexed

If both datasets are indexed, but with incompatible types of indices, such as an
R-tree [Guttman 1984] and a point quadtree [Finkel and Bentley 1974], Corral et
al. [1999] suggest ignoring one index and performing an index-nested loop join, as
described in Appendix A.3. If both datasets are indexed using the same type of in-
dex, then the technique for performing the filtering stage of the spatial join depends
on the structure of the index. Since many spatial indices are hierarchical, a spatial
join algorithm for these indices also has a hierarchical nature. These methods are
described in Section 4.1.1. Early work on spatial joins used a more general non-
hierarchical approach, which are described in Section 4.1.2. Section 4.1.3 discusses
a method that works with indices that transform objects into points in higher-
dimensional space. Since most methods in this section join data pages or index
nodes, this issue is discussed separately, in Section 4.1.4.

4.1.1 Hierarchical Traversal. A common type of spatial index is one that can
be described as a hierarchical containment index or a generalization tree [Günther
1993; Hellerstein et al. 1995], such as an R-tree [Guttman 1984] or a multi-level
grid file [Whang 1991]. This type of index is a tree structure in which every node
of the tree corresponds to a region of the data space. An internal node’s region
covers the regions of its sub-nodes and each node might or might not overlap other

7When an external memory filtering technique should be used instead of an internal memory
algorithm is an open question.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

14 · E.H. JACOX and H. SAMET

1 procedure INDEX TRAVERSAL SPATIAL JOIN(rootA, rootB)

2 begin

3 priorityQueue←CREATE PRIORITY QUEUE();

4 priorityQueue.ADD PAIR(rootA, rootB);

5 while NOT priorityQueue.EMPTY() do

6 nodePair←priorityQueue.POP();

7 rectanglePairs←FIND INTERSECTING PAIRS(nodePair);

8 foreach p ∈ rectanglePairs do

9 if p is a pair of leaves then

10 REPORT INTERSECTIONS(p);

11 else

12 priorityQueue.ADD PAIR(p);

13 endif;

14 enddo;

15 enddo;

16 end;

Fig. 5. A generic hierarchical traversal spatial join algorithm for data indexed by hierarchical
indices.

nodes, depending on the index type. Each node is typically stored on one page of
external memory, which is determined by the underlying DBMS and typically has a
size ranging between 1KB and 8KB. This section assumes that the data objects are
only stored in the leaves of the tree, though the techniques can be adapted to handle
data in the internal nodes. If both datasets are indexed using generalization trees,
then a spatial join can be performed efficiently with a synchronized traversal of
the indices. This section describes a generic synchronized traversal algorithm, and
then presents variations that differ in how the indices are traversed, attributable to
Günther [1993], Brinkhoff et al. [1993], Kim et al. [1995], and Huang et al. [1997b] 8.

The generic synchronized traversal algorithm is shown in Figure 5. To simplify
the explanation, both indices are required to have the same height. For indices of
different heights, the join of a leaf of one index with a sub-tree of the other can be
accomplished using a window query [Brinkhoff et al. 1993], or handling leaf-to-node
comparison as special cases [Kim et al. 1995]. Starting with the two root nodes of
the indices, rootA and rootB, the algorithm finds intersections between the sub
nodes of rootA and rootB using the FIND INTERSECTING PAIRS function. The in-
tersecting sub-node pairs are added to the priority queue [Cormen et al. 1990],
priorityQueue, and these pairs are checked for intersecting sub-nodes in later it-
erations. If the two nodes are leaves, then the REPORT INTERSECTIONS function is
used to compare the leaves and report any intersecting objects. Section 4.1.4 dis-
cusses the methods used to find object or sub-node intersections within two nodes,
as used by the FIND INTERSECTING PAIRS and REPORT INTERSECTIONS functions.

The three variations of the synchronized traversal algorithm differ in the imple-
mentation of the ADD PAIR function, or, in other words, the priority (i.e., the sort
order) that is used by the priority queue. Each variation attempts to minimize disk
accesses. However, the algorithms must use heuristic methods, as a similar disk
scheduling problem for relational joins has been shown to be NP-hard [Fotouhi and
Pramanik 1989; Merrett et al. 1981]. Günther [1993] and Huang et al. [1997b] both

8See Huang et al. [1997a] and Theodoridis et al. [1998] for cost models for these approaches.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 15

perform a breadth-first traversal, where priority is given to higher-level node pairs.
In this way, all of the nodes at one level of the indices are examined before any
nodes in the next level. Since all of the intersecting node pairs for a given level are
known before any pair is processed, Huang et al. [1997b] further sort the pairs for
a level, that is, the pairs in the priority queue, to reduce the number of page faults
and buffer misses. In this approach, priority is still given to higher level nodes, but
a secondary sort is used within each level. They investigated using the following
heuristics as a secondary sort:

(1) A secondary sort on one dataset’s nodes, say A, to achieve clustering for that
dataset. For example, for each element of A, say a, all node pairs containing a
will be adjacent in the order.

(2) A secondary sort on the sum of the centers of the pair in one dimension. In
effect, objects pairs whose centers are closer in the x-dimension are given pri-
ority.

(3) A secondary sort on the center of the MBR enclosing the pair, in one dimension.

(4) A secondary sort on the center of the MBR enclosing the pair using a Peano-
Hilbert order.

In their experiments, Huang et al. [1997b] found that ordering by the sum of the
centers of the pair in one direction outperformed the other orders in terms of I/O
for realistic buffers sizes. One of the drawbacks of the breadth-first approach is
that, as the algorithm progresses, the priority queue can grow extremely large and
portions of it might need to be kept in external memory.

Brinkhoff et al. [1993] and Kim et al. [1995] use a depth-first approach in which
all of the sub-node pairs for a given node pair, p, are processed before proceeding
to the next node pair at the same level. In this case, priority is given to lower-
level node pairs. As with the breadth-first approach, heuristics can be used to
reduce I/O by secondarily ordering p′s intersecting sub-node pairs. Brinkhoff et al.
experimented with several ordering heuristics that secondarily sort the intersecting
region of the node pairs 9:

(1) In one-dimension.

(2) By frequency (maximal degree), determining which node, say a, is contained
in the most node-pairs, and processing a’s node pairs first.

(3) In Z-order.

Brinkhoff et al. found that the Z-order approach worked best for smaller buffer
sizes and that the frequency method worked best for larger buffer sizes. To improve
performance, Brinkhoff et al. [1993] use two path buffers, which keep in memory all
of the ancestor nodes of the current node pair. They also advocate the use of an
LRU buffer to improve performance. Additionally, Brinkhoff and Kriegel [1994b]
suggest that the performance of the spatial join could be improved by organizing

9A sorted list of intersecting regions of node pairs can easily be determined by using a plane-sweep
technique (see Section 3.1), which outputs the interesting regions of the node pairs in sorted order.
Brinkhoff et al. [1993] use a variation of the algorithm described in Section 3.1 that does not require
a sweep structure, but instead searches the sorted lists of rectangles for intersections.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

16 · E.H. JACOX and H. SAMET

(a) (b)

Set A

Set B

Fig. 6. When joining datasets A and B, internal memory, represented as data pages in the grid,
can be (a) half filled by each of datasets A and B or (b) filled almost entirely with dataset A,
leaving only one data page for dataset B.

the nodes of the index into clusters which are physically close on disk. During join
processing, a cluster would be read into memory as a whole.

4.1.2 Non-Hierarchical Methods. A more general approach to performing a spa-
tial join on indexed data is to treat the indices as simply a partitioned dataset,
where the data pages of the indices are the partitions. In this approach, the data
pages are read in an order that is meant to minimize I/O, which is a generalization
of the I/O minimization heuristic orders described in Section 4.1.1. Each pair of
intersecting data pages is then read into memory and joined (see Section 4.1.4 for
a discussion of joining data pages). This method is applicable to any index type
with data pages. Kitsuregawa et al. [1989] applied it with k-d trees [Bentley 1975],
while Harada et al. [1990] applied it with grid files [Nievergelt et al. 1984].

In this technique [Harada et al. 1990; Kitsuregawa et al. 1989], the overlapping
partitions (data pages) need to be determined first, which is just a spatial join on
the areas covered by the data pages, and internal memory techniques (Section 3)
can be used to find the overlapping partitions 10. Once the overlapping partition
pairs are determined, partitions are read from one dataset, A, in sorted order 11.
Either enough data pages from dataset A are read to fill half of the available internal
memory or enough are read to fill all but one data page of internal memory, as shown
in Figure 6. Then, the intersecting data pages from the other dataset, B, are read
into the remaining internal memory and joined. Since all of the intersecting data
pages from dataset B might not fit in memory, the data pages from dataset B are
purged from memory once they are joined and more pages from dataset B are read
into memory, until all of the intersecting data pages from dataset B have been read.
To enhance performance, Lu et al. [1995] propose precomputing overlapping index
nodes if the index will receive few updates, much like a spatial join index [Rotem
1991].

Corral et al. [1999] apply a similar strategy for performing a spatial join between
an R-tree [Guttman 1984] (hierarchical and non-disjoint) and a quadtree [Finkel
and Bentley 1974] (hierarchical and disjoint) index. They propose filling internal
memory efficiently by reading data pages in groups as shown in Figure 6. Addition-
ally, they propose ordering the first dataset of data pages using a linear ordering

10This approach assumes that the boundary information for the partitions (i.e. the extent of the
data pages) is in internal memory.
11Note that any linear ordering would suffice (see Appendix A.2).

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 17

1410 12 16

a
b

14

10

12

16

a

1410 12 16

b

Region of lines
intersecting line a.

Right End Point

Left End Point

(a) (b)

Fig. 7. As an example of the transformation to multi-dimensional points in a higher-dimensional
space, (a) two one-dimensional intervals, a and b, that overlap (b) will be near each other when
mapped to two-dimensional points. Any interval that overlaps interval a will be contained within
the dotted lines when represented as a point. Furthermore, since the left end point of the interval
is represented by the x-axis, all points will be above the dashed, diagonal line since the left end
point is always less than or equal to the right end point.

(see Appendix A.2). Even though the two indices are of different types, the method
works because the data pages of the indices are treated as partitions.

The methods described in this section use heuristics to determine the order of
reading partitions. In a relevant analysis, Neyer and Widmayer [1997] showed that
determining the optimal read schedule to minimize the number of disk reads is
NP-hard if no restrictions are placed on the partitions. However, if the partitions
do not share boundaries (that is, they do not have any sides in common), they
show that the problem is easy to solve. If G is a graph where the vertices represent
the MBRs of the index nodes and an edge is placed between all of the intersecting
nodes between the two datasets, then the optimal read schedule is the Hamiltonian
path through G, which can be found using an algorithm by Chiba and Nishizeki
[1989].

4.1.3 Transform to Multi-Dimensional Points. Unlike points, rectangles have
extent, which complicates spatial join algorithms. For instance, since an object will
not fit neatly into a partition, either the object must be replicated into multiple
partitions or the partitions must overlap, as in an R-tree [Guttman 1984]. Transfor-
mation methods avoid this problem by transforming objects into multi-dimensional
points in a higher dimensional space, such as used by the grid file index [Nievergelt
et al. 1984]. For example, a two-dimensional rectangle can be transformed into a
point in four-dimensional space by using the coordinate values of the center point,
half of the width, and half of the height as the four values representing the rectan-
gle. Alternatively, the rectangle can be transformed using the coordinate values of
the opposing corner points of the rectangle as the four values, which is a technique
known as the corner transformation.

Song et al. [1999] propose a spatial join for data that is indexed using the corner
transformation method. The indices create a partitioning of the multi-dimensional
points, and the method for joining the partitions is similar to the non-hierarchical
spatial join methods (Section 4.1.2), which order the processing of overlapping par-
tition pairs between the two datasets. However, in the transformed space, the search
space substantially increases. For instance, when joining two indexed datasets, R

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

18 · E.H. JACOX and H. SAMET

Space B

Space A

Space B
Space A

x

x

x

x

Fig. 8. When joining two data pages, only the objects within the intersecting region of the pages
(marked with an x) need to be considered.

and S, a region (data page) containing points from a dataset R needs to be com-
pared against a larger region containing points from dataset S. To see why this is
so, consider the one-dimensional intervals, a and b, shown in Figure 7a. In two-
dimensional space, any interval that overlaps a, such as b, will be contained within
the region shown in Figure 7b, lying between the dashed and dotted lines. Note
that all data points in transformed space are above the diagonal since the termi-
nating point of the interval is always greater than the starting point. Similarly, for
two-dimensional objects, such as a rectangle r (for example, the MBR of an index
node), all rectangles overlapping r will occupy a space in four dimensions similar
to the region shown in Figure 7b (see Song et al. [1999] for the exact calculation
of this region in four dimensions). Once the overlapping partition pairs have been
determined, the methods in Section 4.1.2 can be used to order the reading of the
data pages from memory.

4.1.4 Node to Node Comparison. When joining two regions A and B, which
could represent two index nodes, two data pages, or two partitions, if both regions
cover the same space and fit in internal memory, then every object in region A
needs to be joined with every other object in region B. This, of course, is an
internal memory spatial join and an appropriate internal memory technique from
Section 3 should be used. For smaller page sizes, a nested-loop join (Appendix A.3)
might be best because of the low overhead. For larger page sizes, the plane-sweep
method (Section 3.1), as suggested by Brinkhoff et al. [1993], or a Z-order sweep
(Section 3.2) would be more appropriate.

If the regions do not cover the same space, as is likely when joining index nodes,
then the search space can be reduced [Brinkhoff et al. 1993]. Only objects within
the intersecting region of the two nodes need to be compared, as shown in Figure 8.
For example, if the plane sweep method is used to join the nodes, then only these
objects will be processed by the plane sweep.

4.2 One Dataset Not Indexed

If only one dataset is indexed, then the spatial join can be performed using an
index nested loop join (Appendix A.3), which uses the index to do window queries.
For example, given two datasets to be joined, A and B, if dataset A is indexed
with an R-tree, then for every element b in B, a window query is performed on the
R-tree index of A using each b, which finds all of the objects in A that intersect

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 19

A

F

G

ED

B

C

A

B C

D E F G

Seed Level
A

F

G

ED

B

C

p

(a) (b) (c)

Fig. 9. (a) The data (dark rectangles) and regions (lettered squares) covered by the nodes of an
R-tree. (b) As shown in a hierarchical representation of the index node structure, the second level
of the R-tree is used as a seed level. (c) Since object p, from the second, unindexed dataset, does
not overlap any seed level region (regions B and C), p can be discarded.

b. Another approach is to construct an index on the unindexed data and then use
the spatial join techniques for when both datasets are indexed, which are described
in Section 4.1. In support of this approach, techniques for efficiently constructing
the second index are surveyed in Section 4.2.1. Still another approach is to take
advantage of the structure of the indexed data, without using the index directly,
as described in Section 4.2.2, which reviews techniques that partition the leaves of
the index, and Section 4.2.3, which reviews methods that adapt the plane-sweep
algorithm (Section 3.1) to use the index as a source of sorted data.

4.2.1 Constructing A Second Index. If only one dataset is indexed, then the
other dataset can be indexed efficiently using bulk-loading techniques [Hjaltason
and Samet 1999; van den Bercken et al. 1997], which exist for many types of indices,
and then the techniques described in Section 4.1 can be used to perform the spatial
join. This approach is especially useful when the index will be saved and used
later. Conversely, if the index is not going to be reused, then Lo and Ravishankar
[1994] suggest building a special purpose index that improves the performance of
the spatial join. However, the index might not be reusable because some of the
data will be excluded from the specially built index. This constructed index, which
is an R-tree [Guttman 1984], is built so that it mirrors the structure of the existing
index, thereby minimizing node overlap between the two indices and reducing the
number of node-to-node comparisons, which speeds the spatial join.

Lo and Ravishankar [1994] call their constructed index a seeded tree since it is
built using the upper levels of the existing index to seed the construction of the
second index. An upper level of the existing index, termed a seed level, is used to
partition the second dataset. For efficiency, the level should be chosen such that
each node is assigned a write buffer. The number of write buffers is limited by
the amount of internal memory, which, therefore, determines the lowest level of
the index that can be used. Lo and Ravishankar discuss techniques for choosing
a level in [Lo and Ravishankar 1995]. In a slightly different approach, Mamoulis
and Papadias [1999] point out that trying to create too many partitions will cause
buffer thrashing and propose a bottom-up approach instead (see Section 4.2.3).
One level of the existing index forms a collection of non-disjoint regions that do not
necessarily cover the data space. This is illustrated in Figure 9a and b by regions
B and C. Each region’s centroid, for example, the center points of the MBRs of
the data pages, serves as the basis for partitioning the second dataset. Initially,

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

20 · E.H. JACOX and H. SAMET

each partition of the new index has no area. As objects from the unindexed dataset
are inserted into a selected partition, the partition is enlarged to enclose all of its
objects. Lo and Ravishankar experimented with different techniques for choosing
the partition in which to insert objects for the unindexed dataset. The technique
that performed the best in their experiments is to insert an object into the partition
with the nearest centroid. Another technique, which performed slightly worse, is
to insert the object into the partition whose size is enlarged the least.

Once the data is partitioned, each partition is transformed into an R-tree using
bulk-loading techniques [van den Bercken et al. 1997]. The resulting forest of R-
trees is attached to the upper seed levels, which are duplicated from the original
index, and the new seed levels are adjusted to cover the newly created forest of
R-trees, resulting in a regular R-tree. Once this is done, the techniques given in
Section 4.1.1 can be used to perform the spatial join. Since the trees are similar,
performance improves because the number of overlapping nodes is reduced. To
improve performance even further, Papadopoulos et al. [1999] note that during
construction of the R-tree, the leaves of the R-tree (or partitions in general) do
not need to be written to external memory to form the full external memory index
if the R-tree is not going to be reused. Instead, the leaves or partitions can be
joined to the other dataset immediately and then thrown out, saving I/O cost and
speeding the spatial join.

Lo and Ravishankar [1994] also propose extensions to filter the second dataset,
reducing the size of the second dataset and, thus, further speeding the join. Given
two datasets A and B, where A is indexed and B is not, they note that any object in
B, say b, that does not intersect with the regions covered by the upper level nodes
of the existing index on dataset A, could not intersect any object in A. Therefore,
b does not need to be inserted into the constructed index for dataset B. This
makes the join faster, but renders the second index unusable for processing other
operations in the future since it does not contain the entire dataset. For example,
if the constructed R-tree is not going to be reused, then objects from the second
dataset that do not intersect the regions covered by the seed levels do not need
to be inserted into the partitions because they will not intersect any object in the
indexed dataset, as shown in Figure 9c for object p.

