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Similarity join algorithms find pairs of objects that lie within a certain distance ε of each other.
Algorithms that are adapted from spatial join techniques are designed primarily for data in a

vector space and often employ some form of a multi-dimensional index. For these algorithms,

when the data lies in a metric space, the usual solution is to embed the data in vector space
and then make use of a multidimensional index. Such an approach has a number of drawbacks

when the data is high dimensional as we must eventually find the most discriminating dimensions,

which is not trivial. In addition, although the maximum distance between objects increases
with dimension, the ability to discriminate between objects in each dimension does not. These

drawbacks are overcome via the introduction of a new method called Quickjoin that does not

require a multi-dimensional index and instead adapts techniques used in distance-based indexing
for use in a method that is conceptually similar to the Quicksort algorithm. A formal analysis

is provided of the Quickjoin method. Experiments show that the Quickjoin method significantly

outperforms two existing techniques.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Pro-

cessing, Multimedia databases; H.2.8 [Database Management]: Database Applications—Image
databases

General Terms: Algorithms, Performance

Additional Key Words and Phrases: similarity join, external memory algorithms distance-based
indexing, nearest neighbor queries, range queries, ranking

1. INTRODUCTION

The similarity join is a typical data-mining operation that has applications in many
domains, such as medical imaging [Korn et al. 1996], multimedia [Faloutsos et al.
1994], and GIS [Samet 1990a]. The operation is used to find association rules
[Koperski and Han 1995], to analyze time series, such as stock histories [Agrawal
et al. 1993; Agrawal et al. 1995], and can also be used to identify data clusters
[Böhm et al. 2000]. The similarity join finds similar pairs of objects, such as similar
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images or similar sub-sequences. Similarity for a pair of objects means that they are
within a certain distance, ε, of each other. The data can be of any type, as long as
a distance function exists that returns a distance between any pair of objects. For
example, in metric spaces, the Levenshtein edit distance [Levenshtein 1966] can be
used in a similarity join on two sets of strings such as text or DNA sequences; the
Hausdorff distance can be used in a similarity join on shapes [Huttenlocher et al.
1992] or images [Rucklidge 1995; 1996]; and the Jaccard coefficient [Zezula et al.
2006] can be used to find similarity between sets, such as sets of web documents.
Additionally, any distance metric used for a similarity query can be used in a
similarity join to answer the “all-pairs” version of the similarity query. For many
domains, the data is often represented as points in a multi-dimensional space or
as feature vectors, and techniques often rely on multi-dimensional indices [Samet
2006]. Other related operations are k-nearest neighbor joins [Xia et al. 2004], which
find the k most similar objects for each object, approximate spatial joins [Papadias
and Arkoumanis 2002], which find the most similar pairs within a given amount of
time, and all-nearest-neighbor queries [Zhang et al. 2004], which find the nearest
object for each object in the set.

We present a method that overcomes several deficiencies in existing similarity
join techniques that are derived from spatial join techniques [Jacox and Samet
2007]. These similarity join techniques are only applicable to multi-dimensional
point (vector) data. If the data is not in a vector format, then embedding methods
[Faloutsos and Lin 1995; Hristescu and Farach-Colton 1999; Linial et al. 1995;
Wang et al. 1999] are usually used to transform the data into a vector format.
Furthermore, these similarity join algorithms, discussed in Section 2, must pick
particular dimensions as either the primary sort dimensions or the dimensions to
index. For example, the ε-kdb tree [Shim et al. 1997] splits the data along one
dimension first, then another, and so forth. This presents several problems. First,
a good dimension must be found. If a poor dimension is chosen, then performance
could be poor. For instance, a bad dimension is one in which the range of values
in the dimension is nearly ε. In this case, every object is similar in that dimension,
thereby making it useless to the index and leading to wasted processing and storage.

Other methods try to index all of the dimensions at once using a grid approach
[Kalashnikov and Prabhakar 2003; Koudas and Sevcik 1998]. However, with higher
dimensions a problem arises in that it becomes very likely that most data points
will have feature values that are near the grid boundaries, thereby confounding
these index techniques. Additionally, for any type of multi-dimensional index, the
ability to discriminate between objects in a particular dimension becomes more
limited as the number of dimensions that make up the space increases. Therefore,
in lower dimensions, the multi-dimensional index approaches will work fine, but for
higher dimensions, especially very high dimensions, the performance of the multi-
dimensional index methods will degrade. Another deficiency of multi-dimensional
indices (and indices in general) is that they are built efficiently for only one dis-
tance function or for just one embedding of the data. In the past, this has not been
an issue since the most commonly used distance function is one of the Minkowski
metrics, such as the Euclidean distance (L2-norm). However, as pointed out by
Aggarwal [2003], the L2-norm is not necessarily relevant to many emerging appli-
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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Fig. 1. (a) With ball partitioning, objects are partitioned by their distance from a randomly
chosen object p1, based on a distance r. In this example, r is determined using half the distance

to the farthest object p2. The problem with this partitioning is that it can separate result pairs

that are within ε of each other, such as objects o1 and o2. (b) In order to correctly capture all
result pairs, two windows of objects within ε of the partitioning distance, r, are created – one

with objects whose distances from p1 are between r and r + ε, Wg , and one with objects whose

distances from p1 are between r − ε and r, Wl.

cations involving high-dimensional data. Furthermore, the distance function might
change for a particular application based on user preferences. In these cases, a
dimension that is primary for one distance function, might not be so for another
distance function.

In this paper, we introduce a distance-based similarity join that avoids these
problems and performs better than other non-index based similarity join techniques
[Böhm et al. 2001; Dittrich and Seeger 2001]. Our algorithm uses concepts similar
to those used in distance-based indexing methods [Chávez et al. 2001; Hjaltason
and Samet 2003] in that only the distance function is used, rather than relying
on a particular dimension. In other words, the data does not need to be in vec-
tor format (multi-dimensional points). Additionally, our method does not build
an index, so it is able to adapt to changing distance functions. We only require
that the triangle inequality hold, which is true in many applications. Finally, as
shown experimentally in Section 5, our method performs competitively and often
significantly outperforms competing methods.

Our method, termed Quickjoin, is based on the Quicksort algorithm [Hoare 1962]
in that it recursively partitions the data until each partition contains a few objects,
at which point a nested-loop join is used. The data can be partitioned using a
variety of techniques, such as ball partitioning, which partitions the data based on
their distance to a single random object (termed a pivot) [Tasan and Özsoyoglu
2004; Yianilos 1993], as shown in Fig. 1, or generalized hyperplane partitioning,
which partitions the data on the basis of which of two randomly selected objects is
closest [Uhlmann 1991]. Both techniques, as well as other variations, are described
in Section 3.

By just partitioning the data, a significant portion of the desired results will
be missed since objects in one partition might need to be joined with objects in
another partition. For example, using ball-partitioning, in Fig. 1a, objects o1 and
o2, which lie within ε of each other, would not be reported as similar since they
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are in different partitions. To overcome this problem, when the data is partitioned
into two partitions, the data is replicated into two sets, which we call “windows”:
window Wl with distance values from p1 less than or equal to the partitioning
distance, r, but within ε of r, and set Wg with distance values from p1 greater than
r, but also within ε of r, as shown in Fig. 1b. These two windows are joined, and
only pairs, (a, b), with an object from each window are reported, where a ∈ Wl

and b ∈ Wg or b ∈ Wl and a ∈ Wg. Again, a Quicksort-like partitioning is applied
recursively, but this time to each of the windows.

The rest of the paper is organized as follows. After reviewing related work in
Section 2, the details of the algorithm are presented in Section 3, including addi-
tional variations of the algorithm. In Section 4, the performance characteristics
of the algorithm are analyzed in terms of CPU, internal memory, and I/O costs.
Section 5 describes the result of several experiments showing that the method per-
forms better than the EGO method [Böhm et al. 2001], described in Section 2.1 and
the GESS method [Dittrich and Seeger 2001], described in Section 2.2. Section 6
contains concluding remarks.