4.2.2 An Index as Partitioned Data. Even if just one dataset is indexed, the best
approach to performing a spatial join might not be to construct a second index,
but rather to use the synchronized traversal methods from Section 4.1.1. In this
case, the pre-existing index can be viewed as a partition of the dataset and methods
similar to the non-hierarchical methods (Section 4.1.2) can be used to perform the
spatial join. To create partitions from an index, the data pages are grouped to
form the partitions. The data pages can be grouped either in a top-down manner
for hierarchical indices by using sub-trees as the partitions [van den Bercken et al.
1999] or in a bottom-up fashion by grouping data pages, which can be used for any
index type [Mamoulis and Papadias 2003].

In a top-down method to partitioning, proposed by van den Bercken et al. [1999],
the unindexed dataset is partitioned based on one of the levels of the existing
hierarchical index, for example, the sub-nodes of the root of the indexed dataset,
which is similar to the seeded tree technique in Section 4.2.1 and shown in Figure 9b.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 21

(a) (b)

Fig. 10. (a) A set of index data pages (b) are grouped to form slots, shown by thick-lined rectangles.

The partition boundaries are the MBRs of the internal index nodes for the chosen
level, for example, regions B and C in Figure 9. The unindexed data is partitioned
based on these regions, placing each object into each partition that it overlaps,
which replicates the data, requiring that duplicate removal techniques be used on
the result pairs (see Section 4.3.4).

Once the partitioning is done, each partition is joined with the objects in the
sub-tree of the corresponding index node using any appropriate internal memory
method (Section 3). If the data pages and partitions for a sub-node do not fit in
memory, then the method can be recursively applied by descending to the next
level of the index. This approach works best if the depth of the tree is small or,
conversely, if the index has a large fan out. For this reason, van den Bercken et
al. [1999] propose this approach as a technique for joining two unindexed datasets,
in which case an index is created with the largest possible fan out on one dataset
before the method is applied.

In a bottom-up approach to partitioning the data pages, Mamoulis and Papa-
dias [1999; 2003] propose a technique that creates a target number of partitions,
which they call slots, by grouping the data pages of the existing index, as shown in
Figure 10. The unindexed dataset is partitioned based on the slots. To create the
slots, the amount of data in each slot is first determined, which is roughly half of
the available internal memory. The data pages of the existing index are grouped by
traversing them in a linear order (Appendix A.2) and adding them to a slot until
the slot’s capacity is reached. Then, the next slot is filled and so forth. The region
covered by the data pages in the slot form a partition for the unindexed data. As
with the top-down approach, once the unindexed dataset is partitioned, a group of
data pages from the original index (a slot) and its corresponding partition of the
unindexed dataset are read into memory and joined. Due to skew, however, a slot
and its partition might not fit in internal memory. In this case, the partitioning
method is applied recursively until each slot and its partition fit in memory.

4.2.3 An Index as Sorted Data. An index can also be viewed as a sorted dataset,
since extracting the data from an index in sorted order is inexpensive using an in-
order traversal of the index. In this case, the plane-sweep method (Section 3.1) can
used to perform the spatial join. Generally, the plane-sweep method is performed
after sorting both datasets. Since extracting data from an index in sorted order
(sorted in one-dimension) is fast in this situation, the plane-sweep technique is less
expensive than sorting both datasets since only one dataset needs to be sorted [Arge
et al. 2000].

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

22 · E.H. JACOX and H. SAMET

Fig. 11. The leaves of an R-tree are grouped into strips, which can flushed to external memory
if internal memory overflows. Here, four strips (dashed lines) are formed, each containing two
objects.

Another approach, one that modifies the plane-sweep method, proposed by Gur-
ret and Rigaux [2000], is to read the data pages from an index (they use an R-tree)
in a one-dimensional sorted order and insert entire data pages into the sweep struc-
ture. In this case, one sweep structure will contain objects, as is normal, while
the other sweep structure will contain data pages. This technique only requires
a modification of the plane-sweep SEARCH routine (see Figure 2) to search for in-
tersections between an object and a data page. Since the REMOVE INACTIVE and
INSERT routines work with MBRs and the enclosing rectangle of a data page is an
MBR, these two methods do not need to be modified. Additionally, the initial sort
step of the plane-sweep algorithm needs to extract the data pages of the index as
well as to sort the unindexed dataset.

If memory overflows (that is, the active set is too large to fit in internal memory),
then Gurret and Rigaux [2000] propose using a method in which some of the data
pages of the index are removed (or flushed) from the sweep structure and written to
disk for later processing. To do this, before the plane-sweep phase of the algorithm
starts, each data page is assigned to a strip, as shown in Figure 11. The strips
are created using a method that is similar to forming slots in Section 4.2.2, except
that a one-dimensional sort is used. Only entire strips of data pages are flushed
at a time. After a strip is flushed, the plane-sweep algorithm continues. Any
rectangle from the unindexed dataset that overlaps the flushed strip is also written
to external memory. After the plane-sweep algorithm finishes, it is run again on the
flushed data pages and the rectangles written to external memory, starting from the
point where the flush occurred. If a plane sweep on the flushed data also overflows
memory, then the flushed data can be partitioned further into strips and the entire
algorithm applied recursively.

4.3 Neither Dataset Indexed

The inputs to a spatial join operation are usually assumed to be indexed. However,
the situation is often different when the input to the spatial join are themselves the
result of a spatial join. In particular, there is no requirement that the output of a
spatial join be indexed (but see Hoel and Samet [1995], which evaluates different
spatial indices by taking into account the time necessary to construct an index for
the result of a spatial join). If neither dataset is indexed, then an index can be
built on one or both datasets, and then the techniques from Sections 4.1 and 4.2,
respectively, can be used. If the index is to be saved and reused, this can make

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 23

1 2

3 4

Set A

Set B

1 2

3 4

Fig. 12. If both datasets, A and B, are partitioned using the same grid, then each grid cell is
joined with exactly one other, corresponding cell.

sense. If not, then other techniques that do not necessarily create an index might
be faster 12. These techniques are useful when an index would not be used later,
such as for a one-time operation on the data, where the extra cost of building the
index would be more expensive. For example, in a complex query, intermediate
results can be processed faster with these techniques. The key to most of these
techniques lies in partitioning the datasets so that the partitions are small enough
to fit in internal memory. In other words, a divide-and-conquer approach is used
to decompose the datasets into manageable pieces.

Once the data is partitioned, each pair of overlapping partitions, one from each
dataset, is read into internal memory and internal memory techniques are used (see
Section 3). This assumes that the partition pairs fit into internal memory. If they
do not, then they can be repartitioned until the pairs fit (see Section 4.3.3).

As a foundation for describing the partitioning methods in this section, Sec-
tion 4.3.1 describes a generic algorithm for performing a spatial join using a par-
titioning technique. The algorithm also serves to introduce several common issues
associated with the partitioning approach: determining the number of partitions
is discussed in Section 4.3.2, repartitioning, if any of the partition pairs do not fit
in internal memory, is discussed in Section 4.3.3, and handling duplicate results is
discussed in Section 4.3.4.

Details of specific methods are found in Appendix B. Appendix B.1 discusses
an extension to the plane-sweep algorithm (Section 3.1) that can process datasets
of any size by using external memory. The distinction between the sort-and-sweep
method and the partitioning method is analogous to the distinction between sort-
merge joins and hash-based joins. Next more sophisticated partitioning algorithms
from the literature are described, grouped by how they partition the data: using
grids in Appendix B.2, using strips in Appendix B.3, by size in Appendix B.4, and
clustering in Appendix B.5.

4.3.1 Basic Partitioning Algorithm. This section uses a simplified algorithm to
illustrate a spatial join technique based on partitioning. While the algorithm has
limited practical applications, it is used as the basis for describing more sophis-
ticated algorithms and to discuss the common issues associated with partitioning
techniques. The basic concept is to define a grid and use it to partition the data
from each dataset, datasets A and B, into external memory. Each data object is
placed into each grid cell (partition) that it overlaps. Once the data is partitioned,

12Some techniques for unindexed data create a usable index as a byproduct of the spatial join,
for example, the filter tree [Koudas and Sevcik 1997].

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

24 · E.H. JACOX and H. SAMET

1 procedure GRID JOIN(setA, setB)

2 begin

3 /* determine the number of partitions */

4 m←AVAILABLE INTERNAL MEMORY;

5 mbrSize←BYTES TO STORE MBR;

6 minNumberOfPartitions←(SIZE(setA)+SIZE(setB))*mbrSize/m;

7 partitionList←DETERMINE PARTITIONS(minNumberOfPartitions,

8 AREA OF DATA SPACE);

9 /* partition data to external memory */

10 partitionPointersA←PARTITION DATA(partitionList, setA);

11 partitionPointersB←PARTITION DATA(partitionList, setB);

12 /* join partitions */

13 foreach partition ∈ partitionList do

14 partitionA←READ PARTITION(partitionPointersA, partition);

15 partitionB←READ PARTITION(partitionPointersB, partition);

16 PLANE SWEEP(partitionA, partitionB);

17 enddo;

18 end;

Fig. 13. A simple partitioning technique for performing a spatial join on unindexed data.

the partitions for each grid cell of dataset A are joined with the corresponding par-
tition of dataset B using one of the internal memory methods from Section 3. For
example, in Figure 12, both datasets A and B are partitioned using the same grid,
and then, each corresponding cell is joined with the other. Grid cell 1 from dataset
A, for instance, is joined with cell 1 from dataset B, and so forth.

In the algorithm, shown in Figure 13, the first step is to determine how many
partitions are needed. The goal is to create partitions that are small enough, when
paired with a corresponding partition, to fit in internal memory. To do this, the
algorithm first calculates the minimum number of partitions needed, minNumberOf-
Partitions, as the total storage costs of the objects in both datasets divided by the
available internal memory. The algorithm uses the DETERMINE PARTITIONS function
to create the smallest grid that has at least minNumberOfPartitions. However,
the calculation of minNumberOfPartitions is inaccurate for two reasons. First,
if a dataset is skewed, then some grid cells might contain more objects than can
fit in internal memory. The more sophisticated techniques described later in this
section correspond to different ways of dealing with skewed data. The simplified
algorithm assumes that the data is uniform. Second, since a data object is placed
into each cell it overlaps, the number of data objects will increase since the object
is replicated into each cell. To address this issue, the calculation of the minimum
number of partitions can be adjusted using methods described in Section 4.3.2.
Alternatively, the algorithm can continue and when a partition pair to be joined is
encountered that is too large for internal memory, then one or both of the partitions
can be repartitioned, creating smaller partitions that can be processed. Section 4.3.3
addresses repartitioning. Note that since objects are replicated into multiple cells
for both datasets, duplicate results will arise. Section 4.3.4 addresses the issue of
removing duplicates from the result dataset.

Once the partitions are created, the algorithm scans the datasets, placing each
object into each partition that it overlaps using the PARTITION DATA function, which
writes the objects to external memory. In the final step of the algorithm, each

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 25

partition pair is read into internal memory using the READ PARTITION function and
joined using the plane-sweep technique from Section 3.1 (note that any internal
memory spatial join would be appropriate), which will report all of the intersecting
pairs between the partitions.

4.3.2 Determining the number of partitions. Many partitioning techniques must
first determine a target number of partitions. The goal is to create pairs of partition
to be joined that will fit in memory. However, because of data skew, no simple
partitioning scheme can guarantee that all of the partition pairs will fit in memory.
Therefore, a heuristic calculation must be used. This calculation is constrained by
the following factors:

(1) The amount of internal memory, which determines the number of objects that
can be joined at a time using internal memory techniques.

(2) The replication rate, which is the actual number of objects inserted into the
partitions, which includes duplicates.

(3) The amount of internal memory also limits the number of write buffers that
can be used to partition the data to external memory.

Within these constraints, different techniques either try to maximize or minimize
the number of partitions. A minimum number of partitions might be calculated
in order to reduce replication, which reduces the number of pairs that need to
be joined. A maximum number of partitions minimizes the chances of a costly
repartitioning.

The simplest calculation, ignoring data skew and replication, derives the tar-
get number of partitions by dividing the total storage costs of the objects by the
available internal memory. The total storage costs of the objects is the number of
objects multiplied by the size of an object in bytes, referred to as objectSize. In an
implementation, objectSize might be the sum of the size of a rectangle (MBR) in
bytes and the size of an object pointer or object key. To account for replication, a
scale factor, r, can be added to the calculation. The replication rate depends on the
dataset and the partitioning scheme. In one set of experiments [Patel and DeWitt
1996], the replication rate was found to be 3-10%. Incorporating the replication
scale factor, r, the calculation for the minimum number of initial partitions is:

r · (|setA| + |setB|) · objectSize

m
, (1)

where m is the available internal memory. However, this equation does not take
into account data skew and is only an estimate. In the worst case, with severely
skewed data, most of the data could be in one partition. In this case, repartitioning
is required (see Section 4.3.3).

Equation 1 applies to internal memory methods that require all of the data to be
read into internal memory before processing begins. Arge et al. [1998] showed that
the plane-sweep method can process more data than can fit into internal memory,
see Section 3.1. However, the exact amount of data that can be processed is de-
pendent on the dataset, specifically the maximum density of the dataset [Faloutsos
and Kamel 1994; Jacox and Samet 2003; Theodoridis et al. 1998], which is just the
maximum number of objects in the active set. However, this value is difficult to
calculate for a given dataset.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

26 · E.H. JACOX and H. SAMET

The maximum number of partitions is limited by internal memory in that internal
memory limits the number of external memory write buffers. Typically, for better
performance, when writing to external memory, a page of internal memory is filled
before it is flushed to external memory. This places a hard limit on the maximum
number of partitions.

The principal motivation for getting the number of partitions right is to avoid
repartitioning (see Section 4.3.3). However, the more partitions there are, the
greater the replication. Some evidence suggests that this replication does not have
a significant impact on the total processing time [Zhou et al. 1997]. In this case,
creating the maximum number of partitions might optimize performance. Con-
versely, internal memory algorithms might perform better with smaller partitions,
thereby improving overall performance. From the literature, it is unclear what the
best choice is for the number of partitions and thus, we leave this choice as an open
question.

4.3.3 Repartitioning. The goal of partitioning is to create partitions that are
small enough to be processed by internal memory techniques (Section 3). However,
the initial partitioning phase (Section 4.3.2) might create partitions that are too
large because of data replication or skewed data. If this occurs, then the partition
pairs that are too large can be further sub-divided using the original partitioning
scheme, creating a finer grid. If this repartitioning fails, then the process can be
repeated recursively until all of the partition pairs can be processed by internal
memory methods.

Repartitioning can occur immediately after the initial partitioning, or it might
be necessary to do it later, after some partition pairs have been joined because it
might not be known if a repartitioning will be necessary. With the basic internal
memory techniques, such as the nested-loop join (Section 3), the size of the datasets
that can be processed is known, in which case, any over-full partition pairs can be
repartitioned immediately, before joining any of the partitions. However, with other
internal memory techniques, such as the plane-sweep extension [Arge et al. 1998],
it might not be known whether or not a partition pair is small enough. In this case,
repartitioning is done only when an internal memory technique fails because its
sweep structure has grown too large for the available internal memory. Any result
pairs generated for the current partition pair need to be discarded since the results
will be regenerated after repartitioning.

If a partition pair to be joined, say A and B, is too large for the available internal
memory, Dittrich and Seeger [2000] propose repartitioning only one of the datasets,
say A, first, and then joining each sub-partition with B. If this fails to create small
enough partitions, then the other dataset, B can be repartitioned. This process
can also occur recursively until small enough partitions are achieved.

4.3.4 Avoiding Duplicate Results. If partitioning the data results in object repli-
cation, then duplicate results will be reported. For instance, if a pair of overlapping
objects is split by a partition boundary, then the intersecting pair will be reported
when each partition is processed, as shown in Figure 14a. Some experiments have
shown that replication does not add considerably to processing [Zhou et al. 1997],
though other experiments have shown the opposite [Luo et al. 2002]. In either case,

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 27

a
b

Partition Boundary

x

Partition A

Partition B

(a) (b)

Fig. 14. (a) An intersection between objects a and b is reported from both partitions into which
they are inserted, creating a duplicate result. (b) The reference point method for online duplicate
avoidance only reports an intersecting pair if a point in the intersecting region, x, is within the
current partition. The point must be chosen consistently, such as always the lower left corner.

duplicate results need to be removed from the candidate set to avoid extra pro-
cessing during the refinement stage (Appendix D). The duplicates can be removed
with an extra step between the filtering stage and the refinement stage or combined
with refinement. With some algorithms, duplicate results can be detected during
filtering and removed online.

One way to remove duplicate results from the candidate set after the filtering
stage is to sort the candidate set and then scan the sorted list, removing duplicates.
Some refinement techniques sort the candidate set first, and thus, this duplicate
removal technique can be used without a loss of performance (see Appendix D).
However, to sort the candidate set, the entire candidate set must be produced
first. In most database systems, that is, demand-driven pipelined systems [Graefe
1993], results need to be produced continuously. In this case, online duplicate

removal techniques, which remove duplicates as they appear in the filtering stage,
are preferred.

To implement online duplicate removal, the internal memory spatial join tech-
niques (Section 3) can be modified with a simple test which is applied when the
rectangles are checked for intersection. The technique, termed the reference point

method [Aref and Samet 1994b; Dittrich and Seeger 2000; Seeger 1991], calculates
a point within the intersecting region of the two objects. The pair is reported only
if this point is within the current partition. The test point can lie anywhere within
the intersecting region of the two objects, such as the centroid of the region or a
corner point, but must be chosen consistently 13. For instance, as shown in Fig-
ure 14b, reference point x is the lower left corner point of the intersecting region of
the two rectangles. Since point x only lies within the B partition, the intersecting
rectangles will only be reported when the B partition is processed, but not when
the A partition is processed, even though the A partition also includes the rectangle
pair.

5. SPECIALIZED SPATIAL JOINS

A basic spatial join is executed between two sets of objects on the same machine
with a single processor. Modifications of the spatial join can be made to improve
performance when more than two sets of objects are joined in a multiway join,
as described in Section 5.1. Also, the spatial join requires special considerations

13To use the reference point method, the approximations of the objects cannot be clipped, that
is, the full MBR must be stored and not just the portion of the object within a partition (most
partitioning methods don’t use clipping).

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

28 · E.H. JACOX and H. SAMET

b

a

c
b

a

c

ba c

(a) (b) (c)

Fig. 15. Three objects with (a) mutual intersection, (b) pair-wise intersection, (c) two of the
objects not intersecting.

A

B

C D

E

F G

Fig. 16. A graph representing the relations between datasets in a complex query between multiple
datasets. Each edge is a join condition between the objects, which might be more than a binary
relation, such as the ternary relation joining A, B, and C.

when it is performed using a parallel architecture, described in Section 5.2, or on
distributed computers, described in Section 5.3.

5.1 Multiway Joins

A complex query could contain multiple spatial joins. As an example, consider the
query – find all regions between 500 meters and 700 meters above sea level that re-

ceive 10 to 15 centimeters of rainfall and are in a forested area. This query requires
a spatial join to find the intersecting regions of rainfall and elevation and also the
intersection with land type (forest). This query can be answered by performing a
spatial join between any two of the datasets and joining the results with the third
dataset. The intermediate results are the intersecting regions of the result candi-
date set, which is then joined with the third dataset. In the example, rainfall and
elevation can be joined, creating a new dataset that represents regions with 10 to 15
centimeters of rainfall and which are between 500 and 700 meters above sea level.
This intermediate dataset is then joined with the land type data to create the final
result.

The previous example illustrates a query with mutual intersection between the
datasets. A spatial query might not require that the datasets mutually intersect.
For example, the query – find all roads that cross a river and a railroad track –
does not require that the river and the railroad track in a result triplet intersect. In
Figure 15a, the three objects have a mutually intersecting region, but in Figure 15b,
each object pair-wise intersects. Furthermore, it is not necessarily the case that a
relationship exists between all of the datasets in the query. For instance, as shown
in Figure 15c, the query could only require that objects from dataset B intersect an
object from both A and C, but no restriction is placed on intersections between A
and C, such as with the road, river, and railroad example. In general, a multiway
spatial query can be represented by a graph, as shown in Figure 16, in which n-

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 29

1 procedure MULTI INDEX NLJ(joinCondition, setA, setB, setC)

2 begin

3 spatialIndexB←CREATE SPATIAL INDEX(setB);

4 spatialIndexC←CREATE SPATIAL INDEX(setC);

5 foreach a ∈ setA do

6 tempSetB = spatialIndexB.SEARCH(a);

7 foreach b ∈ tempSetB do

8 tempSetC = spatialIndexC.SEARCH(b);

9 foreach c ∈ tempSetC do

10 if SATISFIED(a, b, c, joinCondition) then

11 REPORT(a, b, c);

12 endif;

13 enddo;

14 enddo;

15 enddo;

16 end;

Fig. 17. A multiway index nested loop join that finds objects from three datasets that satisfy any
type of multiway intersection (see Figure 15).

ary relations are used to represent mutually intersecting regions. For instance,
in Figure 16, objects from A, B, and C are required to mutually intersect, as in
Figure 15a, as opposed to objects D, F , and G, which are only required to pair-wise
intersect, as in Figure 15b.

As mentioned, a multiway spatial join can be solved by joining two datasets
at a time and creating intermediate datasets. Furthermore, traditional database
optimization approaches [Graefe 1993] that order the pair-wise joins to efficiently
solve the query can be used [Mamoulis and Papadias 1999]. To do this, selectivity
estimates (Section 6) are required in order to efficiently determine which pair of
datasets to process first, typically processing the pair that produces the smallest
intermediate result set first. Moreover, query optimizers also need selectivity in-
formation in order to efficiently perform queries that involve a mix of spatial and
aspatial data.

To be more efficient, several techniques have been proposed for extending the
filtering algorithms (Sections 3 and 4) to process multiple datasets at once. For
example, the nested-loop join (Appendix A.3) can be extended to process three
datasets simultaneously by nesting another loop and using a join condition that
takes three arguments, which tests for a three-way intersection. Section 5.1.1 de-
scribes a similar extension to the index nested-loop join (Appendix A.3), which
serves as a basis for describing a more sophisticated technique that is derived from
constraint satisfaction problem (CSP) techniques [Kumar 1992]. Next, Section 5.1.2
describes extending the synchronized traversal spatial join (Section 4.1.1) to per-
form a multiway spatial join.

5.1.1 Multiway Indexed Nested-Loop Spatial Joins. A multiway version of the
index nested loop algorithm (Appendix A.3) can be created by nesting each addi-
tional dataset. This algorithm, shown in Figure 17, is a simplification of algorithms
by Mamoulis and Papadias [1998] and Papadias et al. [1998], and only joins three
datasets. More datasets could be joined with further nesting, but the temporary
candidate sets can grow significantly larger with more datasets. A generic join

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

30 · E.H. JACOX and H. SAMET

condition, termed joinCondition, that specifies the desired relation between the
datasets, is used since a relation other than intersection might be required. How-
ever, each dataset is assumed to be involved in some form of an intersection relation
with another dataset. Otherwise, the multiway spatial join might not be appropri-
ate.

The first step in the algorithm, shown in Figure 17, indexes setB and setC.
Then, for each element of setA, a window query is performed on the index of
setB using the SEARCH method. This assumes that the relation specifies that setA
and setB intersect. Each of the search results from setB is used to perform a
window query on setC, which produces another intermediate result set. Note that
not all elements of setC need to intersect elements of setA as intersection is not
a transitive relation (for example, objects a and c in Figure 15c do not intersect
each other, even though they both intersect object b). Finally, each result from
setC, along with the current value for setA and setB are checked to ensure that
they satisfy the given relation using the SATISFIED function, and if so, the values
are reported. The SATISFIED function ensures that the specified join condition is
met. For example, if mutual intersection is required, as in Figure 15a, then the
intersections of the type shown in Figures 15b and c will not be reported. Note
that the algorithm explicitly instantiates the temporary result sets, for example,
tempSetB. This is done in order to give the reader an idea of the internal memory
requirements of the algorithm. A database iterator could be used instead, thereby
letting the database engine optimize storage and retrieval of the temporary result
set.

To enhance the performance of the algorithm, if the query seeks mutually inter-
secting rectangles, each search can use the intersections of the current values of the
previous datasets to further improve performance. For instance, when the index on
setC is searched, the intersection of a and b would be the search window, rather
than just b. Papadias et al. [1998] refer to this approach as a window reduction. In
a hybrid approach, Papadias et al. [1998] propose performing a normal spatial join
on two of the datasets first, which should be faster than a nested-loop join, and
then using window reduction for the remaining values.

To enhance the performance of the algorithm further, each temporary result
set could be checked against all previous relations to further prune the result set.
For example, the algorithm only considers the relations between setA/setB and
setB/setC. A relation could exist between setA and setC, as in Figure 15a. If
more datasets were being joined with further nesting, then reducing the size of
tempSetC would be advantageous. In this case, after the temporary result set for
setC is generated (tempSetC), it could be checked against the current value from
setA, a, to further reduce the size of tempSetC.

The previous enhancement can be carried even further by having each current
set immediately prune each following dataset. For instance, in the algorithm in
Figure 17, each value from setA could be used to produce temporary sets for every
other dataset, setB and setC, before scanning any other dataset. Papadias et
al. [1998] and Mamoulis and Papadias [1998; 2001a] use this approach to solve the
multiway spatial join, which is a constraint satisfaction problem (CSP) technique
[Kumar 1992] called multi-level forward checking. In the CSP approach, temporary

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 31

1 procedure MULTI INDEX CSP(joinCondition, setA, setB, setC)

2 begin

3 tempSetA←∅

4 tempSetB←∅

5 foreach a ∈ setA do

6 foreach b ∈ setB do

7 if SATISFIED(a, b, joinCondtion) then

8 tempSetB←tempSetB ∪ b

9 endif;

10 enddo;

11 if relation between setA and setC then

12 foreach c ∈ setC do

13 if SATISFIED(a, c, joinCondtion) then

14 tempSetC←tempSetC ∪ c

15 endif;

16 enddo;

17 else

18 tempSetC = setC;

19 endif;

20 /* inner loop */

21 foreach b ∈ tempSetB do

22 foreach c ∈ tempSetC do

23 if SATISFIED(a, b, c, joinCondtion) then

24 REPORT(a, b, c);

25 endif;

26 enddo;

27 enddo;

28 enddo;

29 end;

Fig. 18. A multiway index nested loop join that finds objects from three datasets that satisfy any
type of multiway intersection using constraint satisfaction problem (CSP) techniques to prune
temporary datasets.

result sets are generated as soon as possible. In this algorithm, shown in Figure 18,
if a relation exists between setA and setC, then a temporary result set, tempSetC,
is generated in the outer loop using the current value from setA. If a relation exists
between each dataset, then all temporary results are generated in the outer loop
with each object from setA. These sets are pruned as each object is instantiated
for each dataset in the nested loops. As a further possible enhancement, another
CSP technique is to dynamically vary the order in which the datasets are processed,
choosing the one with the smallest temporary result set first.

5.1.2 Multiway Hierarchical Traversal. Papadias et al. [1998] and Mamoulis and
Papadias [1998; 2001a] extend the hierarchical traversal method (Section 4.1.1) to
do a multiway spatial join. This technique applies if each dataset is indexed using a
hierarchical index, such as an R-tree [Guttman 1984]. For two datasets, the original
method compares overlapping nodes of the two indices. If the nodes are leaves, the
intersecting objects within the node are reported, else the intersecting child node
pairs are placed on a priority queue to be processed later. To do a multiway join,
the queue is modified to hold multiple nodes, one from each dataset, instead of
pairs. To start, the root nodes of the indices are checked and combinations of

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

32 · E.H. JACOX and H. SAMET

Index Node a1

Index Node b1 Index Node b2

Fig. 19. Objects in multiple partitions might be read from memory multiple times.

the root node’s children that satisfy the join condition are placed on the queue.
Next, the first set of nodes on the queue is checked and combinations of children
are put on the queue. This process repeats until the queue is empty. Papadias
et al. [1998] and Mamoulis and Papadias [1998] suggest using multi-level forward
checking (Section 5.1.1) to check the nodes, but any appropriate multiway version
of an internal memory spatial join could be used. For instance, Park et al. [1999]
propose using a pair-wise plane-sweep method for comparing multiple nodes at
once, that is, a plane-sweep method is used on the first two datasets and the results
are joined with the third dataset with the plane-sweep method, and so forth. As
an alternate hybrid approach, Papadias et al. [1999] propose using the hierarchical
traversal approach to instantiate the first few variables, then finishing with window
reduction (Section 5.1.1) to instantiate the remaining variables.

5.2 Parallel

In a parallel architecture, work is distributed amongst several processors. For a
spatial join, the work can be distributed in both the filtering and refinement stages,
and also for partitioning unindexed data. For the filtering stage, parallel techniques
that extend the synchronized hierarchical traversal approach (Section 4.1.1) have
been used for indexed data [Brinkhoff et al. 1996], and techniques that extend the
grid partitioning methods (Appendix B.2) have been used for unindexed data [Luo
et al. 2002; Patel and DeWitt 2000; Zhou et al. 1997]. These techniques assume a
shared nothing architecture (each processor has it’s own memory), although some
algorithms have extensions that use shared memory architectures to improve perfor-
mance [Brinkhoff et al. 1996; Zhou et al. 1997]. Most of these methods have shown
a near linear speed increase with more processors. However, the key to achieving
linear speed increases during filtering depends on load balancing. An algorithm
that uses a specialized hypercube architecture to join two indexed datasets is also
discussed [Hoel and Samet 1994].

Brinkhoff et al. [1996] investigated extending the synchronized hierarchical traver-
sal approach (Section 4.1.1) to parallel architectures by assigning sub-trees of the
index to each processor. In the simplest approach to distributing the work amongst
n processors, a single processor first performs a hierarchical traversal, one level at a
time, until the number of node pairs on the priority queue exceeds n. At that time,
the node pairs are distributed to the processors, which perform a sequential spatial
join. However, as shown in Figure 19, one processor might be assigned nodes a1
and b1 and another processor the node pair a1 and b2. In this case, node a1 will
be read from memory twice. To overcome this inefficiency, Brinkhoff et al. propose
using global buffers (in a shared memory architecture) so that one processor can
access a node that another processor has read into internal memory. However, this

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 33

approach does incur extra communication costs to synchronize usage of the buffers.
Additionally, the workloads might not be balanced since the processing time for
each sub-tree could be different. Rather than assigning all of the node pairs from
the queue at once, Brinkhoff et al. suggest assigning only one node pair at a time to
each processor. Once a processor finishes with one node pair, another is requested
while the queue is not empty. When the queue is empty, they further suggest that
one processor can share the work of another processor by taking node pairs from
another processor’s local queue, i.e., sub-trees of the original sub-trees.

For unindexed data, Zhou et al. [1997] adapt the variation of the grid partitioning
method (Appendix B.2) that physically creates the grid cells. In their approach,
the random data is evenly divided amongst the n processors, which then partition
the data using the same tiling scheme. Then, with the sizes of the grid cells known,
a single processor determines the merging of grid cells into n partitions using a
Z-order merge, creating, on average, an even load distribution amongst the pro-
cessors. Next, each processor is assigned a partition and the data is redistributed
appropriately. Finally, each processor filters the data using a sequential spatial
join filtering technique. Both Patel and Dewitt [2000] and Luo et al. [2002] inves-
tigated a similar approach. Rather than physically tiling the data, though, they
both use the virtual tiling method (Appendix B.2), relying on a good hash function
to distribute the data evenly.

For parallel refinement, each processor could refine the candidate pairs it pro-
duces. However, Zhou et al. [1997] point out that it is difficult without much
selectivity information to balance the number of candidates produced by each pro-
cessor during the filtering stage. If the candidate pairs are redistributed, then the
workload for refinement can be close to optimal since the number of vertices in
each polygon are good estimates of performance. Like sequential refinement, per-
formance can be improved by ordering the candidate set to minimize the number
of times each full object is read. Zhou et al. argue that an efficient approach is
to use one processor to sort the candidates into a linear order, and then assign
the candidates to each processor in a round-robin fashion. Each processor will be
processing candidate pairs that are near each other (exhibiting locality), increas-
ing the likelihood that an object only needs to be read into internal memory once
(assuming a shared memory architecture), rather than continually reading some of
the same objects throughout refinement. Zhou et al. took the approach of assigning
full objects to processors, which are responsible for reading the object into memory
and distributing the object to other processors. They found that the redistribution
costs are negligible.

Hoel and Samet [1994] describe parallel algorithms for PMR bucket quadtrees
[Nelson and Samet 1987] and R-trees [Guttman 1984] using a specialized hypercube
architecture. The algorithms require that the data fit in memory, but result in ex-
tremely fast algorithms. In their quadtree approach, regions of one of the quadtrees
are associated with half of the nodes (processors), termed the source nodes, and
corresponding regions of the other quadtree are associated with the other nodes,
termed the target nodes. Each quadtree is assumed to cover the same area, and
thus, because of the regular decomposition, there is a one-to-one correspondence
between source nodes and target nodes. The source nodes send their objects to

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

34 · E.H. JACOX and H. SAMET

the target nodes, which check for intersections. Hoel and Samet also describe a
similar algorithm for R-trees in which the index nodes of the R-tree are associated
with the processor nodes. However, because of the irregular decomposition, each
source node will be associated with multiple target nodes, dramatically increasing
the communication costs and slowing the join.

5.3 Distributed

In a distributed spatial join, the datasets reside at different locations. Abel et
al. [1995] show how to combine the semi-join [Mishra and Eich 1992] concept for
distributed join processing and the filter-and-refine approach for spatial join pro-
cessing. Given two sets of objects, R and S, that are at different locations (physi-
cally distributed), they send the MBRs of dataset R to the S location and filter the
objects there. Then, they send the full objects from S that are in the candidate
set to R’s location to perform the refinement step. Tan et al. [2000] point out that
unlike a relational semi-join [Ozsu and Valduriez 1999], where the transmission cost
is dominant, the processing cost can be just as large of a factor for spatial joins.

Mamoulis et al. [2003] explore the distributed spatial join problem in which the
data resides on different servers between which there is no communication and the
servers will not perform a spatial join. This would be the case if the servers are
commercially owned and contain proprietary data. Additionally, it is assumed that
the servers will not provide statistics on the data. In this case, the spatial join must
be performed at a third, possibly small, site, such as a mobile device. They point
out that any processing at the data server sites is relatively inexpensive compared
to a mobile device. Therefore, as much work as possible should be done on the data
servers, such as running queries to build useful statistics on the data. To do the
spatial join, they propose a grid-based partitioning spatial join (Appendix B.2) and
use the detailed statistics to determine the best grid such that data fits within the
available internal memory. The statistics are also used to identify empty regions
in a dataset for which no spatial join needs to be performed, thus saving valuable
transmission costs.

6. SELECTIVITY ESTIMATION

Techniques for estimating the selectivity of a spatial join are important as an aid
for analyzing spatial join algorithms, for use in query optimizers, and as a data
mining tool. Günther et al. [1998] have shown that along with the size of the
dataset, selectivity is crucial in determining the performance of an algorithm. Query
optimizers assist a database engine in determining the order of operations in a
complex query. Also, selectivity estimates could play a roll in determining which
spatial join algorithm to use. For instance, a very dense dataset in which nearly
every pair is reported, could be computed faster using the simple nested loop join
(Appendix A.3), rather than a more complex algorithm with a large overhead. For
data mining applications, selectivity estimates can give approximate answers to
queries, which can be used to rule out hypotheses [Belussi and Faloutsos 1995].