2. RELATED WORK

A similarity join is similar to a spatial join [Orenstein 1989] or an interval join
[Enderle et al. 2004], which find pairs of intersecting objects, such as intervals,
polygons, or rectangles, in low dimensions. Algorithms have been devised for spatial
joins using both indexed [Brinkhoff et al. 1993; Huang et al. 1997; Koudas and
Sevcik 1997; Lo and Ravishankar 1995] and unindexed methods [Arge et al. 1998;
Jacox and Samet 2003; Patel and DeWitt 1996]. For indexed methods, the join
algorithm is frequently a synchronized traversal of the tree-like index structures
[Brinkhoff et al. 1993]. If the data is not indexed, then an index can be built, or if
the index will not be reused, then the expense of building an index can be avoided
by using a partitioning method [Patel and DeWitt 1996] or a plane-sweep method
[Arge et al. 1998; Jacox and Samet 2003]. As with the spatial join techniques,
the first attempts at solving the similarity join used indices [Koudas and Sevcik
1998; Shim et al. 2002]. Unfortunately, traditional spatial indices, such as the R-
tree [Guttman 1984], have a number of drawbacks in higher dimensions [Böhm and
Kriegel 2001; Shim et al. 1997; 2002]. For example, the number of neighboring leaf
nodes typically increases in higher dimensions, thereby degrading performance. To
overcome such drawbacks, several indices have been proposed for indexing high-
dimensional data in order to perform a similarity join:

(1) An MX-CIF quadtree [Kedem 1982] that uses a multi-dimensional linear order
[Koudas and Sevcik 1998].

(2) A variant of the kdb-tree [Robinson 1981] that splits the data in each dimension
into ε sized segments [Shim et al. 1997; 2002].

(3) A sophisticated R-tree variant with large pages and a secondary search structure
[Böhm and Kriegel 2001].

(4) A simple grid-like index structure [Kalashnikov and Prabhakar 2003], similar
to a grid file [Nievergelt et al. 1984].

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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Once the data is indexed, the similarity join can be performed using either a syn-
chronized tree traversal [Brinkhoff et al. 1993] or other heuristic methods that
globally order the access of the data pages [Harada et al. 1990; Kahveci et al. 2003;
Kitsuregawa et al. 1989].

However, as mentioned in Section 1, similarity join techniques based on these
indices might not perform well since they rely on indexing a subset of the dimen-
sions and it might be difficult or impossible to choose a good subset of dimensions.
Furthermore, these techniques assume a fixed, Minkowski distance function, which
limits their applicability. For example, Shim et al. [1997; 2002] propose an index
structure, termed an ε-kdB tree, in which each level of the tree splits on a different
dimension into approximately ε sized pieces. After the indices are built, a synchro-
nized tree traversal is used to perform the join. This method relies on choosing a
good split dimension, which might not exist for larger ε values. Similarly, two good
dimensions must be chosen for the Grid-join method of Kalashnikov and Prabhakar
[2003], which uses a 2-dimensional grid to index multi-dimensional data. Even in
their work, they noted that this approach is unsuitable for higher dimensions. In
their experimental section they point out that ”the Grid-join is not competitive for
high-dimensional data, and its results are often omitted...” Instead of creating a
new index, Böhm et al. [2001] propose an unindexed method, termed the Epsilon
Grid Order or EGO, which is described in detail in Section 2.1.

pivot

d m

pivot

(a) (b)

Fig. 2. (a) The D-index partitions the data into three sets using the median distance within the

partition, dm, and a parameter ρ. The outer set (shaded) consists of the objects farther than
dm+ρ from the pivot object. The inner set (shaded) consists of the objects nearer than dm−ρ to

the pivot object. The remaining objects form the third set, termed the exclusion set (not shaded).
(b) The eD-index extends the D-index by replicating objects that are within ε of the inner and
outer sets (shown by the dotted circles) into the exclusion set.

On the other hand, techniques based on metric space indexing have also been
used for similarity joins (e.g., for text processing and data cleaning operations).
For example, Dohnal et al. [003b] propose a metric space self-similarity join using a
custom built metric space index, termed an eD-index, which repeatedly partitions
the data using ball partitioning techniques. Once the data is partitioned, they use
an in-memory technique that is similar to a plane-sweep technique [Preparata and
Shamos 1985], which they call a “sliding window join”, to find result pairs in each
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partition. To ensure that result pairs existing in separate partitions are reported,
that is, results pair (o1, o2) where objects o1 and o2 are in different partitions, each
partition is extended by ε, resulting in duplicate objects in the index. Duplicate
results are avoided by the use of a tagging system (described in [Zezula et al. 2006],
pages 134–136).

The eD-index is based on the D-index [Dohnal et al. 2003], whose partitioning
scheme initially uses multiple ball-partitionings. Each partitioning around the sep-
arate pivots produces three sets based on the median distance in the set, dm, and
a parameter, ρ, as shown in Fig. 2a. Two sets (shaded in Fig. 2) are formed by
those objects farther than ρ from the median distance. The inner set contains all
objects, o, such that d(o, p) ≤ dm − ρ, and the outer set contains all objects such
that d(o, p) > dm + ρ. All other objects form a third set, called the exclusion set.
The union of all objects in any exclusion set is recursively partitioned using further
rounds of ball-partitionings until the resulting exclusion set is sufficiently small.
The eD-index extends the D-index by replicating those objects farther than ρ from
the median distance but within ε, which are the shaded regions within the dotted
lines in Fig. 2b. In other words, those objects within ε of the inner and outer set
boundary are replicated into the exclusion (middle) set.

As with the eD-index approach, the Quickjoin method also partitions the data
to perform a similarity join, though it uses a different approach. Rather than
extending the partitions by ε, the Quickjoin method creates subsets of the ε regions
(see Section 3 for details), which are processed separately, avoiding duplicate results
and the need for a duplicate removal technique. A potential drawback with the eD-
index approach is that the index is built for small ε values and would need to
be rebuilt for larger ε values. Furthermore, the technique is only applicable to
self-similarity joins for pre-built indices. Indices built with different partitioning
functions cannot be joined with this method. The Quickjoin method, since it does
not build any structures, can process two sets by processing the sets as one and only
reporting results containing one item from each set. Overall, the main difference
between the Quickjoin and the eD-index approaches is the way in which the space is
partitioned. Quickjoin always partitions the data while the eD-index method builds
a structure which can be used several times. How this difference (and differences in
duplicate removal and small partition processing) effects the overall performance is
not addressed in this article and is left for future work.

2.1 Epsilon Grid Order (EGO)

The EGO algorithm of Böhm et al. [2001] is based on the EGO sorted order, which
is described as a sort based on imposing an ε-sized multi-dimensional grid over
the space, and ordering the cells, as shown in Fig. 3b. In effect, this is a loose
version of a total multi-dimensional sort, where the points are primarily sorted in
one dimension, secondarily on another dimension, and so forth for each dimension.

In the EGO method, the EGO-sorted data is read in blocks, and the key to the
algorithm is to efficiently schedule reads of blocks of data so as to minimize I/O.
Each block b of data needs to be joined with all other data blocks containing data
within a distance of ε of b. In the best case, each data block can be read one at
a time, and all corresponding data blocks (those that need to be joined) will fit in
memory. In this way, each data block will be read only once. For larger ε values,
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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EGO grid cell

Fig. 3. The EGO sorted order traverses grid cells. Each grid cell is kept in memory until any

points within the cell could not be within ε of grid cells yet to be seen. Points within a grid cell
are not necessarily sorted, and are joined using a recursive divide-and-conquer approach.

this will not likely be the case, and the problem becomes similar to the classic join
scheduling problem, which is known to be NP-Hard [Merrett et al. 1981; Neyer and
Widmayer 1997]. To overcome this problem, Böhm et al. use heuristics to order
the block reads and to determine which blocks in memory to evict. The goal of the
heuristic, which they term crab stepping, is to try to minimize repeated reads of
blocks.

To join two blocks of data, the data blocks are recursively divided until a min-
imum size has been reached, in which case a nested-loop join can be used. The
recursion also stops when the data block subsets are at a distance greater than ε
from each other. With the EGO* algorithm, Kalashnikov and Prabhakar [2003] use
a better test for checking for this condition, which stops the recursion sooner and
improves performance.

2.2 GESS

Dittrich and Seeger created the Generic External Space Sweep (GESS) method
[Dittrich and Seeger 2001], which is a variant of the Multidimensional Spatial Join
(MSJ) of Koudas and Sevcik [1998; 2000], which in turn is based on a technique for
performing a spatial join on rectangles [Koudas and Sevcik 1997]. The technique
is adapted to multi-dimensional points by creating hyper-squares centered around
each point with ε length sides, and then using the original technique to join the
hyper-squares. If two hyper-squares intersect, then the points must be within ε of
each other along at least one of the dimensions of the underlying space. The MSJ
method assigns the data to grid cells, sorts the data based on the assigned grid
cells using a multi-dimensional linear order [Jagadish 1990; Samet 1990b], and then
scans the data in sorted order to perform the join.

In the MSJ method, objects are assigned to levels of regular grids. Each level
of grid cells is derived by dividing each dimension of the previous level in two, as
shown in Fig. 4. The first level, level zero, encloses the entire data space. An object
is assigned to the finest (highest) level in which it does not cross a grid boundary,
thereby creating an MX-CIF quadtree index [Kedem 1982]. Each part of Fig. 4
shows an object assigned to a different level. Since each dimension is split, the
fan-out will be large for higher dimensions, thereby limiting the depth of grid levels

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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Fig. 4. In the MSJ method, objects are created out of multi-dimensional points by creating
hyper-squares centered around each point with ε length sides. Each object is assigned to the

finest regular grid in which it does not cross a grid boundary. In this example, only the square

with the solid border in each figure is assigned to that level, with level 2 being the lowest level.
(a) Object a is assigned to the root space, level 0, since it intersects the first (coarsest) grid level

with four grid cells, that is, level 1. (b) Object b is assigned to the next level since it intersects
the next finer grid level with sixteen cells, that is, level 2. (c) Object c is assigned to the lowest

level.

since an enormous number of lower-level cells would create an unwieldy index.
By assigning objects to cells in this manner, objects whose hypersquares overlap

grid boundaries will be assigned to shallower (coarser) levels, as shown in Fig. 4a.
To overcome this inefficiency, Dittrich and Seeger introduce redundancy, thereby
allowing an object to be replicated into multiple objects that can be assigned to
a more appropriate level For example, object a in Fig. 4a would be replicated
into four objects, each assigned to one of the four middle grid cells of level 2.
Unfortunately, in higher dimensions, an object could cross boundaries in many
dimensions and would need to be replicated into 2k cells for k boundary crossings.
For this reason, objects are not replicated if k exceeds a predefined limit. Dittrich
and Seeger [2001] experimentally found that a small k factor, such as two or three,
is best. By introducing redundancy in the dataset, duplicate results might appear,
which can be removed in-line using a technique described later. Furthermore, the
GESS method does not limit the type of partitioning. For instance, rather than a
quadtree-like partitioning, a kd-trie partitioning can be used.

Once the data is assigned to grid cells, it is sorted based on the assigned grid cell
using a linear order such as a Hilbert or Peano-Hilbert order [Jagadish 1990; Samet
1990b]. The data is secondarily sorted by level so that objects assigned to larger
grid cells are seen first, immediately followed by objects within the larger grid cells
that have been assigned to the next lower level of grid cells, and so forth. As noted
by Dittrich and Seeger [2001], the data does not need to be physically written to
level files, as is done with the MSJ method, but rather, the data can be assigned
to grid cells as it is fed into a sorting operator, avoiding additional I/O cost.

After the data has been sorted, it is scanned in sorted order and joined using a
technique attributable to Orenstein [1986] and similar to a plane-sweep technique
[Preparata and Shamos 1985]. As each object is encountered, it is pushed onto a
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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1 procedure Quickjoin(eps, distFunc, objs)

2 begin

3 if( objs.size < constSmallNumber )

4 NestedLoop(eps, distFunc, objs);

5 return;

6 end if

7

8 p1 ← randomObject(objs);

9 p2 ← randomObject(objs-p1);

10 (partL, partG, winL, winG) ←
11 Partition(eps, distFunc, objs, p1, p2);

12

13 QuickjoinWin(eps, distFunc, winL, winG);

14 Quickjoin(eps, distFunc, partL);

15 Quickjoin(eps, distFunc, partG);

16 end

Fig. 5. The Quickjoin algorithm recursively partitions the data into subsets that are small enough

to be efficiently processed by a nested-loop join. The “windows” around the partition boundary,
winL and winG, are handled by a separate recursive function, QuickjoinWin, shown in Fig. 9.

stack and joined with all other data on the stack. Once all of the data within a grid
cell has been encountered, that data can be purged from the stack since it could
not possibly be similar to any data yet to be seen because of the sorted order.

Because of the replication, duplicate results could be reported. Dittrich and
Seeger use a reference point method [Aref and Samet 1994; Dittrich and Seeger 2000]
to prevent duplicate results from being reported. In this method, a consistently
chosen corner of the hyper-dimensional rectangle formed by the intersection of
two ε expanded points is used, such as the lower left corner of a two-dimensional
intersection. If this corner point is within the grid cell to which the objects are
assigned, then the result (similarity) is reported. Since this point can only lie
within one grid cell, duplicate results are avoided.

3. THE QUICKJOIN ALGORITHM

This section describes the details of the Quickjoin algorithm, as well as variations of
the algorithms. Also, slightly different algorithms are used depending on whether
the entire dataset fits into internal memory. The internal memory method using
ball partitioning is presented in Section 3.1, and the generalized hyperplane variant
of the Quickjoin algorithm is described in Section 3.2. A variant of the algorithm
that assumes vector data is described in Section 3.3. Next, the external memory
algorithm is described in Section 3.4, which uses the internal memory algorithm
to join partitions of the data that are small enough to fit into internal memory.
Finally, Section 3.5 describes a technique for improving the performance of the
internal memory algorithm.

3.1 Quickjoin Using Ball Partitioning

The internal memory version of the Quickjoin algorithm, shown in Fig. 5, takes three
arguments: the desired ε, eps; a distance function, distFunc; and the set of objects
to be joined, objs, which is implemented as an array for the best performance for
the internal memory algorithm. The procedure recursively partitions the data in

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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1 procedure NestedLoop(eps, distFunc,

2 objs)

3 begin

4 for each a ∈ objs do

5 for each b ∈ objs do

6 if(a 6= b AND distFunc(a,b)≤eps)
7 Report(a,b);

8 end if

9 end loop

10 end loop

11 end

1 procedure NestedLoop2(eps, distFunc,

2 objsA, objsB)

3 begin

4 for each a ∈ objsA do

5 for each b ∈ objsB do

6 if(distFunc(a,b) ≤ eps)

7 Report(a,b);

8 end if

9 end loop

10 end loop

11 end
(a) (b)

Fig. 6. (a) The NestedLoop procedure performs a self join on the set of objects, objs, finding all

similar pairs of objects. (b) The NestedLoop2 procedure performs a join on the two given sets

objects, finding all pairs of similar objects between the two sets of objects, that is, pairs with an
object from each set.

objs into smaller subsets until the subsets are small enough (defined by the constant
constSmallNumber) to be efficiently handled by a nested-loop join, which is invoked
on line 4 of the algorithm. Shown in Fig. 6a, the NestedLoop procedure simply
performs a nested-loop join on the objects and reports the pairs of objects within
eps of each other.

If there are more than a few objects, the set of objects is partitioned in two using
the Partition function on lines 10 and 11. The Partition function, shown in
Fig. 7, requires two random objects, p1 and p2, which are chosen on lines 8 and 9,
of the Quickjoin algorithm. The Partition function divides the objects into two
sets, partL and partG, and also creates two “window” subsets, winL and winG,
that contain objects that are within eps of the opposing partition, that is, winL
contains objects in partL that might be within eps of the objects in partG, and
winG contains objects in partG that might be within eps of objects in partL. The
window partitions are created, since, as was shown in Fig. 1a, a simple partitioning
in two will miss reporting some pairs of objects that are similar because they lie
in different partitions. For the internal memory algorithm, the window partitions
can use references to the objects rather than duplicate the objects to save internal
memory and replication costs.