For uniform datasets in two dimensions, a rudimentary estimate of the selectivity
for the filtering stage of a spatial join can be derived from the probability that two
average sized rectangles overlap [Aref and Samet 1994a]. Given that both datasets
are enclosed in a universe of finite area, which is represented as TotalArea, the

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 35

probability that two rectangles with widths wa and wb and heights ha and hb

intersect is:

(wa + wb) · (ha + hb)

TotalArea
=

areaa + areab + (wa · hb) + (wb · ha)

TotalArea
, (2)

where areaa and areab are the areas of two rectangles 14. To derive a selectivity
estimate for a spatial join between two uniform datasets, the average sizes of the
rectangles in the two datasets A and B are substituted into Equation 2. In this
case, the selectivity is approximately:

areaA + areab + (wA · hB) + (wB · hA)

TotalArea
. (3)

However, the situation is more complicated for non-uniform datasets. Mamoulis
and Papadias [2001b], An et al. [2001], and Belussi et al. [2004] propose using a two-
dimensional histogram on each dataset, which can be a grid with occupancy counts.
Within each grid cell, the selectivity estimate for uniform datasets, Equation 3, can
be applied. The results for each cell are then combined to get an overall estimate
of selectivity. The finer the histogram, the more accurate the results will be. An et
al. also studied sampling techniques and proposed a novel technique for estimating
intersections within a grid cell by counting the number of sides and corners of
rectangles within each grid cell.

Das et al. [2004] present a method that provides a selectivity estimate of a spatial
join for skewed datasets. The method requires one scan of the dataset, and has a
provable, adjustable error bound. Each object in the dataset is represented by a
fixed set of objects from a dyadic cover, with a total size O(log(n)), where n is the
size of the dataset. As each object, r, is encountered, summary statistics for each
dyadic object composing r are updated. By combining these statistics in a manner
that does not count particular intersections more than once, the method estimates
the selectivity of the spatial join.

In another approach, working with point datasets, Belussi and Faloutsos [1995]
expressed the selectivity of a self-spatial join in terms of a fractal dimension. Since
the data is points, the spatial join finds all pairs of points within a distance ǫ, which
is expressed as nb(ǫ), and is analogous to the average number of intersecting pairs,
that is, the selectivity of the spatial join 15. The average number of nearby, or
neighboring, points captures information about the distribution of the data. If the
data is clustered, then the average number of neighbors increases. The problem,
then, is to find a good estimate of the number of neighbors. To do so, Belussi and
Faloutsos use the fractal correlation dimension D2, which is a characteristic of the
dataset, and calculate the average number of neighbors as:

nb(ǫ) = (n − 1) · (2 · ǫ)D2 , (4)

where n is the number of points. Using this equation, the selectivity of a self-spatial

14Equation 2 assumes that the space wraps around and does not account for the need for rectangles
to be within the boundaries of the space. However, the difference is negligible if the rectangle is a
small fraction of the space. Also, a minus one value is also dropped from the sums, for simplicity.
15Though, nb(ǫ) as defined by Belussi and Faloutsos [1995] is the number of points within a circle,
here, their generalization to other shapes is used. In this case, a rectangle.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

36 · E.H. JACOX and H. SAMET

join is estimated as (2 · ǫ)D2 . The correlation dimension, D2, can be calculated in
O(n · log(n)) time [Belussi and Faloutsos 1995] or even in constant time according
to Faloutsos et al. [2000], who describe algorithms for efficiently calculating the cor-
relation dimension for a given dataset and show the effectiveness of the calculation
for predicting the selectivity of a self-spatial join 16.

7. CONCLUDING REMARKS

We have provided an in-depth survey and analysis of the various techniques used to
perform a spatial join using a filter-and-refine approach in which complex objects
are approximated, typically by a minimum bounding rectangle. The approxima-
tions are joined, producing a candidate set which is refined to produce the final
results using the full objects. We examined various techniques for performing a
spatial join using the available internal memory, using either nested loop joins,
indexed nested loop joins, or variants of the plane-sweep technique. If there is
insufficient internal memory, then external memory can be used to process larger
datasets. We examined cases where the data is indexed or not indexed. If the
datasets are indexed, then overlapping data pages can be read in a predetermined
order or the two indices can be traversed synchronously if the indices are hierarchi-
cal. Pairs of overlapping data pages are joined using internal memory techniques.
Alternatively, if the data is not indexed, then the data can be partitioned using
a variety of techniques, and then overlapping partition pairs can be joined using
internal memory techniques. We also examined the techniques and issues involved
with refining the candidate set produced during the filtering stage. Finally, we
looked at spatial joins in a variety of situations: multiway spatial joins, parallel
spatial joins, and distributed spatial joins.

Of course, there are many other variations of spatial joins and techniques which
space limitations have prevented us from elaborating upon. We now briefly mention
a few of them. There has been some interest recently in improving performance of
spatial joins through the use of specialized hardware such as graphics processing
units (GPUs). Such an approach has been proposed by Sun et al. [2003] who suggest
assigning a different color to each dataset and then letting the graphics hardware
render the datasets for the screen. In this case, the frame buffer can be searched
for regions containing a combination of the colors, which indicates intersecting
objects. From an analytical standpoint, the algorithm will be worse because of the
scan of the frame buffer, but the overall performance will be improved due to the
advanced hardware. However, the drawback of this approach is that the graphics
hardware typically only works on convex polygons and only a limited resolution can
be achieved, thereby leading to false hits that still need to be refined. In addition,
Sun et al. propose using a similar approach to determine whether two polygons
intersect. In this case, the edges of one polygon are assigned one color while the
other polygon’s edges are colored differently.

When the dataset is not updated often and speed is critical, Günther [1993] sug-
gest the use of a spatial join index [Rotem 1991]. In this case, all of the intersecting
objects are determined in advance and the resulting pairs of ids are stored in an

16Faloutsos et al. [2000] use the formula K · rP for selectivity, instead of Equation 3, where r

replaces 2 · ǫ and P replaces D2, and they also use the multiplier K.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 37

index. A spatial join algorithm must be used, though, to create the original set of
results pairs.

Zhu et al. [2005] address the issue that at times we are not interested in all of
the intersecting pairs. In particular, given two spatial data sets A and B, they are
interested in obtaining the k objects from A or B that intersect the highest number
of objects from the other set, termed a top-k spatial join. They achieve this by
making use of the synchronized traversal methods from Section 4.1.1.

Finally, we point out that Papadias and Arkoumanis [2002] take a different ap-
proach to the issue of not reporting all of the intersecting pairs. They are motivated
by the desire to perform a multiway spatial join in a given amount of time due to the
prohibitive expense, timewise, of performing the full multiway spatial join. Their
approach searches for approximate solutions, which are defined as solutions that
may violate some constraints. For instance, for a 3-way intersection, a solution
with only two of the required intersections would be an approximate answer. The
method they use is a combination of search heuristics, randomized algorithms, and
R-tree spatial indexes [Guttman 1984]. In essence, a candidate pair is guessed and
then improved upon using a search through the R-trees. This operation is repeated
until time runs out.

At this point, we mention that our main goal in this survey was to provide a
guide as to what techniques work best in particular situations. However, we were
not able to conclusively determine which techniques are superior for each scenario as
we observed that the experiments comparing techniques were inconclusive and could
easily be skewed by the choice of experimental data or details of implementation.
Nevertheless, we feel that this survey illuminates some of these issues and hope
that it motivates further analyses and experimentation.

ACKNOWLEDGMENTS

The support of the National Science Foundation under Grants EIA-99-00268, IIS-
00-86162, EIA-00-91474 and CCF-0515241, and Microsoft Research is gratefully
acknowledged.

REFERENCES

Abel, D. J., Gaede, V., Power, R., and Zhou, X. 1999. Caching strategies for spatial joins.
GeoInformatica 3, 1 (June), 33–59.

Abel, D. J., Ooi, B. C., Tan, K.-L., Power, R., and Yu, J. X. 1995. Spatial join strategies in
distributed spatial DBMS. In Advances in Spatial Databases—4th International Symposium,
SSD’95, M. J. Egenhofer and J. R. Herring, Eds. vol. 1619 of Springer-Verlag Lecture Notes in
Computer Science. Portland, ME, 348–367.

An, N., Yang, Z.-Y., and Sivasubramaniam, A. 2001. Selectivity estimation for spatial joins.
In Proceedings of the 17th IEEE International Conference on Data Engineering. Heidelberg,
Germany, 368–375.

Aref, W. G. and Samet, H. 1994a. A cost model for query optimization using R-trees. In
Proceedings of the 2nd ACM Workshop on Geographic Information Systems, N. Pissinou and
K. Makki, Eds. Gaithersburg, MD, 60–67.

Aref, W. G. and Samet, H. 1994b. Hashing by proximity to process duplicates in spatial
databases. In Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM). Gaithersburg, MD, 347–354.

Aref, W. G. and Samet, H. 1994c. The spatial filter revisited. In Proceedings of the 6th
International Symposium on Spatial Data Handling, T. C. Waugh and R. G. Healey, Eds.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

38 · E.H. JACOX and H. SAMET

International Geographical Union Commission on Geographic Information Systems, Association

for Geographical Information, Edinburgh, Scotland, 190–208.

Aref, W. G. and Samet, H. 1996. Cascaded spatial join algorithms with spatially sorted output.
In Proceedings of the 4th ACM Workshop on Geographic Information Systems, S. Shekhar and
P. Bergougnoux, Eds. Gaithersburg, MD, 17–24.

Arge, L., Hinrichs, K. H., Vahrenhold, J., and Vitter, J. S. 1999. Efficient bulk oper-
ations on dynamic R-trees. In Proceedings of the 1st Workshop on Algorithm Engineering
and Experimentation (ALENEX’99), M. T. Goodrich and C. C. McGeoch, Eds. vol. 1619 of
Springer-Verlag Lecture Notes in Computer Science. Baltimore, MD, 328–348.

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vahrenhold, J., and Vitter, J. S.

2000. A unified approach for indexed and non-indexed spatial joins. In Proceedings of the 7th
International Conference on Extending Database Technology—EDBT 2000, C. Zaniolo, P. C.
Lockemann, M. H. Scholl, and T. Grust, Eds. vol. 1777 of Springer-Verlag Lecture Notes in
Computer Science. Konstanz, Germany, 413–429.

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., and Vitter, J. S. 1998. Scalable sweeping-
based spatial join. In Proceedings of the 24th International Conference on Very Large Data
Bases (VLDB), A. Gupta, O. Shmueli, and J. Widom, Eds. New York, NY, 570–581.

Badawy, W. and Aref, W. 1999. On local heuristics to speed up polygon-polygon intersection
tests. In Proceedings of the 7th ACM International Symposium on Advances in Geographic
Information Systems, C. B. Medeiros, Ed. Kansas City, MO, 97–102.

Balaban, I. J. 1995. An optimal algorithm for finding segments intersections. In SCG ’95: Pro-
ceedings of the Eleventh Annual Symposium on Computational Geometry. Vancouver, British
Columbia, Canada, 211–219.

Ballard, D. H. 1981. Strip trees: a hierarchical representation for curves. Communications of
the ACM 24, 5 (May), 310–321.

Becker, L., Giesen, A., Hinrichs, K., and Vahrenhold, J. 1999. Algorithms for performing
polygonal map overlay and spatial join on massive data set. In Advances in Spatial Databases—
6th International Symposium, SSD’99, R. H. Güting, D. Papadias, and F. H. Lochovsky, Eds.
vol. 1651 of Springer-Verlag Lecture Notes in Computer Science. Hong Kong, China, 270–285.

Becker, L., Hinrichs, K., and Finke, U. 1993. A new algorithm for computing joins with grid
files. In Proceedings of the 9th IEEE International Conference on Data Engineering. Vienna,
Austria, 190–197.

Belussi, A., Bertino, E., and Nucita, A. 2004. Grid based methods for estimating spatial join
selectivity. In Proceedings of the 12th ACM International Workshop on Advances in Geographic
Information Systems, I. F. Cruz and D. Pfoser, Eds. Washington, DC, 92–100.

Belussi, A. and Faloutsos, C. 1995. Estimating the selectivity of spatial queries using the
‘correlation’ fractal dimension. In Proceedings of the 21st International Conference on Very
Large Data Bases (VLDB), U. Dayal, P. M. D. Gray, and S. Nishio, Eds. Zurich, Switzerland,
299–310.

Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18, 9 (Sept.), 509–517.

Brinkhoff, T. and Kriegel, H.-P. 1994a. Approximations for a multi-step processing of spa-
tial joins. In IGIS’94: Geographic Information Systems, International Workshop on Advanced
Research in Geographic Information Systems, J. Nievergelt, T. Roos, H.-J. Schek, and P. Wid-
mayer, Eds. Monte Verità, Ascona, Switzerland, 25–34.

Brinkhoff, T. and Kriegel, H.-P. 1994b. The impact of global clustering on spatial database
systems. In Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB), J. Bocca, M. Jarke, and C. Zaniolo, Eds. Santiago, Chile.

Brinkhoff, T., Kriegel, H.-P., and Schneider, R. 1993. Comparison of approximations of
complex objects used for approximation-based query processing in spatial database systems. In
Proceedings of the 9th IEEE International Conference on Data Engineering. Vienna, Austria,
40–49.

Brinkhoff, T., Kriegel, H.-P., Schneider, R., and Seeger, B. 1994. Multi-step processing of
spatial joins. In Proceedings of the ACM SIGMOD Conference. Minneapolis, MN, 197–208.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 39

Brinkhoff, T., Kriegel, H.-P., and Seeger, B. 1993. Efficient processing of spatial joins using

R-trees. In Proceedings of the ACM SIGMOD Conference. Washington, DC, 237–246.

Brinkhoff, T., Kriegel, H.-P., and Seeger, B. 1996. Parallel processing of spatial joins using
R-trees. In Proceedings of the Twelfth International Conference on Data Engineering, S. Y. W.
Su, Ed. New Orleans, LA, 258–265.

Brinkmann, A. and Hinrichs, K. 1998. Implementing exact line segment intersection in map
overlay. In Proceedings of the 8th International Symposium on Spatial Data Handling, T. K.
Poiker and N. Chrisman, Eds. International Geographical Union, Geographic Information Sci-
ence Study Group, GIS Lab, Department of Geography, Simon Fraser University, Burnaby,
British Columbia, Canada, 569–579.

Brodsky, A., Lassez, C., Lassez, J., and Maher, M. J. 1995. Separability of polyhedra for
optimal filtering of spatial and constraint data. In Proceedings of the 14th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS). San Jose, CA,
54–65.

Chazelle, B. and Edelsbrunner, H. 1992. An optimal algorithm for intersecting line segments
in the plane. Journal of the ACM 39, 1 (Jan.), 1–54.

Chiba, N. and Nishizeki, T. 1989. The hamiltonian cycle problem is linear-time solvable for
4-connect planar graphs. Journal of Algorithms 10, 2 (June), 187–211.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT
Press/McGraw-Hill, Cambridge, MA, 173–174.

Corral, A., Vassilakopoulos, M., and Manolopoulos, Y. 1999. Algorithms for joining R-trees
and linear region quadtrees. In Advances in Spatial Databases—6th International Symposium,
SSD’99, R. H. Güting, D. Papadias, and F. H. Lochovsky, Eds. vol. 1651 of Springer-Verlag
Lecture Notes in Computer Science. Hong Kong, China, 251–269.

Das, A., Gehrke, J., and Riedewald, M. 2004. Approximation techniques for spatial data. In
Proceedings of the ACM SIGMOD Conference. Paris, France, 695–706.

Dillencourt, M. B. and Samet, H. 1996. Using topological sweep to extract the boundaries of
regions in maps represented by region quadtrees. Algorithmica 15, 1 (Jan.), 82–102.

Dittrich, J.-P. and Seeger, B. 2000. Data redundancy and duplicate detection in spatial join
processing. In Proceedings of the 16th IEEE International Conference on Data Engineering.
San Diego, CA, 535–546.

Dori, D. and Ben-Bassat, M. 1983. Circumscribing a convex polygon by a polygon of fewer
sides with minimal area addition. Computer Vision, Graphics, and Image Processing 24, 2
(Nov.), 131–159.

Duncan, C. A., Goodrich, M., and Kobourov, S. 2001. Balanced aspect ratio trees: combining
the advantages of k-d trees and octrees. Journal of Algorithms 38, 1 (Jan.), 303–333.

Edelsbrunner, H. 1983. A new approach to rectangle intersections: part I. International Journal
of Computer Mathematics 13, 3–4, 209–219.

Elmasri, R. and Navathe, S. B. 2000. Fundamentals of Database Systems, Third ed. Addison-
Wesley, Reading, MA.

Enderle, J., Hampel, M., and Seidl, T. 2004. Joining interval data in relational databases. In
Proceedings of the ACM SIGMOD Conference. Paris, France, 683–694.

Esperança, C. and Samet, H. 1997. Orthogonal polygons as bounding structures in filter-refine
query processing strategies. In Advances in Spatial Databases—5th International Symposium,
SSD’97, M. Scholl and A. Voisard, Eds. vol. 1262 of Springer-Verlag Lecture Notes in Computer
Science. Berlin, Germany, 197–220.

Faloutsos, C. and Kamel, I. 1994. Beyond uniformity and independence: analysis of R-trees
using the concept of fractal dimension. In Proceedings of the 13th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS). Minneapolis, MN, 4–13.

Faloutsos, C., Seeger, B., Traina, A. J. M., and Traina Jr., C. 2000. Spatial join selectivity
using power laws. In Proceedings of the ACM SIGMOD Conference, W. Chen, J. Naughton,
and P. A. Bernstein, Eds. Dallas, TX, 177–188.

Finkel, R. A. and Bentley, J. L. 1974. Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4, 1, 1–9.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

40 · E.H. JACOX and H. SAMET

Foley, J. D. and van Dam, A. 1982. Fundamentals of Interactive Computer Graphics. Addison-

Wesley, Reading, MA.

Fotouhi, F. and Pramanik, S. 1989. Optimal secondary storage access sequence for performing
relational join. IEEE Transactions on Knowledge and Data Engineering 1, 3 (Sept.), 318–328.

Gaede, V. 1995. Optimal redundancy in spatial database systems. In Advances in Spatial
Databases—4th International Symposium, SSD’95, M. J. Egenhofer and J. R. Herring, Eds.
vol. 951 of Springer-Verlag Lecture Notes in Computer Science. Portland, ME, 96–116.

Gaede, V. and Günther, O. 1998. Multidimensional access methods. ACM Computing Sur-
veys 20, 2 (June), 170–231.

Garcia-Molina, H., Ullman, J. D., and Widom, J. 2000. Database System Implementation.
Prentice Hall, Englewood Cliffs, NJ.

Gottschalk, S., Lin, M. C., and Manocha, D. 1996. OBBTree: a hierarchical structure for
rapid interference detection. In Proceedings of the SIGGRAPH’96 Conference. New Orleans,
LA, 171–180.

Graefe, G. 1993. Query evaluation techniques for large databases. ACM Computing Sur-
veys 25, 2 (June), 73–170.

Günther, O. 1993. Efficient computation of spatial joins. In Proceedings of the 9th IEEE
International Conference on Data Engineering. Vienna, Austria, 50–59.

Günther, O., Oria, V., Picouet, P., Saglio, J.-M., and Scholl, M. 1998. Benchmarking
spatial joins à la carte. In Proceedings of the 10th International Conference on Scientific and
Statistical Database Management, M. Rafanelli and M. Jarke, Eds. Capri, Italy, 32–41.

Gurret, C. and Rigaux, P. 2000. The sort/sweep algorithm: A new method for R-tree based
spatial joins. In Proceedings of the 12th International Conference on Statistical and Scientific
Database Management (SSDBM). Berlin, Germany, 153–165.

Güting, R. H. and Schilling, W. 1987. A practical divide-and-conquer algorithm for the rect-
angle intersection problem. Information Sciences 42, 2 (July), 95–112.

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of
the ACM SIGMOD Conference. Boston, MA, 47–57.

Hanson, E. N. 1991. The interval skip list: a data structure for finding all intervals that overlap
a point. Computer Science and Engineering Technical Report WSU–CS–91–01, Wright State
University, Dayton, OH.

Harada, L., Nakano, M., Kitsuregawa, M., and Takagi, M. 1990. Query processing for
multi-attribute clustered records. In 16th International Conference on Very Large Data Bases,
D. McLeod, R. Sacks-Davis, and H.-J. Schek, Eds. Brisbane, Queensland, Australia, 59–70.

Hellerstein, J. M., Naughton, J. F., and Pfeffer, A. 1995. Generalized search trees for
database systems. In Proceedings of the 21st International Conference on Very Large Data
Bases (VLDB), U. Dayal, P. M. D. Gray, and S. Nishio, Eds. Zurich, Switzerland, 562–573.

Henrich, A. and Möller, J. 1995. Extending a spatial access structure to support additional
standard attributes. In Advances in Spatial Databases—4th International Symposium, SSD’95,
M. J. Egenhofer and J. R. Herring, Eds. vol. 951 of Springer-Verlag Lecture Notes in Computer
Science. Portland, ME, 132–151.

Henrich, A., Six, H.-W., and Widmayer, P. 1989. The LSD tree: spatial access to multidi-
mensional point and non-point data. In Proceedings of the 15th International Conference on
Very Large Databases (VLDB), P. M. G. Apers and G. Wiederhold, Eds. Amsterdam, The
Netherlands, 45–53.

Hjaltason, G. R. and Samet, H. 1999. Improved bulk-loading algorithms for quadtrees. In
Proceedings of the 7th ACM International Symposium on Advances in Geographic Information
Systems, C. B. Medeiros, Ed. Kansas City, MO, 110–115.

Hoel, E. and Samet, H. 1994. Data-parallel spatial join algorithms. In Proceedings of the 23rd
International Conference on Parallel Processing. Vol. 3. St. Charles, IL, 227–234.

Hoel, E. G. and Samet, H. 1995. Benchmarking spatial join operations with spatial output. In
Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), U. Dayal,
P. M. D. Gray, and S. Nishio, Eds. Zurich, Switzerland, 606–618.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 41

Huang, Y.-W., Jing, N., and Rundensteiner, E. A. 1997a. A cost model for estimating the

performance of spatial joins using R-trees. In Proceedings of the 9th International Conference
on Scientific and Statistical Database Management, Y. E. Ioannidis and D. M. Hansen, Eds.
Olympia, WA, 30–38.

Huang, Y.-W., Jing, N., and Rundensteiner, E. A. 1997b. Spatial joins using R-trees: breadth-
first traversal with global optimizations. In Proceedings of the 23rd International Conference
on Very Large Data Bases (VLDB), M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, Eds. Athens, Greece, 396–405.

Huang, Y.-W., Jones, M., and Rundensteiner, E. A. 1997. Improving spatial intersect joins
using symbolic intersect detection. In Advances in Spatial Databases—5th International Sym-
posium, SSD’97, M. Scholl and A. Voisard, Eds. vol. 1262 of Springer-Verlag Lecture Notes in
Computer Science. Berlin, Germany, 165–177.

Hubbard, P. M. 1996. Approximating polyhedra with spheres for time-critical collision detection.
ACM Transactions on Graphics 15, 3 (July), 179–210.

Jacox, E. and Samet, H. 2003. Iterative spatial join. ACM Transactions on Database Sys-
tems 28, 3 (Sept.), 268–294.

Jagadish, H. V. 1990a. Linear clustering of objects with multiple attributes. In Proceedings of
the ACM SIGMOD Conference. Atlantic City, NJ, 332–342.

Jagadish, H. V. 1990b. Spatial search with polyhedra. In Proceedings of the 6th IEEE Interna-
tional Conference on Data Engineering. Los Angeles, CA, 311–319.

Kamel, I. and Faloutsos, C. 1993. On packing R-trees. In Proceedings of the 2nd International
Conference on Information and Knowledge Management (CIKM). Washington, DC, 490–499.

Katayama, N. and Satoh, S. 1997. The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In Proceedings of the ACM SIGMOD Conference, J. Peckham, Ed. Tucson,
AZ, 369–380.

Kedem, G. 1981. The quad-cif tree: a data structure for hierarchical on-line algorithms. Computer
Science Technical Report TR–91, University of Rochester, Rochester, NY. Sept.

Kim, S.-W., Cho, W.-S., Lee, M.-J., and Whang, K.-Y. 1995. A new algorithm for processing
joins using the multilevel grid file. In Proceedings of the 4th International Conference on
Database Systems for Advanced Applications (DASFAA’95), T. W. Ling and Y. Masunaga,
Eds. Vol. 5. Singapore, 115–123.

Kitsuregawa, M., Harada, L., and Takagi, M. 1989. Join strategies on KD-tree indexed
relations. In Proceedings of the 5th IEEE International Conference on Data Engineering. Los
Angeles, CA, 85–93.

Klinger, A. 1971. Patterns and search statistics. In Optimizing Methods in Statistics, J. S.
Rustagi, Ed. Academic Press, New York, 303–337.

Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., and Zikan, K. 1998. Effi-
cient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics 4, 1 (Jan.), 21–36.

Knuth, D. E. 1973. The Art of Computer Programming: Sorting and Searching. Vol. 3. Addison-
Wesley, Reading, MA.

Koudas, N. and Sevcik, K. C. 1997. Size separation spatial join. In Proceedings of the ACM
SIGMOD Conference, J. Peckham, Ed. Tucson, AZ, 324–335.

Koudas, N. and Sevcik, K. C. 1998. High dimensional similarity joins: algorithms and perfor-
mance evaluation. In Proceedings of the 14th IEEE International Conference on Data Engi-
neering. Orlando, FL, 466–475.

Kriegel, H.-P., Kunath, P., Pfeifle, M., and Renz, M. 2004. Spatial join for high-resolution
objects. In Proceedings of the 16th (IEEE) International Conference on Scientific and Statis-
tical Database Management (SSDBM’04). Santorini Island, Greece, 151–160.

Kumar, V. 1992. Algorithms for constraints satisfaction problems: A survey. The AI Magazine,
by the AAAI 13, 1 (Spring), 32–44.

Lo, M.-L. and Ravishankar, C. V. 1994. Spatial joins using seeded trees. In Proceedings of the
ACM SIGMOD Conference. Minneapolis, MN, 209–220.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

42 · E.H. JACOX and H. SAMET

Lo, M.-L. and Ravishankar, C. V. 1995. Generating seeded trees from data sets. In Advances in

Spatial Databases—4th International Symposium, SSD’95, M. J. Egenhofer and J. R. Herring,
Eds. vol. 951 of Springer-Verlag Lecture Notes in Computer Science. Portland, ME, 328–347.

Lo, M.-L. and Ravishankar, C. V. 1996. Spatial hash-joins. In Proceedings of the ACM SIG-
MOD Conference. Montréal, Canada, 247–258.

Lu, H., Luo, R., and Ooi, B. C. 1995. Spatial joins by precomputation of approximations.
In Proceedings of the 6th Australasian Database Conference. Australian Computer Science
Communications, volume 17, number 2. Glenelg, South Australia, Australia, 132–142.

Luo, G., Naughton, J. F., and Ellmann, C. 2002. A non-blocking parallel spatial join algorithm.
In Proceedings of the 18th International Conference on Data Engineering. San Jose, CA, 697–
705.

Mairson, H. G. and Stolfi, J. 1988. Reporting and counting intersections between two sets of
line segments. In Theoretical Foundations of Computer Graphics and CAD, R. A. Earnshaw,

Ed. Springer-Verlag, Berlin, West Germany, 307–325.

Mamoulis, N., Kalnis, P., Bakiras, S., and Li, X. 2003. Optimization of spatial joins on mobile
devices. In Advances in Spatial and Temporal Databases : 8th International Symposium, SSTD.
Santorini Island, Greece, 233–251.

Mamoulis, N. and Papadias, D. 1999. Integration of spatial join algorithms for processing
multiple inputs. In Proceedings of the ACM SIGMOD Conference. Philadelphia, PA, 1–12.

Mamoulis, N. and Papadias, D. 2001a. Multiway spatial joins. ACM Transactions on Database
Systems 26, 4 (Dec.), 424–475.

Mamoulis, N. and Papadias, D. 2001b. Selectivity estimation of complex spatial queries. In
Advances in Spatial and Temporal Databases : 7th International Symposium, SSTD. Redondo
Beach, CA, 155–174.

Mamoulis, N. and Papadias, D. 2003. Slot index spatial join. IEEE Transactions on Knowledge
and Data Engineering 15, 1, 211–231.

Mamoullis, N. and Papadias, D. 1998. Constraint-based algorithms for computing clique in-
tersection joins. In Proceedings of the 6th ACM International Symposium on Advances in
Geographic Information Systems, R. Laurini, K. Makki, and N. Pissinou, Eds. Washington,
DC, 118–123.

McCreight, E. M. 1985. Priority search trees. SIAM Journal on Computing 14, 2 (May),
257–276.

Merrett, T. H., Kambayashi, Y., and Yasuura, H. 1981. Scheduling of page-fetches in join
operations. In Very Large Data Bases, 7th International Conference. Cannes, France, 488–498.

Mishra, P. and Eich, M. H. 1992. Join processing in relational databases. ACM Computing
Surveys 24, 1 (Mar.), 63–113.

Nelson, R. C. and Samet, H. 1987. A population analysis for hierarchical data structures. In
Proceedings of the ACM SIGMOD Conference. San Francisco, CA, 270–277.

Neyer, G. and Widmayer, P. 1997. Singularities make spatial join scheduling hard. In Algo-
rithms and Computation, 8th International Symposium, ISAAC. Singapore, 293–302.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. 1984. The grid file: an adaptable, sym-
metric multikey file structure. ACM Transactions on Database Systems 9, 1 (Mar.), 38–71.

Omohundro, S. M. 1989. Five balltree construction algorithms. Tech. Rep. TR–89–063, Inter-
national Computer Science Institute, Berkeley, CA. Dec.

Orenstein, J. A. 1986. Spatial query processing in an object-oriented database system. In
Proceedings of the ACM SIGMOD Conference. Washington, DC, 326–336.

Orenstein, J. A. 1989a. Redundancy in spatial databases. In Proceedings of the ACM SIGMOD
Conference. Portland, OR, 294–305.

Orenstein, J. A. 1989b. Strategies for optimizing the use of redundancy in spatial databases.
In Design and Implementation of Large Spatial Databases—1st Symposium, SSD’89, A. Buch-
mann, O. Günther, T. R. Smith, and Y.-F. Wang, Eds. vol. 409 of Springer-Verlag Lecture
Notes in Computer Science. Santa Barbara, CA, 115–134.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 43

Orenstein, J. A. and Manola, F. A. 1988. PROBE spatial data modeling and query processing

in an image database application. IEEE Transactions on Software Engineering 14, 5 (May),
611–629.

Ottmann, T. and Wood, D. 1986. Space-economical plane-sweep algorithms. Computer Vision,
Graphics, and Image Processing 34, 1 (Apr.), 35–51.

Ozsu, M. T. and Valduriez, P. 1999. Principles of Distributed Database Systems, Second ed.
Prentice-Hall, Englewood Cliffs, NJ.

Papadias, D. and Arkoumanis, D. 2002. Approximate processing of multiway spatial joins in
very large databases. In Advances in Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Salte-
nis, E. Bertino, K. Böhm, and M. Jarke, Eds. Lecture Notes in Computer Science, vol. 2287.
Prague, Czech Republic, 179–196.

Papadias, D., Mamoulis, N., and Delis, V. 1998. Algorithms for querying by spatial struc-
ture. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB),
A. Gupta, O. Shmueli, and J. Widom, Eds. New York, NY, 546–557.

Papadias, D., Mamoulis, N., and Theodoridis, Y. 1999. Processing and optimization of multi-
way spatial joins using R-trees. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). Philadelphia, PA, 44–55.

Papadopoulos, A., Rigaux, P., and Scholl, M. 1999. A performance evaluation of spatial
join processing strategies. In Advances in Spatial Databases—6th International Symposium,
SSD’99, R. H. Güting, D. Papadias, and F. H. Lochovsky, Eds. vol. 1651 of Springer-Verlag
Lecture Notes in Computer Science. Hong Kong, China, 286–307.

Park, H.-H., Cha, G.-H., and Chung, C.-W. 1999. Multi-way spatial joins using R-trees:
methodology and performance evaluation. In Advances in Spatial Databases—6th Interna-
tional Symposium, SSD’99, R. H. Güting, D. Papadias, and F. H. Lochovsky, Eds. vol. 1651 of
Springer-Verlag Lecture Notes in Computer Science. Hong Kong, China, 229–250.

Park, H.-H., Lee, C.-G., Lee, Y.-J., and Chung, C.-W. 1999. Early separation of filter and
refinement steps in spatial query optimization. In Database Systems for Advanced Applica-
tions, Proceedings of the Sixth International Conference on Database Systems for Advanced
Applications (DASFAA), A. L. P. Chen and F. H. Lochovsky, Eds. Hsinchu, Taiwan, 161–168.

Patel, J. M. and DeWitt, D. J. 1996. Partition based spatial-merge join. In Proceedings of the
ACM SIGMOD Conference. Montréal, Canada, 259–270.

Patel, J. M. and DeWitt, D. J. 2000. Clone join and shadow join: two parallel spatial join algo-
rithms. In Proceedings of the eighth ACM international symposium on Advances in geographic
information systems. Washington, D.C., 54–61.

Peucker, T. 1976. A theory of the cartographic line. International Yearbook of Cartography 16,
134–143.

Preparata, F. P. and Shamos, M. I. 1985. Computational Geometry: An Introduction. Springer-
Verlag, New York.

Pugh, W. 1990. Skip lists: a probabilistic alternative to balanced trees. Communications of the
ACM 33, 6 (June), 668–676.

Reddy, D. R. and Rubin, S. 1978. Representation of three-dimensional objects. Computer
Science Technical Report CMU–CS–78–113, Carnegie-Mellon University, Pittsburgh, PA. Apr.

Rosenberg, J. B. 1985. Geographical data structures compared: a study of data structures
supporting region queries. IEEE Transactions on Computer-Aided Design 4, 1 (Jan.), 53–67.

Rotem, D. 1991. Spatial join indices. In Proceedings of the 7th IEEE International Conference
on Data Engineering. Kobe, Japan, 500–509.

Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA.

Samet, H. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan-
Kaufmann, San Francisco.

Schiwietz, M. and Kriegel, H.-P. 1993. Query processing of spatial objects: complexity versus
redundancy. In Advances in Spatial Databases—3rd International Symposium, SSD’93, D. Abel

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

44 · E.H. JACOX and H. SAMET

and B. C. Ooi, Eds. vol. 692 of Springer-Verlag Lecture Notes in Computer Science. Singapore,

377–396.

Seeger, B. 1991. Performance comparison of segment access methods implemented on top of the
buddy-tree. In Advances in Spatial Databases—2nd Symposium, SSD’91, O. Günther and H.-J.
Schek, Eds. vol. 525 of Springer-Verlag Lecture Notes in Computer Science. Zurich, Switzerland,
277–296.

Sellis, T., Roussopoulos, N., and Faloutsos, C. 1987. The R+-tree: a dynamic index for
multi-dimensional objects. In Proceedings of the 13th International Conference on Very Large
Databases (VLDB), P. M. Stocker and W. Kent, Eds. Brighton, United Kingdom, 71–79.

Song, J.-W., Whang, K.-Y., Lee, Y.-K., Lee, M.-J., and Kim, S.-W. 1999. Spatial join process-
ing using corner transformation. IEEE Transactions on Knowledge and Data Engineering 11, 4
(July/August), 688–695.

Stonebraker, M., Frew, J., Gardels, K., and Meredith, J. 1993. The SEQUOIA 2000 storage
benchmark. In Proceedings of the ACM SIGMOD Conference. Washington, DC, 2–11.

Sun, C., Agrawal, D., and Abbadi, A. E. 2003. Hardware acceleration for spatial selections
and joins. In Proceedings of the ACM SIGMOD Conference. San Diego, CA, 455–466.

Tan, K.-L., Ooi, B. C., and Abel, D. J. 2000. Exploiting spatial indexes for semijoin-based
join processing in distributed spatial databases. IEEE Transactions on Knowledge and Data
Engineering 12, 6 (November/December), 920–937.

Theodoridis, Y., Stefanakis, E., and Sellis, T. K. 1998. Cost models for join queries in spatial
databases. In Proceedings of the 14th IEEE International Conference on Data Engineering.
Orlando, FL, 476–483.

Ulrich, T. 2000. Loose octrees. In Game Programming Gems, M. A. DeLoura, Ed. Charles
River Media, Rockland, MA, 444–453.