Lines 14 and 15 recursively reinvoke the Quickjoin procedure to find similar
objects within the partL and partG partitions. To find similar objects between the
two partitions, that is, similar pairs of objects containing one object from partL
and one object from partG, the two window sets, winL and winG are joined. This is
done using a modified version of the Quickjoin procedure, termed QuickjoinWin,
shown in Fig. 9, which is invoked on line 13.

The key to the Quickjoin algorithm is the Partition function, given in Fig. 7,
which partitions the data using the distance of every object to a random object (the
pivot), p1, as shown in Fig. 8. The variable r is the pivot distance, calculated on
line 4, which, in this instance, is the distance from p1 to a second random object,
p2, that is used to partition the objects. Objects with a distance from p1 less than
or equal to r form the partition partL, and objects with a distance from p1 greater
than r form the partition partG.

The Partition function uses in-place partitioning, which assumes that the ob-
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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1 function Partition(eps, distFunc, objs[], p1, p2)

2 : (partL, partG, winL, winG)

3 begin

4 r ← distFunc(p1,p2);

5 startIdx ← 0;

6 endIdx ← objs.length-1;

7 startDist ← distFunc(objs[startIdx], p1);

8 endDist ← distFunc(objs[endIdx], p1);

9 while( startIdx < endIdx )

10 while( endDist > r AND startIdx < endIdx )

11 if(endDist <= r+eps) winG.insert(objs[endIdx]);

12 endDist ← distFunc(objs[--endIdx], p1);

13 end loop

14 while( startDist <= r AND startIdx < endIdx )

15 if(startDist >= r-eps) winL.insert(objs[startIdx]);

16 startDist ← distFunc(objs[++startIdx], p1);

17 end loop

18

19 if( startIdx < endIdx ) // exchange objects

20 // check if either goes in a window

21 if(endDist >= r-eps) winL.insert(objs[endIdx]);

22 if(startDist <= r+eps) winG.insert(objs[startIdx]);

23 // exchange items

24 objs[startIdx] ↔ objs[endIdx];

25 startDist ← distFunc(objs[++startIdx], p1);

26 endDist ← distFunc(objs[--endIdx], p1);

27 end if

28 end loop

29

30 // clean up last object

31 if( startIdx == endIdx )

32 // check if this needs to be added to a window

33 if( endDist > r AND endDist <= r+eps )

34 winG.insert(objs[endIdx]);

35 end if

36 if( startDist <= r AND startDist >= r-eps )

37 winL.insert(objs[startIdx]);

38 end if

39 // check last object

40 if( endDist > r ) endIdx--;

41 end if

42
43 return (objs[0:endIdx], objs[endIdx+1:objs.length-1], winL, winG );

44 end

Fig. 7. The Partition function partitions the data into two sets, those whose distances from

object p1 are greater than the partitioning distance, r, and those whose distances from p1 are less

than or equal to r. The value r is the distance from the randomly chosen object p1 to another
randomly chosen object, p2. Also, objects are inserted into two other “window” sets if the objects
are within ε, eps, of r.

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.



12 · E.H. JACOX and H. SAMET

winG
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Fig. 8. Objects are partitioned into two partitions – partG contains objects whose distances from

p1 are greater than r and partL contains objects whose distances from p1 are less than or equal
to r. The objects are also replicated into two windows. The window, winG is a subset of partG

containing objects within ε of r and winL is a subset of partL also containing objects within ε of

r.

jects are stored in an internal memory array. The array is partitioned in place,
which results in placing objects whose distance from p1 is greater than r to the
right of all objects whose distance from p1 is less than or equal to r. The outer
loop, starting at line 9, scans the objects from both ends of the array using two
inner loops: one from the end (right side) on line 10, and one from the start (left
side) on line 14. When out of place objects are found on each side, the two objects
are exchanged on line 24. Additionally, as the objects are scanned, they are placed
into window partitions if they are within eps of r. This is done on lines 11, 15,
21, 22, 34, and 37. Finally, the object dividing the two sets is checked starting on
line 31, and serves as the dividing point for returning the two ends of the array as
partitions, on line 43, along with the window partitions.

Different partitioning methods can also be used in the Partition function. The
data can be partitioned using one random object and aggregate properties of the
distances. For instance, the data can be partitioned on the basis of half the distance
to the farthest object. The data could also be partitioned based on the average
distance or the median distance in order to ensure a more equal-sized partitioned.
See Section 5.4 for the results of experiments comparing these various techniques.
Methods other than ball partitioning are described in Section 3.2 and Section 3.3.

The QuickjoinWin procedure, shown in Fig. 9, is only slightly different than the
Quickjoin procedure. A nested-loop join is also used on line 5, which is termed
NestedLoop2, shown in Fig. 6b, in which only similar pairs with an object from each
set are reported. Additionally, the Partition function is called separately on each
set of objects on lines 12 through 15, partitioning both sets using the same random
objects, p1 and p2. In our notation, the Partition function partitions objs1 into
objects whose distances from p1 are less than or equal to r, partL1, and objects
whose distances from p1 are greater than r, partG1. Similarly, objs2 is partitioned
into partL2 and partG2. The two sets whose distances from p1 are less than or
equal to r, partL1 and partL2, are recursively joined using QuickjoinWin on line
19, since the purpose of the QuickjoinWin procedure is to find pairs between the
two object sets. Similarly, partG1 and partG2 are recursively joined on line 20. In
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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1 procedure QuickjoinWin(eps, distFunc, objs1, objs2)

2 begin

3 totalLen ← objs1.size+objs2.size

4 if( totalLen < constSmallNumber2 )

5 NestedLoop2(eps, distFunc, objs1, objs2);

6 return;

7 end if

8
9 allObjects ← objs1 ∪ objs2;

10 p1 ← randomObject(allObjects);

11 p2 ← randomObject(allObjects-p1);

12 (partL1, partG1, winL1, winG1) ←
13 Partition(eps, distFunc, objs1, p1, p2);

14 (partL2, partG2, winL2, winG2) ←
15 Partition(eps, distFunc, objs2, p1, p2);

16
17 QuickjoinWin(eps, distFunc, winL1, winG2);

18 QuickjoinWin(eps, distFunc, winG1, winL2);

19 QuickjoinWin(eps, distFunc, partL1, partL2);

20 QuickjoinWin(eps, distFunc, partG1, partG2);

21 end

Fig. 9. The QuickjoinWin procedure, which is similar to the Quickjoin procedure given in Fig. 5,

joins two sets of objects by partitioning the two sets and then recursively joining the partitions.

Only result pairs with one object from each set are reported.

addition, the partitioning creates windows of objects that are within ε of r. The set
winL1 is a subset of partL1 that is within ε of r and winG1 is a subset of partG1
within ε of r. The sets winL2 and winG2 are defined similarly. To determine which
windows to recursively join, the only ones to consider are those between subsets of
objs1 and objs2. The join between winL1 and winL2 is covered by the join between
partL1 and partL2. Similarly, the join between winG1 and winG2 is covered by
the join between partG1 and partG2. The remaining combinations are performed
– between winL1 and winG2 on line 17, and between winG1 and winL2 on line 18.
See Section 3.2 for a graphical depiction of the QuickjoinWin partitioning in which
hyperplane partitioning is used instead of ball partitioning.

3.2 Quickjoin Using Generalized Hyperplane Partitioning

Instead of using ball partitioning, we could also use generalized hyperplane parti-
tioning. In this case, the partitioning hyperplane is used to separate the objects
on the basis of which of the two pivot objects is closer. Unfortunately, in a general
metric space, the partitioning hyperplane does not exist explicitly. Instead, it is
implicit and known as a generalized hyperplane. Therefore, we cannot, in general,
compute the exact distance from an object a to the partitioning hyperplane. How-
ever, we do have a lower bound for it (see Lemma 4.4 in [Hjaltason and Samet 2003,
p. 539]) which is given in Equation 1, where dist(a, p1) is the distance from object
a to random object p1 and dist(a, p2) is the distance from a to the second random
object, p2.

dist = (dist(a, p1)− dist(a, p2))/2 (1)

To implement this variation, the Partition function in Fig. 7 is modified slightly.
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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(1) r ← 0;

(2) dist ← (distFunc(a,p1)-distFunc(a,p2))/2;

Fig. 10. (1) The pivot distance is zero for hyperplane partitioning and replaces the code on line

4 of Fig. 7. (2) The distance function used for generalized hyperplane partitioning. This code
replaces the distance function on lines 7, 8, 12, 16, 25, and 26 in Fig. 7.