U.S. Bureau of the Census. 1992. Tiger/line files (tm). Tech. rep., U.S. Bureau of the Census.

van den Bercken, J., Seeger, B., and Widmayer, P. 1997. A generic approach to bulk loading
multidimensional index structures. In Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB), M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, Eds. Athens, Greece, 406–415.

van den Bercken, J., Seeger, B., and Widmayer, P. 1999. The bulk index join: A generic
approach to processing non-equijoins. In Proceedings of the 15th International Conference on
Data Engineering. Sydney, Austrialia, 257.

van Oosterom, P. 1994. An R-tree based map-overlay algorithm. In EGIS/MARI94: Fifth
European Conference on Geographical Information Systems. Paris France, 318–327.

van Oosterom, P. and Claassen, E. 1990. Orientation insensitive indexing methods for geo-
metric objects. In Proceedings of the 4th International Symposium on Spatial Data Handling.

Vol. 2. Zurich, Switzerland, 1016–1029.

van Roessel, J. W. 1987. Design of a spatial data structure using the relational normal forms.
Int. J. Geographical Information Systems 1, 1 (Jan.), 33–50.

van Roessel, J. W. 1991. A new approach to plane-sweep overlay: Topological structuring and
line-segment classification. Cartography and Geographic Information Systems 18, 1 (Jan.),
49–67.

van Roessel, J. W. 1994. An integrated point-attribute model for four types of areal GIS features.
In Proceedings of the 6th International Symposium on Spatial Data Handling. Edinburgh,
Scotland, UK, 137–144.

Veenhof, H. M., Apers, P. M. G., and Houtsma, M. A. W. 1995. Optimisation of spatial joins
using filters. In Advances in Databases, Proceedings of 13th British National Conference on
Databases (BNCOD13), C. A. Goble and J. A. Keane, Eds. vol. 940 of Springer-Verlag Lecture
Notes in Computer Science. Manchester, United Kingdom, 136–154.

Whang, K.-Y. 1991. The multilevel grid file—a dynamic hierarchical multidimensional file struc-
ture. In Proceedings of the 2nd International Conference on Database Systems for Advanced
Applications (DASFAA’91), A. Makinouchi, Ed. Tokyo, Japan, 449–459.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · 45

White, D. A. and Jain, R. 1996. Similarity indexing with the SS-tree. In Proceedings of the

12th IEEE International Conference on Data Engineering, S. Y. W. Su, Ed. New Orleans, LA,
516–523.

Wilschut, A. N. and Apers, P. M. G. 1991. Dataflow query execution in a parallel main-memory
environment. In Proceedings of the 1st International Conference on Parallel and Distributed
Information Systems (PDIS). Miami, FL, 68–77.

Xiao, J., Zhang, Y., Jia, X., and Zhou, X. 1998. Data declustering and cluster-ordering tech-
nique for spatial join scheduling. In Proceedings of the 5th International Conference on Foun-
dations of Data Organization and Algorithms (FODO), K. Tanaka and S. Ghandeharizadeh,
Eds. Kobe, Japan, 47–56.

Zhou, X., Abel, D. J., and Truffet, D. 1997. Data partitioning for parallel spatial join pro-
cessing. In Advances in Spatial Databases—5th International Symposium, SSD’97, M. Scholl
and A. Voisard, Eds. vol. 1262 of Springer-Verlag Lecture Notes in Computer Science. Berlin,
Germany, 178–196.

Zhu, H., Su, J., and Ibarra, O. H. 2000a. Extending rectangle join algorithms for rectilinear
polygons. In Web-Age Information Management: First International Conference, WAIM 2000.
Shanghai, China, 247–258.

Zhu, H., Su, J., and Ibarra, O. H. 2000b. Toward spatial joins for polygons. In Proceedings of the
12th International Conference on Statistical and Scientific Database Management (SSDBM).
Berlin, Germany, 233–241.

Zhu, H., Su, J., and Ibarra, O. H. 2001. On multi-way spatial joins with direction predicates. In
Advances in Spatial and Temporal Databases : 7th International Symposium, SSTD. Redondo
Beach, CA, 217–235.

Zhu, M., Papadias, D., Zhang, J., and Lee, D. L. 2005. Top-k spatial joins. IEEE Transactions
on Knowledge and Data Engineering 17, 4 (April), 567–579.

Zimbrao, G. and de Souza, J. M. 1998. A raster approximation for processing of spatial
joins. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB),
A. Gupta, O. Shmueli, and J. Widom, Eds. New York, NY, 558–569.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–1

This document is the online-only appendix to:

Spatial Join Techniques
EDWIN H. JACOX and HANAN SAMET

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Studies

University of Maryland

College Park, Maryland 20742

jacox@cs.umd.edu and hjs@cs.umd.edu

ACM Transactions on Database Systems, Vol. V, No. N, November 2006, Pages 1–45.

A. SPATIAL JOIN CONCEPTS

Appendices A.1 and A.2 review MBRs and linear orderings, respectively, which are
concepts that are fundamental to many spatial join techniques. Also, Appendix A.3
describes a simple method for performing an in-memory spatial join, the nested-loop
join.

A.1 Minimum Bounding Rectangles and Approximations

For the filtering stage, most algorithms use a minimum bounding rectangle (MBR)
to approximate the full object, though other approximations might be used instead
or as a secondary filter (Appendix C). An MBR of an object is the smallest enclosing
rectangle whose sides are parallel to the axes of the space (axis-aligned), as shown
in Figure 20a. MBRs are preferred over the full object because they require less
memory and intersections between MBRs are easier to calculate. Objects, especially
in GIS applications, can be very large, requiring many points or lines to represent a
polygon, and for large datasets, which are also typical in GIS applications, reading
thousands, millions, or more of these objects from external memory and performing
intersection tests on them can be extremely expensive in terms of I/O performance.
Instead, if MBRs are used in the filtering stage, the MBRs can be read from external
memory faster than the full object and the intersection tests can be performed
faster. Unfortunately, using MBRs, or any approximation, will produce some wrong
answers. As shown in Figure 20b, an object might only occupy a fraction of its
MBR, leaving a portion of dead space. Two MBRs might intersect, but the objects
they represent might not intersect, as shown in Figure 20c. This result is referred
to as a false hit, whereas the result is termed a true hit if the MBRs intersect and
the objects they represent also intersect.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0362-5915/2006/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–2 · E.H. JACOX and H. SAMET

y

x

(a) (b) (c)

Fig. 20. (a) A minimum bounding rectangle (MBR) is the smallest rectangle that fully encloses
an object and whose sides are parallel to the axes. (b) The area of an MBR might be significantly
larger than the area of the enclosed object. The extra area is referred to as dead space. (c) Two
MBRs might intersect even though the objects that they enclose do not intersect.

(a) (b)

Fig. 21. (a) In order to reduce dead space, an object can be approximated by two disjoint
rectangles. (b) However, both rectangles might intersect a second object, thereby producing
duplicate results.

Before performing a spatial join, the MBRs for the full objects must be calculated.
If the data is indexed using a spatial indexing method [Gaede and Günther 1998;
Samet 1990], then typically the MBRs exist already. If they do not, then a scan
of the full dataset is required to create the MBRs. Forming the MBR of an object
simply involves checking each corner point of the object, which is an O(n) operation
for a polygonal object with n vertices.

Use of the filter and refine approach for spatial joins was first introduced by
Orenstein [1989b]. Orenstein was concerned that a poor approximation would de-
grade performance [Orenstein 1989a] and experimented with using a set of disjoint
rectangles to approximate each object. For example, to use this representation,
the object in Figure 20b is decomposed into the two MBRs shown in Figure 21a,
improving the approximation by reducing the dead space, but also increasing the
size of the dataset. While this approach improves the accuracy of the filter stage, it
also creates the need for an extra step after the filtering stage to remove duplicates
from the candidate set. As shown in Figure 21, both pieces of the decomposed
object in Figure 21a might intersect the same object, as shown in Figure 21b. Both
of these intersections create a candidate pair. The duplicate results generally need
to be removed for most applications and this typically should be done before the
more costly refinement stage in order to avoid extra processing (see Section 4.3.4
for a discussion of duplicate removal techniques).

Nevertheless, most algorithms use one MBR, rather than approximating an object
by a set of rectangles, and rely on the refinement stage to efficiently remove false
hits. However, many algorithms intentionally duplicate objects. For instance, if

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–3

a

c

d

e

b a

c

d

e

b

(a) (b)

Fig. 22. (a) A linear order, where object a’s neighbors, b and c are nearby. (b) A linear order in
which one of object a’s neighbors, c, is nearby, but the other neighbor, b, is not.

(a) (b)

Fig. 23. (a) Z-Order (Peano order) and (b) Peano-Hilbert order.

an algorithm creates a disjoint partition of the objects in a divide-and-conquer
approach, as is done with a grid partitioning approach (see Appendix B.2), then
each object will appear in each partition it overlaps. Similarly, some spatial indices
that can be used to perform a spatial join use disjoint nodes and the objects again
are copied into each node they overlap (for example, the R+-tree [Sellis et al.
1987]). In both cases, duplicate removal (or avoidance) techniques are required
(see Section 4.3.4).

A.2 Linear Orderings

A linear order [Jagadish 1990a; Samet 1990] creates a total order on multi-dimen-
sional objects. In other words, a linear order is a traversal of all of the objects, as
shown in Figure 22. Linear orderings play an important role in many spatial join
techniques, in a similar way that sorted orders (a one-dimensional linear ordering)
play an important role in creating efficient algorithms for relational joins (for ex-
ample, the sort-merge join [Mishra and Eich 1992]). The benefit of a sorted order
in one dimension is that neighboring objects (close in value) are next to each other
in the sorted order, leading to algorithms such as the sort-merge join [Mishra and
Eich 1992]. In more than one dimension, no natural linear order exists and spatially
neighboring objects will not necessarily be close in the linear order. For example,
in Figure 22a, neighboring objects a and b are next to each other in the order in-
dicated by the arrows, but in Figure 22b, they are widely separated. Nevertheless,
because linear orders keep some of the neighboring objects near each other in the
order, they can be useful in spatial join techniques.

Linear orders that keep neighboring objects closer in the order, on average, such
as the Z-order or the Peano-Hilbert order, tend to be more useful for spatial join
algorithms. The Z-order (also known as a Peano or Morton order), shown in Fig-
ure 23a, and the Peano-Hilbert order, shown in Figure 23b, traverse the grid in a

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–4 · E.H. JACOX and H. SAMET

A B

C D

A B

C D

A

B

C D

Entire Space

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

(a) (b) (c)

A

Entire Space

1 2 3 4

B

5 6 7 8

C

9 10 11 12

D

13 14 15 16

(d)

Fig. 24. (a) A four cell grid traversed in a Z-order. (b) A sixteen cell grid traversed in a Z-order.
(c) A sixteen cell grid traversal that includes enclosing blocks (lettered blocks). (d) A sixteen cell
grid traversal as a tree traversal.

pattern that helps to preserve locality. They are also known as space-filling curves
(see [Samet 2006] for other such curves). Both of these linear orders first order
objects in a block before moving to the next block. For example, the Z-order is a
traversal through a regular grid using a ‘Z’ pattern, as shown in Figure 24a. If there
are more than four cells in the grid, then each top-level block is fully traversed be-
fore moving to the next block. In Figure 24b, block A from Figure 24a is traversed
in a ‘Z’ pattern before moving to block B. This pattern is repeated at finer levels,
where a block at any level is fully traversed before moving to the next block. In
this way, a linear order is imposed on the cells. The Peano-Hilbert order is similar,
as shown in Figure 23b, though each block is traversed in a rotation that might be
clockwise or counter-clockwise, avoiding the large jumps between the constituent
grid cells of a Z-order.

Additionally, an order might visit both the grid cells and the enclosing blocks,
for instance, ordering both the blocks in Figure 24a and the constituent grid cells
in Figure 24b. To accomplish this order, one convention is to visit enclosing regions
(the blocks in Figure 24a) before visiting smaller regions (the cells in Figure 24b),
as shown in Figure 24c, which also includes the top level cell (the enclosing space)
in the ordering. In essence, this a hierarchical traversal of the nodes, as shown in
Figure 24d, which is a preorder tree traversal.

To traverse points in a linear order, the grid cells can be made small enough
such that each point is in its own grid cell. To traverse objects in a linear order,
either a point in the objects, such as the centroid, is used to represent each object
or the objects are assigned to the smallest enclosing block or grid cell, which is
similar to creating an MBR for the object, but with more dead space, as shown in
Figure 25a. Note that an object, no matter how small, that intersects the center
point will always be in the top level cell (root space), as shown in Figure 25b. Some
algorithms can take advantage of the regular structure of the enclosing cells, but

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–5

A

C

B

D

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

r

s

t

(a) (b)

Fig. 25. (a) In a linear ordering, objects can be assigned to the smallest enclosing block or grid
cell. Object r is assigned to the root space since it is not within any block. Object s is assigned to
the lower right block, B, and object t is assigned to cell 14. (b) An object overlapping the center
point, no matter how small, will be assigned to the top level, which is the entire space.

1 procedure NESTED LOOP JOIN(setA, setB, joinCondition)

2 begin

3 foreach a ∈ setA do

4 foreach b ∈ SetB do

5 if SATISFIED(a, b, joinCondition) then

6 REPORT(a, b);

7 endif;

8 enddo;

9 enddo;

10 end;

Fig. 26. The basic nested loop join with running time O(na · nb), for datasets of size na and nb,
using an arbitrary join condition (joinCondition).

1 procedure INDEX NESTED LOOP JOIN(setA, setB)

2 begin

3 spatialIndex←CREATE SPATIAL INDEX(setA);

4 foreach a ∈ setA do

5 spatialIndex.INSERT(a)

6 enddo;

7 foreach b ∈ setB do

8 searchResults←spatialIndex.SEARCH(b)

9 REPORT(searchResults)

10 enddo;

11 end;

Fig. 27. An index nested-loop join improves the performance of the spatial join to O((na + nb) ·
log(na) + f), assuming search times of the index are O(log(na) + f), where f is the number of
results found, na is the size of the indexed dataset, and nb is the size of the unindexed dataset.

at the price of more false hits due to the increased dead space (see Section 3.2 and
Appendix B.4).

A.3 Nested Loop Joins

The most basic spatial join method is the nested-loop join, which compares every
object in one dataset to every object in the other dataset [Mishra and Eich 1992].
The algorithm, shown in Figure 26, takes every possible pair of objects and passes it
to the SATISFY function to check if the pair of objects meets the given join condition,

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–6 · E.H. JACOX and H. SAMET

termed joinCondition in the algorithm. If a pair satisfies the join condition, then
it is reported using the REPORT function. Given two datasets, A and B, with na and
nb objects in each, respectively, the nested-loop join takes O(na ·nb) time. Despite
this larger cost, the nested-loop join can be useful when there are too few objects
to justify the overhead of more complex methods. Note that this algorithm works
with any object type and with any arbitrary join condition.

A variant of the nested-loop join algorithm, called the index nested-loop join [El-
masri and Navathe 2000], improves performance for larger datasets by first creating
a spatial index on one dataset, say A. In this algorithm, given in Figure 27, the
spatial index is first created and every element of dataset A is inserted into the
index using the INSERT function. Next, the other dataset, say B, is scanned, and
each element is used to search the index on dataset A for intersections. The in-
dex is searched using the SEARCH function, which in this context becomes a window

query [Gaede and Günther 1998] on the index, where the window is the object from
dataset B. Generally, the search window is a rectangle, which limits the types of
join conditions to intersection tests or related relations that can be solved with a
window query, such as proximity. Typically, for each object in dataset B, the time
to search the index is, on average, O(log(na) + f), where na is the size of dataset
A and f is the number of intersections found. For example, the search and insert
time, on average, for an R-tree [Guttman 1984] is O(log(na) + f). In theory, an
object could intersect every object in the index, creating an O(n) search time. In
practice though, the number of intersections is small and the running time of the
entire algorithm is O((na + nb) · log(na) + f), which includes the time to construct
the index, which is typically O(na · log(na)). Since all of dataset A is inserted first,
more efficient static indices and bulk-loading techniques [Arge et al. 1999; Hjaltason
and Samet 1999; Kamel and Faloutsos 1993; van den Bercken et al. 1997] can be
used to improve the construction time and the performance of the index.

The index nested-loop algorithm can be executed entirely in memory, using in
memory indices, and is useful as a component in other spatial join algorithms (see
Section 4). The algorithm can also be used as a stand alone external memory spatial
join algorithm by using external memory indices, which allows the algorithm to
process larger datasets. For instance, Becker et al. [1993] used grid files [Nievergelt
et al. 1984] as the index and Henrich and Möller [1995] used an LSD tree [Henrich
et al. 1989] as the index. However, more sophisticated methods exist for using an
external spatial index to perform a spatial join (see Section 4).

B. NEITHER DATASET INDEXED TECHNIQUES

This Appendix provides more details of specific methods for performing a spatial
join on unindexed data that were mentioned in Section 4.3. Appendix B.1 discusses
an extension to the plane-sweep algorithm (Section 3.1) that can process datasets of
any size by using external memory. Next more sophisticated partitioning algorithms
from the literature are described, grouped by how they partition the data: using
grids in Appendix B.2, using strips in Appendix B.3, by size in Appendix B.4, and
clustering in Appendix B.5.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–7

1 procedure EXTERNAL PLANE SWEEP(setA, setB)

2 begin

3 mergedSet←SET MERGE(setA, setB);

4 sortedSet←SORT BY LEFT SIDE(mergedSet);

5 insertList←sortedSet;

6 sweepStructureA←CREATE SWEEP STRUCTURE();

7 sweepStructureB←CREATE SWEEP STRUCTURE();

8 while insertList 6= ∅ do

9 sweepStructureA.INITIALIZE();

10 sweepStructureB.INITIALIZE();

11 doOverFile←new File();

12 foreach r in sortedSet do

13 if r ∈ setA then

14 sweepStructureB.REMOVE INACTIVE(r);

15 sweepStructureB.SEARCH(r);

16 if r = insertList.FIRST() then

17 insertList.POP();

18 errorStatus←sweepStructureA.INSERT(r);

19 if errorStatus = InsufficientMemoryError then

20 doOverFile.WRITE(r);

21 endif;

22 endif;

23 else

24 sweepStructureA.REMOVE INACTIVE(r);

25 sweepStructureA.SEARCH(r);

26 if r = insertList.FIRST() then

27 insertList.POP();

28 errorStatus←sweepStructureB.INSERT(r);

29 if errorStatus = InsufficientMemoryError then

30 doOverFile.WRITE(r);

31 endif;

32 endif;

33 endif;

34 enddo;

35 insertList←doOverFile.READ ENTIRE FILE();

36 enddo;

37 end;

Fig. 28. An external memory version of the plane-sweep algorithm with the ability to process
datasets of any size.