In particular, the only change is in how the distance to each object is calculated
and the value of r, which becomes zero since objects closer to object p1 will have
a positive distance and objects closer to p2 will have a negative distance. These
changes are shown in Fig. 10.

Equation 1 works for any distance metric. If exact distances from the partitioning
hyperplane are known, then the number of items in the windows can be reduced by
using these exact distances instead of lower bounds on the distances, which improves
the performance of the algorithm. For example, when the distance metric is the
L2-norm, the exact form of Equation 1 is given by Equation 2, where dist(p1, p2)
is the distance between the two random objects p1 and p2.

dist = (dist(a, p1)2 − dist(a, p2)2)/(2 ∗ dist(p1, p2)) (2)

winGwinL

partGpartL

p1
p

2

hyper-plane equi-distant 
between p1 and p2

Fig. 11. Using hyperplane partitioning, objects are partitioned into two sets – partG containing
objects whose distances from the partitioning hyperplane are greater than zero, and partL con-

taining objects whose distances to the partitioning hyperplane are less than or equal to zero. The
objects are also inserted into two windows. The window, winG is a subset of partG containing

objects within ε of the partitioning hyperplane, and winL is a subset of partL also containing

objects within ε of the partitioning hyperplane.

To use this version of the hyperplane, Equation 2 is used to calculate distance,
replacing the distance function in Fig. 7, as was done with the generalized hyper-
plane function in Fig. 10. Fig. 11 shows the use of the hyperplane for partitioning,
while Fig. 12 shows its use for partitioning within the QuickjoinWin procedure.

3.3 Dimensional Version – Vector Data

If the data is represented as vectors, then another partitioning approach is to par-
tition the data using one of the dimensions of the vector data. This partitioning
function requires only slight modifications to the Partition function given in Fig. 7,
ACM Transactions on Database Systems, Vol. V, No. N, December 2007.
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Fig. 12. Objects are partitioned into four sets in the procedure QuickjoinWin, given in Fig. 9. The
procedure partitions sets objs1 and objs2, which were divided by a previous hyperplane, as shown.

Partitions partG1 and partG2 contain objects from object sets objs1 and objs2, respectively,
that are greater than the partitioning distance, r, and object sets partL1 and partL2 similarly

contain objects less than or equal to the partitioning distance r, again from object sets objs1 and

objs2, respectively. As in the Quickjoin procedure, the objects are also replicated into windows
containing objects within ε of the partitioning hyperplane.

(1) d ← pickPartitioningDimension();

(2) r ← p1[d];

(3) dist ← obj[d]

(e.g., startDist ← objs[startIdx][d];)

Fig. 13. Modifications to the Partition function from Fig. 7 to implement the dimensional variant
of the Quickjoin method. (1) Between lines 3 and 4, a single dimension, d is chosen, which can be

done in many ways, such as cycling through the dimensions. (2) The pivot, r, on line 4 becomes

one dimension of the randomly chosen object p1. (3) The value used for dimensional partitioning.
This code replaces the distance function on lines 7, 8, 12, 16, 25, and 26. As an example, line 7

of the Partition function is rewritten to use the dth dimension of object objs[startIdx]. The

object p2 is not needed.

which are shown in Fig. 13. In this case, each invocation of the Partition function
must choose a dimension with which to partition the data. For instance, the first
invocation could use the first dimension to partition the data, and subsequent calls
could use the second dimension, then the third dimension, and so forth, cycling
through the dimensions.

With this partitioning method, the distance to each object does not need to be
calculated, but a randomly chosen object still needs to be chosen to partition the
data. Alternatively, as with ball partitioning, a median or average value could be
used. Note that even if the dataset is not represented by vectors, as long as we
have a distance function, we can use an embedding method [Faloutsos and Lin
1995; Hristescu and Farach-Colton 1999; Linial et al. 1995; Wang et al. 1999] to
transform it into a multi-dimensional vector space.

3.4 External Memory Algorithm Using Multiple Pivots (Partitions)

In order to improve I/O performance, we present an external memory algorithm
which differs from the internal memory algorithm in that it uses multiple pivots
during partitioning. Instead of creating two sets at a time, n partitions are cre-
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p1
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p3
p4

p5

-sized window

Fig. 14. Multiple partitions are created using multiple pivots, p1 through p5, along with corre-

sponding window partitions (dashed lines).

1 procedure QuickjoinExt(eps, distFunc, objFile)

2 begin

3 if( sufficientInternalMemory( objFile.size ) )

4 objs ← readIntoInternalMemory( objFile );

5 Quickjoin( eps, distFunc, objs );

6 return;

7 end if

8

9 pivots ← selectRandomPivots( NUM_PIVOTS );

10 (part[], win[][]) ← PartitionExt(eps, distFunc, objFile, pivots);

11

12 for i=0:NUM_PIVOTS-1 do

13 QuickjoinExt(eps, distFunc, part[i]);

14 end loop

15 for i=0:NUM_PIVOTS-2 do

16 for j=i+1:NUM_PIVOTS-1 do

17 QuickjoinWinExt(eps, distFunc, win[i][j], win[j][i] );

18 end loop

19 end loop

20 end

Fig. 15. The external memory version of the Quickjoin algorithm.

ated for each call to the Partition function, based on n randomly chosen objects
(pivots). In this way, I/O is reduced since multiple partitionings occur at once
and smaller partitions are created, thereby allowing for the objects to be read en-
tirely into internal memory sooner. A 2-dimensional example is shown in Fig. 14
using five pivots, which results in partitions that form a Voronoi diagram [Voronoi
1909]. This technique is similar to the multiple-pivot similarity search technique
used by GNAT (Geometric Near-neighbor Access Tree) [Brin 1995] for generalized
hyperplane partitioning and an extension of the vp-tree [Yianilos 1993] for ball
partitioning.

The partitions formed by the external memory algorithm are stored externally on
disk and can be read and written sequentially using block I/O for efficiency. Once
the partitions are small enough to fit in internal memory, the internal memory
algorithm can be called for faster processing.
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1 function PartitionExt(eps, distFunc, objFile, pivots)

2 : (part[], win[][])

3 begin

4 Initialize part and win files.

5
6 while !EOF(objFile) do

7 a ← objFile.ReadObject();

8 minDist ← MAX_DOUBLE;

9 for each i=0:NUM_PIVOTS-1 do

10 dist ← distFunc(a,pivots[i]);

11 if( dist < minDist )

12 minDist ← dist;

13 minPivot ← i;

14 end if

15 end loop

16 part[minPivot].insert(a);

17 p ← pivots[minPivot];

18 for each i=0:NUM_PIVOTS-1 do

19 if( i != minPivot )

20 pX ← pivots[i];

21 dist ← (distFunc(a,p)-distFunc(a,pX))/2;

22 if( -dist < eps )

23 win[i][j].insert(a);

24 end if

25 end if

26 end loop

27 return (part, win);

28 end

Fig. 16. The external partitioning function determines, for each object a, which pivot, p, is the
closest, and places the object in the corresponding part partition. Also, for every other pivot, pX,

if the distance from p to the generalized hyperplane between p and pX is less than or equal to eps,

then the object a is also inserted into the corresponding window partition.