B.1 External Plane Sweep

Jacox and Samet [2003] extended the modified plane-sweep algorithm of Arge et
al. [1998] (see Section 3.1) to process datasets of any size by using external memory.
The algorithm, shown in Figure 28, adds an outer loop to the plane-sweep algorithm
that keeps track of which objects have been inserted into the sweep structure.
Initially, all objects are included in the list of objects to insert, which are stored in
the insertList variable. In the first pass of the outer loop, the plane-sweep runs
normally. If there is sufficient internal memory, the external plane-sweep performs
exactly as the internal version (see Figure 2), and the outer loop does not need to
be run again. However, if internal memory is full, then the current object is not
inserted into the sweep structure, but marked as not having been added to the sweep
structure. In this case, a reference to the object is saved to a file (or some other

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–8 · E.H. JACOX and H. SAMET

Partition 1

Partition 2

Partition 3

2,3

1,
2,
3

3

1

1

2

1,3

1,2

(a) (b)

Fig. 29. (a) Noncontiguous grid cells are grouped to form three partitions. (b) Forming partitions
from noncontiguous grid cells helps to prevent data skew problems by creating partitions of equal
size. Even though the data is clustered in the lower left corner, the partitioning scheme results in
each partition containing either four or five objects. Each object is labeled with the partitions in
which it will be placed.

external memory storage), called doOverFile. When a pass of the plane-sweep
finishes, this list of objects in doOverFile serves as the list of objects to insert into
the sweep structure in the next pass of the outer loop, which just performs the
same plane-sweep again, but doesn’t insert the objects that were inserted on the
first pass. The plane-sweep algorithm is run repeatedly until all objects have been
inserted into the sweep structure. Note that on every pass, every object is used to
search the sweep structure, thereby not missing any intersecting pairs. Also note
that the algorithm merges the two datasets into one dataset at the beginning of the
algorithm with the SET MERGE function so that the algorithm only needs to manage
one doOverFile instead of two.

B.2 Partitioning Using Grids

No technique uses a simple grid as did the generic algorithm in Figure 13, since
it is only useful for uniform distributions. However, Patel and Dewitt [1996] use
a uniform grid as a starting point. First, the data space is divided into a uniform
grid, where the number of grid cells, which they call tiles, is greater (typically much
greater) than the number of desired partitions. The grid cells are then grouped into
partitions using a mapping function in such a way as to minimize skew by, hopefully,
creating partitions that contain a similar numbers of objects. For example, in
Figure 29a, the grid cells are grouped to form three partitions. Even if the data is
skewed, each partition will cover part of the dataset, as shown in Figure 29d. Note
that the data is not physically partitioned into the grid cells, but only into the final
partitions. In other words, grid cells are assigned to partitions first, and then the
data is partitioned.

Patel and Dewitt [1996] do not proscribe a particular mapping, but only suggest
using some form of a hashing function to assign the cells to partitions. The hash
function should be chosen to distribute the data evenly amongst the partitions
and is dependent on the dataset. As an example, Patel and Dewitt use a round-
robin order, that scans the grid in row-major order and alternates assigning the cells
among the partitions, as is shown in Figure 29a. In the figure, because the grid cells
are not contiguous, the partitions have a larger total perimeter, leading to increased
data replication since a larger perimeter provides more opportunities for an object

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–9

Sweep Line

Sort/Sweep Direction

Strip 1

Strip 2

Strip 3

Strip 4

Fig. 30. In strip partitioning, the data is partitioned into strips and sorted parallel to the strip
to take advantage of the plane-sweep modification described in Section 3.1. In this example, the
sweep is repeated four times, once for each strip. The actual height of the sweep line is the height
of the strip.

to intersect the perimeter. Using more initial grid cells increases the uniformity
of the distribution because areas of skewed, dense data are distributed amongst
several partitions, but using more grid cells also increases the replication of objects
across partitions. Experiments [Patel and DeWitt 1996] showed that increasing the
number of grid cells can create near uniform distributions from skewed datasets, but
the replication rate can also increase rapidly. In their experiments, Patel and Dewitt
[1996] found that Tiger data [U.S. Bureau of the Census 1992] had a replication
rate of about 2.5% with 100 grid cells per partition while Sequoia data [Stonebraker
et al. 1993] had a replication rate of 10%.

Zhou et al. [1997] use a variation of this technique in which the data is physically
partitioned into the grid cells, first. Since the grid cell sizes are known, the parti-
tions can be formed by grouping contiguous cells until a desired partition size, as
determined using methods from Section 4.3.2, is reached. This approach reduces
the amount of replication because the partition boundary is smaller. The cells can
be grouped using any linear order, such as a Z-order (Appendix A.2). If any grid
cells remain after the maximum number of partitions have been formed, then they
can be assigned to the partitions with the least objects.

B.3 Partitioning With Strips

Arge et al. [1998] partition the data into strips so that they can take advantage of
their modification to the plane-sweep algorithm (Section 3.1). They show a lower
bound for their method of O(n logm(n)+t) I/O transfers, which is optimal, where n
is the number of objects in both sets divided by the block size, B (that is, n = N/B,
where N is the total number of objects in the datasets), m is the amount of internal
memory divided by block size, and t is the number of result pairs divided by block
size. For the plane-sweep method, after the data is sorted, it is partitioned into
strips that are parallel to the sort direction, as shown in Figure 30 17. With the
modified plane-sweep method, the amount of data that can be processed with a
given amount of internal memory is limited by the maximum size of the active set.
When the data is partitioned into strips, the maximum size of the active set is the
maximum number of objects that intersect the sweep line, which is a function of

17Güting and Schilling [1987] also used a form of strip partitioning to solve the rectangle inter-
section problem using external memory.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–10 · E.H. JACOX and H. SAMET

a

b

c

(a) (b) (c)

Fig. 31. To partition by size, objects are associated with the level where they first intersect a
grid. (a) Object a is associated with the root space, the highest level, since it intersects the first
(coarsest) grid level with four grid cells. (b) Object b is associated with the next level since it
intersects the next finer grid level with sixteen cells. (c) Object c is associated with an even lower
level.

the height of the strip. By appropriately limiting the height of the strip, which can
be a difficult calculation (see Section 4.3.2), the width of the strip can be of any
length, even infinite, in theory. Also, because strips are used, fewer partitions are
needed than in the grid method of Appendix B.2. Thus, if the grid method needs
k partitions to process the data without repartitioning, then the strip method can
process the same data with only

√
k partitions. For instance, if the grid method

creates a regular grid with sixteen cells, then the strip method can process the
same data with four strips. In other words, the strip method would just ignore the
vertical lines of the grid method. Additionally, since fewer partitions are used, less
data is replicated.

B.4 Partitioning By Size

Koudas and Sevcik [1997] roughly partition the data by size, using a series of finer
and finer grids, as shown in Figure 31. Each successive grid is derived by subdividing
each cell into four equal sized cells. To partition the data, each object is placed into
the partition associated with the finest grid in which the object does not intersect
the grid lines 18. For example, as shown in Figure 31a, object a crosses the coarsest
partitioning, and therefore, goes into the first partition. The next partition is
similarly composed of objects that do not fit in the first partition and which cross
partition boundaries for sixteen equal sized partitions, as shown Figure 31b. Each
lower level partition, such as the one containing object c in Figure 31c, is similarly
formed. In essence, each partition is a filter and objects fall through to the lowest
level partition where a partition boundary is crossed.

The algorithm for joining two datasets partitioned by size is shown in Figure 32.
It is a variant of the Z-order method described in Section 3.2. The main difference is
that the data is partitioned into multiple levels using the DETERMINE LEVEL function
and several sweep structures are used for each dataset, one for each level. Note that
the data need not be physically partitioned into the levels, but only partitioned into

18In addition to using this structure for the spatial join, Koudas and Sevcik [1997] build an index
from the level partitions by saving them to data pages and adding an access structure to the data
pages. They call the index a filter tree, which in essence is an MX-CIF quadtree [Kedem 1981]
where an object is associated with its maximum enclosing quadtree block. Arge et al. [1998] use a
concept similar to the filter tree in conjunction with the strip partitioning method (Appendix B.3)
to avoid inserting large objects into the partitions, improving the performance of the join on each
partition and limiting the amount of replication.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–11

1 procedure PARTITION BY SIZE(setA, setB)

2 begin

3 /* determine number of levels */

4 minSize←FIND SMALLEST OBJECT(setA, setB);

5 levels←CEILING(log4(TotalArea/minSize));

6 listA←SORT IN Z-ORDER(setA);

7 listB←SORT IN Z-ORDER(setB);

8 sweepStructuresA[]←CREATE SWEEP STRUCTURES(levels);

9 sweepStructuresB[]←CREATE SWEEP STRUCTURES(levels);

10 while NOT listA.END() OR NOT listB.END() do

11 /* get next rectangle from the two lists */

12 if listA.FIRST() < listB.FIRST() then

13 object←listA.POP();

14 level←DETERMINE LEVEL(object)

15 sweepStructuresA[level].INSERT(object);

16 for(i=level; i<=0; i--) do

17 sweepStructuresB[i].REMOVE INACTIVE(object);

18 sweepStructuresB[i].SEARCH(object);

19 enddo;

20 listA.NEXT();

21 else

22 object←listB.POP()

23 level←DETERMINE LEVEL(object)

24 sweepStructuresB[level].INSERT(object);

25 for(i=level; i<=0; i--) do

26 sweepStructuresA[i].REMOVE INACTIVE(object);

27 sweepStructuresA[i].SEARCH(object);

28 enddo;

29 listB.NEXT();

30 endif;

31 enddo;

32 end;

Fig. 32. A modified Z-order algorithm that partitions the data by size.

distinct sweep structures, which is a modification suggested by Dittrich and Seeger
[2000]. The first step in the algorithm is to determine how many levels are needed,
which is done with a simple calculation. The smallest grid cells should be about the
same size as the smallest object, which is found using the FIND SMALLEST OBJECT

function. The number of levels then is roughly the base four logarithm of the total
number of grid cells at the finest level, which is estimated as the enclosing area of
the data space, TotalArea, divided by the size of the smallest object, minSize. The
algorithm then proceeds nearly identically to the Z-order method from Section 3.2,
accounting for multiple sweep structures. Each object is read (in Z-order) and
inserted into its dataset’s sweep structure for its level using the INSERT function.
Next, after the inactive objects are removed using the REMOVE INACTIVE function,
the sweep structures for the other dataset are searched for intersections using the
SEARCH function. Only sweep structures at the same level or shallower (coarser)
need to be searched since the Z-order can ensure that larger objects will be seen
first. For instance, the two root space sweep structures will be searched after every
insertion of the opposing data set.

The finest level partition needed depends on the size of the smallest objects.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–12 · E.H. JACOX and H. SAMET

The algorithm in Figure 32 assumes that all of the coarser levels contain objects,
but this might not be the case. The algorithm can be modified to ignore empty
levels. Note that because the objects are partitioned by size, they are not replicated
between partitions. Also, there is no way to repartition the data. Since the sizes
of partitions are determined by grid divisions and not by the number of objects
in each partition, there could be too many objects in a particular partition and
the sweep structures could overflow the available internal memory. However, in
their experiments, Koudas and Sevcik [1997] found that sweep structures, which
they implemented as stacks, tend to contain few objects, and internal memory is
unlikely to overflow.

Small objects might be in level partitions meant for larger objects if they cross
partition boundaries for that level, as was shown in Figure 25b in Appendix A.2.
This hinders performance. Dittrich and Seeger [2000] suggest replicating small
objects to allow them to be placed into more appropriate partitions. If an object
is smaller than the grid cells of the boundary that it overlaps, then the object is
divided using the boundary. Each divided piece is then used to find a finer level
partition in which to insert the full object. For example, the object in Figure 25b
would be divided into four pieces and inserted into the four middle partitions.
Duplicate removal methods will then be needed (see Section 4.3.4).

B.5 Data-Centric Partitioning

Lo and Ravishankar [1995; 1996] cluster the data into partitions. One of the
datasets, say dataset A, is first sampled and a nearest-center heuristic is used to
identify clusters of the sampled objects. The centroids of the clusters form the basis
of the partitions. Initially, each partition is just the identified point, with no area.
As objects from dataset A are inserted into the partitions, the partition boundaries
are expanded to enclose the inserted objects. Thus, a partition boundary is the
enclosing MBR of the objects in the partition. Data is inserted into the partitions
using a choice of heuristics, such as inserting into the partition whose size grows the
least by area or into the partition whose centroid is closest. Note that this process
results in non-disjoint partitions. Once dataset A is inserted into the partition,
the resulting partition boundaries are used to partition the second dataset, say B.
Objects from dataset B are inserted into each partition that they overlap. Each
partition for dataset A then needs to be joined with only one partition from dataset
B using any appropriate internal memory method (Section 3). Duplicate results
do not occur since each object from dataset A is only in one partition. One benefit
of building non-disjoint partitions is that the partitions might not cover the entire
data space. If this is the case with dataset A, then objects from dataset B that do
not overlap any partition can be discarded since they could not be joined with any
object in dataset A.

C. FILTERING EXTENSIONS

This section discusses approximations other than MBRs that can be used for fil-
tering, and a method for making the filtering phase non-blocking. Appendix C.1
surveys techniques for producing better candidate sets with fewer false hits by using
better approximations. Appendix C.2 discusses tests and approximations that can
be used to identify true hits, that is, pairs of objects that definitely intersect. These

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–13

(a) (b) (c)

(d) (e)

Fig. 33. Alternate approximations to MBRs include: (a) the rotated minimum bounding rectangle,
(b) the minimum bounding circle, (c) the minimum bounding ellipse, (d) the convex hull, and (e)
the minimum bounding n-corner polygon (for example, 5-corner).

pairs can be immediately reported and then removed from the candidate set, mean-
ing that they are not passed to the more expensive refinement stage. Appendix C.3
describes a technique for making the filtering phase non-blocking.

C.1 False Hit Filtering

The MBR is not the only approximation that can be used during the filtering
stage. Other approximations can be used if the filtering method is adapted to
use the alternate approximation. Additionally, other approximations can be used
as a secondary filter after the initial filtering stage to prune some false hits from
the candidate set. To do this, the candidate set is scanned and an intersection
test is performed on each pair of objects using a different approximation than was
used to do the initial filtering. This second approximation should be stored since
calculating the approximation on the fly requires the full object to be read into
memory.

Brinkhoff et al. [1993] investigated false hit filtering methods that use approxi-
mations other than the MBR, which are shown in Figure 33. The approximations
are:

(1) The rotated minimum bounding rectangle.

(2) The minimum bounding circle.

(3) The minimum bounding ellipse.

(4) The convex hull.

(5) The minimum bounding n-corner polygon (for example, 5-corner).

They found that using a better approximation generally reduces the number of
false hits. The convex hull and 5-corner approximation performed especially well.
However, the higher storage costs, the increased complexity of calculating the ap-
proximation, and the increased complexity of the intersection test can mitigate the

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–14 · E.H. JACOX and H. SAMET

(a)

Covered

Mostly Covered

Partially Covered

Not Covered

(b)

Fig. 34. An object (a) is approximated using a four color scheme (b) by imposing a grid over the
object and coloring the cells depending on whether they are covered, mostly covered, partially
covered, or not covered.

Fig. 35. An MBR approximation can be improved by adding two more sides, parallel to each
other.

benefit. Even so, Brinkhoff and Kriegel [1994a] found that additional filtering with
these approximations can improve total performance significantly.

Zimbrao and de Souza [1998] propose using a 4-color raster approximation for
secondary filtering. As shown in Figure 34, a grid is imposed over each object
and grid cells are colored depending on whether they are covered, mostly covered,
partially covered, or not covered. To check for intersections, the two raster ap-
proximations of the objects are compared, taking into account the different offsets
and scales of the grids. The number of grid cells can be adjusted to obtain more
accurate results for filtering, but at the expense of higher storage costs.

Veenhoff et al. [1995] propose an approximation that is constructed by rotating
two parallel lines around the object 19. In other words, two more sides, parallel to
each other, are added by chopping two corners of the MBR, as shown in Figure 35,
creating a better approximation than the MBR, but still relatively inexpensive to
calculate, (i.e., O(n)). The tighter approximation reduces the number of false hits.

A number of techniques have been proposed in the spatial indexing, robotics, and
computer graphics literature for improving the quality of the approximation yielded
by the MBR whose sides are parallel to the axes. For example, an index termed
an oriented bounding box tree (OBBTree) (for example, [Gottschalk et al. 1996;
Reddy and Rubin 1978]) uses a rotated minimum bounding box; a P-tree [Jagadish
1990b] uses an n-corner polygon; a k-DOP data structure [Klosowski et al. 1998],
where the number k of possible orientations of the approximation is bounded; and
a general spatial filtering mechanism [Brodsky et al. 1995], which attempts to find
the optimal orientations, uses a minimum bounding polybox. The most general

19This approximation is also used by Duncan et al. [2001] in the BAR tree index.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–15

(a) (b) (c)

Fig. 36. An object approximated by: (a) a maximum enclosed circle, (b) a maximum enclosed
rectangle, and (c) a maximum enclosed axis-aligned rectangle.

solution is the convex hull, which is often approximated by a minimum bounding
polygon of a fixed number of sides having either an arbitrary orientation (for ex-
ample, the minimum bounding n-corner [Dori and Ben-Bassat 1983; Schiwietz and
Kriegel 1993]) or a fixed orientation, usually parallel to the coordinate axes (for
example, [Esperança and Samet 1997]). The minimum bounding box may also be
replaced by a circle, sphere (for example, the sphere tree [Hubbard 1996; Omo-
hundro 1989; van Oosterom and Claassen 1990; White and Jain 1996]), ellipse, or
intersection of the minimum bounding box with the minimum bounding sphere (for
example, the SR-tree [Katayama and Satoh 1997]). In more than two-dimensions,
Kriegel et al. [2004] present approximations for high-resolution three-dimensional
objects.