The external memory algorithm using multiple pivots is given in Fig. 15. First,
if there is sufficient internal memory, the externally stored objects, objFile, are
read into memory and the internal memory algorithm is used on line 5. Otherwise,
NUM PIVOTS random objects are chosen on line 9, and the objects are partitioned
on line 10 using the PartitionExt function, given in Fig. 16. Note that since
the objects are in external memory, the random objects (pivots) can be retrieved
using non-sequential access, or, more efficiently, they can be selected and saved
when the objects are written to external memory during the previous partitioning
phase. The external partitioning function, PartitionExt, places each object into
one part[] partition, corresponding to the closest pivot. The win set of partitions
contains duplicates of the objects (stored externally) which correspond to objects
that might be within eps of a partition. For instance, the win[i][j] partition
correspond to sets of objects that are within the part[i], but might be within eps
of objects in part[j]. The QuickjoinExt function is recursively called on line 13
to join the part partitions while the QuickjoinWinExt procedure, shown in Fig. 17,
is called on line 17 to join the win partitions.

The PartitionExt function, shown in Fig. 16, partitions the objects around a set
pivots. The concept is similar to generalized hyperplane partitioning in Section 3.2,
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1 procedure QuickjoinWinExt(eps, distFunc, objFile1, objFile2)

2 begin

3 totalSize ← objFile1.size + objFile2.size;

4 if( sufficientInternalMemory( totalSize ) )

5 objs1 ← readIntoInternalMemory( objFile1 );

6 objs2 ← readIntoInternalMemory( objFile2 );

7 QuickjoinWin(eps, distFunc, objs1, objs2);

8 return;

9 end if

10

11 pivots ← selectRandomPivots( NUM_PIVOTS );

12 (part1[], win1[][]) ← PartitionExt(eps, distFunc, objFile1, pivots);

13 (part2[], win2[][]) ← PartitionExt(eps, distFunc, objFile2, pivots);

14
15 for i=0:NUM_PIVOTS-1 do

16 QuickjoinWinExt(eps, distFunc, part1[i], part2[i]);

17 end loop

18 for i=0:NUM_PIVOTS-2 do

19 for j=i+1:NUM_PIVOTS-1 do

20 QuickjoinWinExt(eps, distFunc, win1[i][j], win2[j][i] );

21 QuickjoinWinExt(eps, distFunc, win1[j][i], win2[j][i] );

22 end loop

23 end loop

24 end

Fig. 17. The QuickjoinWin function from Fig. 9 is also modified to create multiple partitions at

a time.

where a generalized hyperplane exists between each pair of objects. For each object,
the nearest pivot is found using the loop on line 9, and the object is inserted
into the corresponding part partition on line 16. Then, in the loop starting on
line 18, the distance to every other pivot is checked and if the distance to the
generalized hyperplane, calculated on line 21, is less than or equal to eps, the
object is also added to the corresponding window, win, partition. As in Section 3.2,
exact distances, if applicable, can be used to calculate the hyperplane on line 21
to improve performance. Note that since the data resides in external memory, the
objects should be read sequentially in blocks for efficiency.

The QuickjoinWinExt, shown in Fig. 17, joins two sets objects, objFile1 and
objFile2, using multiple pivots. Both sets of objects are partitioned using the same
set of pivots on lines 12 and 13. Next, corresponding part1 and part2 partitions
are joined on line 16 as well as corresponding window partitions on lines 20 and 21.

3.5 Split Windows

As a performance improvement, when the data is partitioned in two for internal
partitioning (see Fig. 7), instead of two windows, four windows can be returned.
This is illustrated in Fig. 18 with generalized hyperplane partitioning (Section 3.2),
although any form of partitioning could be used as well. In the figure, the window
partition winL from Fig. 11 is split into partitions winInnerL and winOuterL, and
the window partition winG is split into winInnerG and winOuterG partitions. The
inner windows (winInnerL and winInnerG) contain the window objects within ε

2
of the pivot or hyperplane, and winOuterL and winOuterG contain the remaining
objects. In this way, the join between the two outer windows, winOuterL and
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Fig. 18. For internal partitioning, the windows can be split further in order to improve per-

formance. As shown with generalized hyperplane partitioning, each window is split so that the
inner windows, (winInnerL and winInnerG), contain objects within ε

2
of the hyperplane, while the

outer windows (winOuterL and winOuterG) contain the remaining objects that lie within ε of the

hyperplane. Since winOuterL and winOuterG are more than ε apart, they do not need to be joined.

1 procedure Quickjoin(eps, objs, distFunc)

2 begin

3 if( objs.size < constSmallNumber )

4 NestedLoop(eps, distFunc, objs);

5 return;

6 end if

7
8 p1 ← randomObject(objs);

9 p2 ← randomObject(objs-r);

10 (partL, partG, winInnerL, winOuterL, winInnerG, winOuterG) ←
11 PartitionSplitWindows(eps, distFunc, objs, p2, p2);

12
13 QuickjoinWin(eps, distFunc, winInnerL, winInnerG);

14 QuickjoinWin(eps, distFunc, winInnerL, winOuterG);

15 QuickjoinWin(eps, distFunc, winOuterL, winInnerG);

16 Quickjoin(eps, distFunc, partL);

17 Quickjoin(eps, distFunc, partG);

18 end

Fig. 19. A variant of the Quickjoin function given in Fig. 5 modified to subdivide each window
into two parts to improve performance, as illustrated in Fig. 18

winOuterG, can be avoided since they are further than ε apart. The remaining
combinations of split windows are joined, as shown in Fig. 19.

4. ANALYSIS

The performance of the Quickjoin algorithm in terms of both CPU and I/O depends
on how well the data is partitioned at each step. As with the Quicksort algorithm
[Hoare 1962], because of the random nature of the algorithm, the Quickjoin algo-
rithm will likely partition the data reasonably well on average, and each data object
will be partitioned O(log(n)) times. However, at each level of recursion, the size
of the dataset grows due to the window partitions, leading, as will be shown in
Section 4.1, to O(n(1 +w)dlog(n)e) performance on average, where w is the average
fractional size of the window partitions. As shown experimentally in Section 5.1
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with Fig. 22b, w is dependent upon ε, and as expected, the algorithm will perform
well for smaller ε, and performance will degrade for larger ε values, as do all al-
gorithms. Additionally, Section 4.2 discusses the I/O performance of the external
memory algorithm and Section 4.3 discusses the internal memory requirements.

4.1 CPU Performance Analysis

The basic performance analysis for the Quickjoin procedure from Fig. 5 is given
in Equation 3, where QJ denotes a call to the Quickjoin procedure, P denotes
a call to the Partition function from Fig. 7, and QJW denotes a call to the
QuickjoinWin procedure from Fig. 9. Variable x represents the size of the object
set. The Partition function divides the x objects into two partitions, represented
by ax and (1−a)x, where a is the fractional size of the first partition and (1−a) is
the fractional size of the second partition. These two partitions are passed to the
Quickjoin procedure, as represented by QJ(ax) and QJ((1−a)x). The Partition
function also creates two window partitions, which are passed to the QuickjoinWin
procedure, as represented by QJW (wax,w(1−a)x), where w represents the fraction
of objects from each partition that lie within ε of the partition boundary (the
generalized hyperplane, for example) and are inserted into the window partitions.
This analysis uses single values for a and w, even though they will vary at each level
of the recursion. However, for bounding purposes, these values can be assumed to
be average or maximum values. The analysis will be unchanged as long as a and
w are between 0 and 1, inclusively, which is true.

QJ(x) = P (x) +QJ(ax) +QJ((1− a)x) +QJW (wax,w(1− a)x) (3)

The performance of the QuickjoinWin procedure is similar to the Quickjoin
procedure, and is given in Equation 4, where x1 and x2 are the sizes of the two
input partitions.

QJW (x1, x2) = P (x1) + P (x2) +QJW (ax1, ax2) +QJW ((1− a)x1, (1− a)x2)
+ QJW (wax1, w(1− a)ax2) +QJW (w(1− a)x1, wax2) (4)

The partitioning function, P , scans its data, and applies the distance function
once or twice to each object, depending on whether ball partitioning or hyperplane
partitioning is used, respectively. Letting d be the cost of the distance function,
the cost of partitioning the data is P (x) = cdx, where c is 1 or 2, plus any constant
overhead. Using this equation to replace P (x) and expanding Equation 3 using
both Equations 3 and 4 yields Equation 5.