In addition to alternate approximations, Koudas and Sevcik [1997] propose an
additional filtering mechanism that might be useful for sparser datasets. They
propose building a bitmap for one of the datasets, say A, where each bit represents
a cell in a fine grid over the data space. If any object from dataset A intersects a
grid cell, then the bit is turned on for that cell. Then, as objects from the second
data are processed, each object is checked against the bit map. If the object does
not intersect a cell with the bit turned on, then the object can be discarded.

C.2 True Hit Filtering

The traditional filtering phase identifies a candidate set, which is a super set of
intersecting objects that also includes pairs of objects that do not intersect, but
whose approximations intersect. In true hit filtering, additional approximations are
used to find object pairs that definitely intersect, termed true hits, and thus can be
reported immediately or later combined with the results of the refinement stage.
While reducing the size of the candidate set is beneficial, Brinkhoff and Kriegel
[1994a] point out that multiple filters might not combine well, that is, adding more
than one filter might not significantly improve performance.

To identify true hits, Brinkhoff and Kriegel [1994a] propose using what they call a
progressive approximation, where the approximation is entirely enclosed by the full
object. In contrast to enclosing approximations, such as the MBR, the progressive
approximation does not include extra dead space, but rather excludes portions of
the full object. If the progressive approximations of two objects intersect, then
the full objects must intersect. Brinkhoff and Kriegel [1994a] investigated three
different progressive approximations, shown in Figure 36:

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–16 · E.H. JACOX and H. SAMET

Fig. 37. If the MBRs of two objects cross, then the two objects must intersect.

(1) A maximum enclosed circle.

(2) A maximum enclosed rectangle.

(3) A maximum enclosed axis-aligned rectangle.

These approximations were shown to be effective at identifying true hits, but they
are more expensive to calculate than MBRs and require extra storage space.

Brinkhoff and Kriegel [1994a] also describe a cross test that looks for enclosing
approximations, such as MBRs, that cross, as shown in Figure 37 20. For example,
assuming the objects are contiguous, if the MBRs of two objects cross, then the
objects must intersect. This is because the objects must also cross at some point
and thereby intersect. This is most clearly seen by trying to imagine a counter
example where the MBRs cross, as in Figure 37, without the objects intersecting.
In their experiments, Brinkhoff and Kriegel found that very few intersecting MBRs
will cross. However, they argue that since the cross test is so simple, it is worth
applying, even if it identifies only a few true hits.

C.3 Non-Blocking Filtering

During the filtering phase, any algorithm will block while building an index, sorting
the data, or partitioning the data. No output will be produced while this occurs,
which delays overall processing in a pipelined system [Graefe 1993]. This section
first describes a variant of the index nested-loop join (Appendix A.3) which is non-
blocking and then presents a method to make any filtering technique non-blocking.

The indexed nested-loop join in Appendix A.3 blocks while it is building an index,
that is, it doesn’t produce any result pairs, which can slow processing in pipelined
systems [Graefe 1993]. To overcome this limitation, Luo et al. [2002] use a non-
blocking variation of the index nested-loop join so that some results are returned
immediately. In the algorithm, shown in Figure 38, each dataset is indexed using
a dynamic index, such as an R-tree [Guttman 1984]. A dynamic index must be
used, which can be less efficient than static indices, but static indices block while
being built. The input to the algorithm is the combined datasets. If the datasets
are separate, as shown in previous algorithms, then either one data element or
blocks of elements should be read from each dataset, alternating between the two
datasets. Otherwise, no results will be reported until items from the second dataset
are encountered. As each element is encountered, it is inserted into the index

20The cross test is similar to the intersection test of Ballard [1981] and Peucker [1976].

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–17

1 procedure NON-BLOCKING NESTED LOOP JOIN(combinedDataSets)

2 begin

3 spatialIndexA←INTIALIZE DYNAMIC SPATIAL INDEX();

4 spatialIndexB←INTIALIZE DYNAMIC SPATIAL INDEX();

5 foreach dataElement ∈ combinedDataSets do

6 if dataElement ∈ setA then

7 spatialIndexA.INSERT(dataElement)

8 intersections←spatialIndexB.SEARCH(dataElement)

9 else

10 spatialIndexB.INSERT(dataElement)

11 intersections←spatialIndexA.SEARCH(dataElement)

12 endif;

13 REPORT(intersections)

14 enddo;

15 end;

Fig. 38. A non-blocking index nested loop join allows results to be reported immediately and
continuously.

belonging to it’s own dataset and the other index is searched for intersections. In
this way, results can appear after only a few objects have been seen, though at the
expense of building a second index.

A similar technique can be used to make any filtering technique non-blocking.
Luo et al. [2002] propose a simple extension, that is conceptually similar to a
pipelining hash join [Wilschut and Apers 1991], and is applicable to most filtering
methods. They propose devoting a portion of internal memory to maintaining an
in-memory R-tree (or any other spatial index) for each dataset, say datasets A and
B, and then using the non-blocking nested loop join as a front-end to the filtering
method. Only a subset of datasets A and B is inserted into the R-trees, which
is processed like the non-blocking nested loop join shown in Figure 38. Once the
R-trees are full, that is, the allotted internal memory is used up, the remaining data
is processed using a more efficient external memory method (Section 4). However,
the R-trees are still searched using the remaining objects in order to find all of
the intersections with the objects in the indices. Once all of the data has been
encountered, the objects in the indices can be discarded since all intersections with
them have been reported, thereby freeing more internal memory for use by the
external memory method used for the remaining objects.

D. THE REFINEMENT STAGE

The filtering stage (Section 4) produces a set of candidate object pairs that are
typically represented as pairs of object ids. The candidate set contains pairs whose
approximations intersect, but do not necessarily intersect themselves. The refine-
ment stage checks the full objects to remove any of these false hits from the can-
didate set. Unless all of the full objects in the candidate set can fit into internal
memory, the key to the refinement stage is ordering the reading of the full objects
to minimize I/O. This issue is discussed in Appendix D.1. Since objects are of-
ten polygons, Appendix D.2 describes a common algorithm for checking if a pair
of polygonal objects intersect. This test can be performed faster if the polygons
are indexed using a spatial access method [Gaede and Günther 1998; Samet 1990],

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–18 · E.H. JACOX and H. SAMET

which is discussed in Appendix D.3.
The candidate set might contain duplicate results, which should be removed first

to avoid any extra intersection tests on the full objects. If online techniques for
duplicate removal are used (Section 4.3.4), then the candidate set will not contain
any duplicate results. However, some methods cannot use the online techniques
and will introduce duplicates into the candidate set. A straight-forward approach
to duplicate removal is to sort the id pair list, then scan the list and remove the
duplicates. This extra step might not impact performance because it can be com-
bined with techniques for efficiently reading the full objects from external memory
in order to do the full object intersection tests, as discussed in Appendix D.1.

D.1 Ordering Pairs

Before performing an intersection test on a pair of objects, each object must be read
into memory. Since the full objects might be large, it is unlikely that every object
in the candidate set will fit into internal memory. In the best case, each object
will be read once, and in the worst case, both objects will need to be read for each
candidate pair. The pairs can be processed in the order in which the filtering stage
produces them, which is necessary in a pipelined system [Graefe 1993]. Otherwise, if
the extra cost of sorting is acceptable, then the candidate pairs can be sorted by ids
or by the MBRs using a one-dimensional sort or a linear order (see Appendix A.2).
Sorting improves performance and avoids the worst case of reading two objects for
each candidate pair by minimizing the number of repeated reads of an object.

When the candidate pairs are not sorted, Abel et al. [1999] showed that the
filtering method used impacts the performance of the refinement stage. In their
experiments, they showed that the output of Z-order methods (see, for example,
Appendix A.1 and Appendix B.4) were processed faster in the refinement stage
than the output of the hierarchical traversal methods (Section 4.1.1). To explain
this phenomenon, they suggest that the Z-order methods produce candidates that
have more locality, making it more likely that the candidate pairs for an object are
near each other in the output order, and thus, the object is more likely to remain
in internal memory until it is needed again.

Alternatively, sorting the candidate pairs can reduce the number of times an
object is read into memory, although the cost of sorting the pairs might offset some
of the performance benefit. The pairs can be sorted using objects from only one
dataset or a combination of both objects, using, for example, the centroid of the two
objects or the MBR enclosing the two objects. Also, different amounts of internal
memory can be devoted to each dataset, which is similar to the techniques used to
read partitions in a non-hierarchical spatial join (Section 4.1.2). In one approach,
the candidate pairs can be sorted for one dataset, say R. The objects in dataset
R will be read into memory only once, while the objects from the other dataset,
say S, will be read a multiple number of times. The objects from dataset S might
be read as often as once for each candidate set pair, which is still better than the
worst case of reading two objects into memory for each candidate pair. In another
approach, Patel and Dewitt [1996] modify this process slightly by reading as much
of the sorted dataset R into memory as possible, leaving room for one object from
the dataset S. Then, the objects from dataset S are read one at a time, testing
for intersections with each object with which it is paired in the candidate set that

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–19

1 function EDGE INTERSECTION TEST(edgesA, edgesB, MBRoverlap): boolean

2 begin

3 allEdges←edgesA ∪ edgesB;

4 allEdgesInRegion←EDGES IN REGION(allEdges, MBRoverlap);

5 allEndPoints←DOUBLE EDGES(allEdgesInRegion);

6 edgeList=SORT BY END POINT(allEndPoints);

7 activeEdges←CREATE SWEEP STRUCTURE();

8 while edgeList 6= ∅ do

9 edge←edgeList.POP();

10 edgeAbove←activeEdges.EDGE ABOVE(edge);

11 edgeBelow←activeEdges.EDGE BELOW(edge);

12 if edge is the beginning of the edge then

13 activeEdges.INSERT(edge);

14 if INTERSECT(edge, edgeAbove) OR INTERSECT(edge, edgeBelow) then

15 return true;

16 endif;

17 else

18 if INTERSECT(edgeAbove, edgeBelow) then

19 return true;

20 endif;

21 activeEdges.REMOVE(edge);

22 endif;

23 enddo;

24 return false; /* No intersection detected. */

25 end;

Fig. 39. A plane-sweep algorithm for detecting the intersection of simple polygons whose MBRs
intersect.

is present within the portion of dataset R that is in memory. While objects from
dataset R are still read one at a time, objects from dataset S will likely be read less
often, since on each read, they can be compared to a multiple number of objects
from R.

In a more sophisticated approach for polygonal datasets, Xiao et al. [1998] pro-
pose clustering the candidate pairs using matrix calculations. In their approach,
they pose the read scheduling as an optimization problem that minimizes the num-
ber of fetches, weighted by object size. In the matrix, rows represent one dataset
and columns represent the other dataset. The matrix values are the sums of the
number of vertices in two intersecting polygons or zero for non-candidate pairs. This
approach, unlike other methods, takes into account object sizes. Matrix calcula-
tions, termed the Bond Energy Algorithm, are used to cluster objects into datasets
that fit in memory, where an object might be in multiple clusters. This algorithm
runs in O(n3) time, where n is the number of objects.

D.2 Polygon Intersection Test

If the objects are polygons, a common approach to test if the objects intersect is a
plane-sweep technique [Preparata and Shamos 1985], which is conceptually similar
to the plane-sweep technique described in Section 3.1. The algorithm, shown in
Figure 39, determines if two polygons have any intersecting edges. As with the
plane-sweep technique in Section 3.1, this algorithm works by sweeping an axis-
aligned line across the plane. The end points of the edges from both polygons

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–20 · E.H. JACOX and H. SAMET

e

a
b

Fig. 40. Only the edges contained within the intersecting region of the MBRs could intersect each
other. Edge e of object a, which is outside of the intersecting region, could not possibly intersect
object b.

are the stopping points of the sweep line and the edges intersecting the sweep line
form the active set. If the polygons do not have intersecting edges, one polygon
could be contained within the other and a separate test for containment needs to
be performed, which is described later.

The typical plane-sweep polygon intersection algorithm has been modified to
improve its performance for the refinement stage using a technique of Brinkhoff
et al. [1994]. Since only edges within the intersecting region of the MBRs of the
two polygons could possibly intersect, only those edges are used in the plane-sweep
method. Any other edges are removed from consideration using the EDGES IN -

REGION function in the algorithm. For example, in Figure 40, edge e of polygon
a is not contained in the intersecting region of the MBRs and could not possibly
intersect polygon b.

The algorithm has also been simplified by assuming that the polygons are simple,
that is, they do not intersect themselves. In the algorithm, as soon as an intersecting
edge is found, the algorithm can report that the polygons intersect without checking
if the intersecting edges belong to the same polygon because the polygons are
simple 21.

The first step of the algorithm in Figure 39 combines the edges from both poly-
gons into one dataset and removes any edges that do not overlap the intersecting
region of the MBRs, MBRoverlap, using the EDGES IN REGION function. Next, the
DOUBLE EDGES function creates two entries for each edge, one for each end point,
which are the stopping points of the sweep line. Then, the end points are sorted
in one dimension using the SORT BY END POINT function. As with the plane-sweep
algorithm in Section 3.1, a sweep structure is needed to store the edges that inter-
sect the sweep line. In this case, the sweep structure, referred to as activeEdges,
must perform two additional operations, EDGE ABOVE and EDGE BELOW, which iden-
tify edges that intersect the sweep line just above the given edge or just below,
respectively. After initializing the activeEdges structure with the CREATE SWEEP -

STRUCTURE function, the list of edges is scanned. When an edge is first encountered,
it is inserted into the activeEdges structure, using the INSERT function. When
the end of an edge is encountered, it is removed from the activeEdges structure

21Becker et al. [1999] review and propose algorithms for non-simple polygons and efficient algo-
rithms for finding all of the intersecting edges.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–21

Sweep Line Position A

1

2

3

4

Sweep Line
Position B

(a)

Sweep Line

1

2

3

4

Edge Above

Edge Below

Inserted Edge

5

(b)

Sweep Line

6

3

4

Edge Above

Edge Below

Deleted Edge

(c)

Fig. 41. (a) Two intersecting edges will intersect the sweep line at adjacent points as the sweep
line approaches their intersect point. (b) When an edge is inserted, it could intersect the edge
just above it or below it. (c) When an edge is deleted, the edges adjacent to it might intersect.

a

b

point p

c

Fig. 42. Object a will be reported as contained within object b since the horizontal line through
a point, p, in a intersects object b once to the left of point p. Object a will not be reported as
contained within object c since it intersects the horizontal line twice to the left of point p.

using the REMOVE function.
In the algorithm, an edge intersection test is performed when an edge is inserted

or removed from the sweep structure. As the sweep line moves, the relative positions
of the intersection points of the sweep line with the edges change. For example,
as shown in Figure 41a, the edges intersect the sweep line at position A, in the
order 3, 1, 2, and 4, from top to bottom. At position B, the sweep line does not
intersect edges 1 or 2 and edge 3 has moved down the sweep line while edge 4 has
moved up. The edges continuously change their intersection point with the sweep
line as the sweep progresses, but the relative order of the edges only change when
an edge is inserted or removed (or when two edges intersect). Furthermore, only
the two edges adjacent to the inserted or removed edge will move in the relative
order. For instance, when edge 5 is inserted in Figure 41b, only edges 2 and 4 have
changed order and are no longer adjacent. Therefore, when an edge is inserted,
an intersection test is performed with it and the edge above and the edge below
using the EDGE ABOVE and EDGE BELOW functions, respectively, to find the edges to
be tested. Similarly, when an edge is deleted, only the relative order of the edges
above and below it are effected. For instance, when edge 6 is deleted in Figure 41c,
edges 3 and 4 become adjacent. Therefore, when an edge is deleted, an intersection
test is performed between the edge that was above it and the edge that was below
it, using the EDGE ABOVE and EDGE BELOW functions, respectively.

Because the polygons are assumed to be simple, if any edges intersect, then
the polygons must intersect and true is returned. Otherwise, the sweep completes

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

App–22 · E.H. JACOX and H. SAMET

Fig. 43. A polygon can be approximated by trapezoids, which can be used to perform a faster
polygon intersection test.

without finding any intersections and false is returned 22. Since a polygon could
be contained within the other, a containment test is necessary if false is returned
to confirm that the polygons do not overlap. A containment test [Preparata and
Shamos 1985], which typically has an O(n) running time, needs to be run twice to
conclude that neither object is contained within the other. One such algorithm,
briefly described here, takes a point from one polygon, say a, and the edges from
the other, say b, and checks if the point is contained within the polygon. If so, then
a must be contained within b. Any point on or in polygon a will suffice. Using a
horizontal line through the point from polygon a, the algorithm counts the number
of edges of b that intersect the horizontal line to the left of the given point. As
shown in Figure 42, the point is contained within the polygon only if the horizontal
line intersects the edges an odd number of times to the left of the point. The
algorithm concludes by returning true if an odd number of intersections to the left
of the point were detected and false otherwise. Care must be taken in counting
intersections with horizontal edges, which can be counted as either no intersection
or as two intersections. Care must also be taken with intersections involving the end
points of edges, which can be counted as half of an intersection. For more details on
this issue, see the discussion of the point-in-polygon test in any computer graphics
book, such as [Foley and van Dam 1982].

D.3 An Alternate Intersection Test

To improve the speed of the polygon intersection test, at the expense of higher stor-
age costs, a spatial access method can be used to store each full polygon [Gaede and
Günther 1998; Samet 1990]. When the polygons are represented by a containment
hierarchy (for example, an R+-tree [Sellis et al. 1987] or a region quadtree [Klinger
1971]), a synchronized traversal similar to that described in Section 4.1.1 can be
used to check for intersections between the full polygons. For example, Brinkhoff et
al. [1994] propose that each full polygon be decomposed into trapezoids, as shown
in Figure 43, and storing the pieces in an R∗-tree like structure called a TR∗-tree.
The entire TR∗-tree for each polygon is stored with the polygon. When two poly-
gons are checked for intersection, both TR∗-trees are read into memory and then

22In the full polygon intersection test, where all of the intersecting edges need to be found or
the polygons are not simple, intersections with adjacent edges also need to be checked when an
intersection point occurs since the two edges switch positions in the list, creating new adjacencies
for the edges. The algorithm shown in Figure 39 just reports success as soon as any intersection
is found since the polygons are simple and will not self-intersect.

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

Spatial Join Techniques · App–23

a synchronized traversal is performed to check for intersections. This process can
be further improved by using heuristics that detect intersections between partial
polygons [Badawy and Aref 1999; Huang et al. 1997].

ACM Transactions on Database Systems, Vol. V, No. N, November 2006.