QJ(x) = cdx+ acdx+QJ(a2x) +QJ(a(1− a)x) +QJW (wa2x,w(a(1− a)x)

+ (1− a)cdx+QJ((1− a)ax) +QJ((1− a)2x)

+ QJW (w(1− a)ax,w(1− a)2x) + wacdx+ w(1− a)cdx

+ QJW (wa2x,wa(1− a)x) +QJW (wa(1− a)x,w(1− a)2x)

+ QJW (w2a2x,w2(1− a)2x) +QJW (w2a(1− a)x,w2a(1− a)x) (5)
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Intuitively, in the algorithm, at each level of the recursion, all of the objects are
partitioned once. This can be seen by collecting just the cdx terms and ignoring
the QJ and QJW terms, yielding cdx + cdx(1 + w), since the a terms drop out.
Objects in each window are also partitioned, which is reflected in the (1 +w) term.

Continuing the expansion further yields the sequence in Equation 6, where each
level is shown in brackets.

QJ(x) = cdx+[cdx(1+w)]+[cdx(1+2w+w2)]+[cdx(1+3w+3w2 +w3)]+ ... (6)

Equation 6 is the expansion of the recurrence shown in Equation 7. Intuitively,
at each level, the number of objects partitioned is (1 +w) times the previous level.

QJ(x) = cdx
∞∑
i=0

(1 + w)i (7)

This equation is unbounded and growing. However, the depth of recursion is
limited. The Quickjoin algorithm partitions the data in the same manner as the
Quicksort algorithm, which is known to have an average case depth of O(log(n))
[Ja’Ja’ 2000] (see Appendix A.1 for an analysis). Using this fact yields Equation 8.

QJ(x) = cdx

dlog(n)e∑
i=0

(1 + w)i (8)

Using induction, it can be show that the summation in Equation 8 has an upper
bound of O((1 + w)dlog(n)e) (see Appendix A.2 for proof), which yields a final bound
on the Quickjoin algorithm of O(n(1 + w)dlog(n)e). This bound shows that the
Quickjoin algorithm will perform well (O(n)) for smaller average windows since
the (1 + w)dlog(n)e term will be small. This term will be maximum when w is
one, meaning that all objects are put into the windows. In this case, 2logb(n) ≤ n
for b ≥ 2, where b is the constant base of the logarithm. In other words, the
performance for the largest window size is O(n2). The theoretical worst case, as
with the Quicksort algorithm, occurs if the depth of recursion approaches n. In
this case, the Quickjoin algorithm would have performance O(n2n). However, this
is unlikely to occur, and the algorithm can be written to avoid such worst cases by,
for example, using median values instead of random objects for the ball partitioning
method or immediately repartitioning the data when the data is partitioned poorly.

Furthermore, the w factor is dependent on ε, and as shown experimentally in
Section 5.1, this dependence is nearly linear. For smaller ε values, w is also small
and will not have a significant impact on performance. In particular, only for larger
ε values will w have a significant impact on performance.

4.2 I/O Analysis

For the external memory algorithm (Section 3.4), given a fixed amount of internal
memory, the external data must be partitioned until each external partition will
fit within internal memory, at which time the internal memory algorithm can be
used (Section 3.1). The analysis to determine the amount of I/O is nearly identical
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to that of the performance analysis given in Section 4.1 since each object is read
from memory once each time it is partitioned, but the I/O analysis differs in two
aspects. First, since multiple pivots are used, the partition function calculates the
distance function for each pivot. However, the previous analysis used P (x) = cdx
for the performance of the partitioning function and the additional pivots can be
incorporated into the c factor. Furthermore, the multiple pivots create a larger
fan-out which shortens the depth of the recursion. This would be incorporated into
the base of the logarithm of Equation 8, leaving the analysis unchanged.

The second difference is that the external algorithm stops, switching to the in-
ternal algorithm, when there is sufficient internal memory to hold the partition.
Letting M be the number of objects that will fit in internal memory, the depth
of the recursion is log(n/M). Additionally, since the data is read in blocks, the n
variable should be represented by N , where N = n

m , and m is the number of objects
per block. Applying these two modifications to the final average case performance
yields an I/O average performance of O(N(1 + w)dlog(N/M)e).

4.3 Internal Memory Analysis

For the internal memory memory algorithm, the size of the dataset will mostly
determine how much internal memory is required, that is, there must be a sufficient
amount of internal memory to store the entire dataset in memory. To keep the
internal memory usage from growing, the window partitions should use pointers,
rather than copies of the data. However, there is a concern that the number of
pointers could grow beyond the internal memory limits when the depth of the
recursion is high. As we show, the number of pointers is bounded, though, and
this bound can be used to determine if there will definitely be sufficient internal
memory.

At each level of recursion (calls to QuickjoinWin in Fig. 9), the partitioning
function expands the current pointer set by creating window partitions. Note that
calls to the Quickjoin procedure do not increase the number of pointers since it
partitions the original dataset. The window partitions created are given to the
QuickjoinWin procedure to be processed and are released when the call completes,
meaning that the Quickjoin procedure has no pointers when it calls itself. To
determine the maximum number of pointers, max pointers, let w be the maximum
window size (as a fraction of the total dataset size) created by the partitioning func-
tion and given to the QuickjoinWin procedure. In the QuickjoinWin procedure,
two window partitions are created from the dataset, and hence, the number of new
pointers created at each level of recursion is at most 2 ∗ w ∗ n, where n is the size
of the dataset given to Quickjoin or the combined size of the datasets given to
QuickjoinWin. The next level of recursion repeats this, producing 2∗w ∗ (2∗w ∗n)
pointers. Since the algorithm employs depth-first recursion, to derive the maximum
number of pointers we simply sum these values to the maximum depth of recursion,
MAX DEPTH, as shown in Equation 9. As each call returns, the pointers should
be released to conserve internal memory.

max pointers =
MAX DEPTH∑

i=1

(2 ∗ w)i ∗ n (9)
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Equation 9 converges if MAX DEPTH is infinite and w is less than 0.5. If w
is 0.25, then it converges to n. If w is 0.5 or greater, than potentially, the entire
dataset is passed as windows to the QuickjoinWin and the algorithm is behaving
more like a nested-loop join. In this case, the best performance will be O(n2)
since that is how many results will be expected (everything is near everything else),
and the algorithm should just perform a nested-loop join. If w is consistently less
than 0.5 and greater than 0.25, then the algorithm will be behaving more like the
nested-loop join. In this case, the algorithm should also just use a nested-loop join
to avoid unnecessary partitioning. In practice, this condition where the algorithm
is behaving like a nested-loop join can be detected by the algorithm if the data is
continually partitioning the same data with large window sizes. Alternatively, the
algorithm can track the number of pointers used. If a predefined limit, such as n,
is reached, then the algorithm can end the recursion by using a nested-loop join.

In practice, the performance will be much better than the worst case. When the
data is initially partitioned, the window sizes are larger, both in real size and as
a fraction of the whole dataset. However, the separation will tend to be better,
thereby creating a very short recursive depth. As the depth of recursion increases,
the data will be partitioned into smaller chunks with less separation, resulting in
deeper recursion, but starting with smaller windows (number of pointers).

As for the external memory algorithm, the internal memory requirements algo-
rithm are quite low. In the algorithm, shown in Fig. 15, a block of data, or even
a single datum, can be read, and then immediately written to a partition. Beyond
these minimal requirements, the amount of internal memory used is determined by
the stopping condition sufficientInternalMemory on line 3, which indicates that
all of the data can be read into internal memory and processed using the internal
memory algorithm. sufficientInternalMemory. More internal memory will im-
prove the performance by allowing larger partitions to be read into memory and
to be fully processed, rather than having to incur the I/O cost of writing the data
back out to external memory.

5. EXPERIMENTS

This section presents the results of similarity join experiments on real datasets.
The algorithms were implemented in C++ and the experiments were performed on
a computer with a Pentium 3 processor and 512MB of RAM, running Windows
XP. The similarity join algorithms were tested using color data, forest cover type
data, and NSF research awards abstracts from the UC Irvine Knowledge Discov-
ery in Databases (UCI-KDD) repository [Hettich and Bay 1999]. The color data
consists of multi-dimensional features extracted from a Corel image data collection
with 68,040 objects. The experiments presented here used the 9-dimensional color
moment data, with data values ranging from −4.8 to 4.4, and 32-dimensional color
histograms, with data values ranging from 0 to 1. On disk, the color moments data
is 6.1 MB large and the histogram data is 19.2 MB. The forest cover type data
from the repository consists of 581,012 objects with 54 multi-dimensional features
describing forest regions, using such features as elevation, slope, shade, and binary
values for soil type. We only used the 10 non-binary features in the dataset. These
features have different ranges of values, such as 0 to 3,858 for the elevation and
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Fig. 20. (a) Internal memory sort times for the color moments data. (b) External memory sort

times for the color moments data. (c) Total I/O counts for the external memory sort.

0 to 255 for the shade values. On disk, this dataset takes up 76.1 MB. We used
10,000 sentences from the NSF research awards abstract data to perform metric
space experiments. On disk, the dataset takes up 1.7 MB. The sentences ranged in
length from 30 to 649 words, with an average length of 169 words.

In the experiments, the variations of the Quickjoin algorithms are compared to
the EGO algorithm, described in Section 2.1, and the GESS algorithm, described
in Section 2.2. The EGO algorithm was implemented with the suggested EGO*
improvements [Kalashnikov and Prabhakar 2003], and the block size of the EGO
algorithm was tuned to optimize its performance. The GESS algorithm was imple-
mented using both a Hilbert order and a Morton (Peano-Hilbert) order. Since both
orders performed similarly, only results with the Morton order are shown. We used
a kd-trie partitioning and tuned the GESS algorithm to optimize its performance
by adjusting the msl (maximum split level) and k (maximum number of split-lines)
factors, described in [Dittrich and Seeger 2001]. We implemented the linear codes
as bit vectors, providing unlimited depth of levels.

The preprocessing times for the EGO and GESS methods are shown in Fig. 20
for both (a) internal and (b) external memory, and (c) total I/O. The preprocess-
ing time consists of sorting the data, and for the GESS method, determining the
appropriate grid cell (note that this can be done as the data is fed into the sorting
operator). We used a Quicksort algorithm [Hoare 1962] for the internal sorting
operation and an external merge sort for external sorting [Cormen et al. 2001]. For
both methods, the sort time increases with increasing ε. The EGO method uses ε to
calculate the EGO grid cell, as described in Section 2.1. Since the grid cells are of
size ε, as ε increases, there are fewer cells in which to place objects, thereby making
it more likely that two objects will be in the same grid cell in a single dimension.
Therefore, on the average, more dimensions will be needed to determine which ob-
ject takes precedence in the ordering. For the GESS method, as ε increases, the
size of each hyper-square around each point increases. This increases processing
time by requiring more replication since the larger hyper-squares are more likely to
intersect grid boundaries. Similarly, as shown in Fig. 20c, the total I/O increases
for the GESS method because of increased replication.

Results of experiments on datasets that only require internal memory (no disk
I/O) are presented in Section 5.1, results of experiments that require external mem-
ory (disk I/O) are presented in Section 5.2, and results of metric space experiments
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are presented in Section 5.3. While external memory is required to handle datasets
of any size, the internal memory experiments not only demonstrate the various
internal memory Quickjoin algorithms, but are also of practical significance since
large datasets can be processed entirely in memory with today’s internal memory
capacities. Additionally, experiments with pivot selection are presented in Sec-
tion 5.4.

5.1 Internal Memory Similarity Joins

This section presents the results of experiments using only internal memory and
datasets that fit entirely into internal memory. The four internal memory variations
of the Quickjoin algorithm were used in the experiments in this section:

(1) The ball-partitioning method described in Section 3.1, using the average dis-
tance to a pivot to partition the data, referred to as QuickJoinBall in the plots.

(2) The generalized hyperplane version described in Section 3.2, using two ran-
domly chosen pivots, referred to as QuickJoinGHP.

(3) The L2-norm hyperplane described in Section 3.2, using two randomly chosen
pivots referred to as QuickJoinHP2.

(4) The dimensional version for vector data described in Section 3.3, using the
method of cycling through the dimensions to chose the pivot for partitioning,
referred to as QuickJoinDim.

Each method was also implemented with the split windows enhancement described
in Section 3.5.

The plots in this section show the time needed to perform the similarity join,
assuming an unsorted dataset. The Quickjoin algorithms immediately execute the
join, while the EGO and GESS methods preprocess the data by sorting the data,
and in the case of the GESS method, assign the data linear order codes. Except
for the smallest of experiments, this preprocessing tends to take up only a small
fraction of the total processing time.
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Fig. 21. Experiments with color moment data for (a) smaller ε values using an L2-norm, and (b)
larger ε values using an L2-norm.
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The results of similarity join experiments with the 9-dimensional color moment
data, with data values ranging from −4.8 to 4.4, are shown in Figs. 21a and 21b,
both using an L2-norm. Fig. 21a shows experiments with smaller ε values (less
than 1%), which represent queries where a few hundred results are reported, while
Fig. 21b shows experiments with larger ε values, which represent queries where
more results are reported, ranging from a few hundred up to several hundred thou-
sand results. For smaller ε values, shown in Fig. 21a, the Quickjoin algorithms
outperform the EGO and GESS algorithms. The GESS algorithm exhibits nearly
a constant performance for these smaller ε values, while the EGO method is more
sensitive to the ε value. The Quickjoin algorithms, except for the generalized hyper-
plane version (QuickJoinGHP), also exhibit an almost constant performance with
increasing ε values. In these cases, the ε sized window partitions represent only a
small fraction of the processing.

For larger ε values, shown in Fig. 21b, the Quickjoin algorithms begin to per-
form slightly worse. The ball partitioning, hyperplane partitioning and dimensional
versions of the Quickjoin algorithm exhibit nearly identical performance on this
dataset as well as most other datasets. The generalized hyperplane version (Quick-
JoinGHP) which makes use of a lower bound on the distance (hence resulting in a
larger window) performs worse than these variations. Nevertheless, the Quickjoin
algorithms still outperform both the EGO and the GESS algorithms. The GESS
algorithm begins to degrade in performance due to increased replication. Tuning
the algorithm to decrease replication causes more objects to reside in shallower
levels, which results in worse performance.
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Fig. 22. For the color moment data using an L2-norm, (a) the number of distance (similarity)

calculations, and (b) the average fractional window size created by the Partition function.

Fig. 22a shows the number of distance calculations for the experiments shown
in Fig. 21b, which demonstrates that the Quickjoin algorithms improved perfor-
mance over the EGO algorithm is due to the fewer distance (similarity) tests that
it performs. At smaller ε values, the GESS algorithm performs fewer similarity cal-
culations, though its performance is still worse due to the preprocessing time. For
larger ε values, the GESS algorithm performs more similarity calculations because
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Fig. 23. (a) Experiments with color moment data for larger ε values using an L1-norm. (b)

Experiments with 32-dimensional color histogram data, using the L2-norm.

of the increased size of the dataset due to a greater rate of replication. Further in-
sight into the performance of the Quickjoin algorithms can be gained by examining
the fractional size of the windows created by the Partition function from Fig. 7,
which is called by the Quickjoin and QuickjoinWin procedures given in Figs. 5
and 9. As shown in Fig. 22b, the average window size increases nearly linearly
with ε. Note that w is a function of ε. In this case, with the color moment data,
the data can range in value from −4.4 to 4.8. In 9 dimensions, the maximum ε
would be

√
9 · (4.8− (−4.4))2 = 27.6. However, w would be close to its maximum

value of 1 at a smaller value, as can be seen with the plot of QuickJoinGHP, where
w approaches 1. Intuitively, the size of the result set increases dramatically for
the ε values shown in the plot, and for even larger values, nearly all pairs of ob-
jects will be returned, resulting in O(n2) performance of the evaluated algorithms.
Fig. 22b also illustrates the fact that the generalized hyperplane version (Quick-
JoinGHP) uses window sizes that are twice as large as the L2-norm hyperplane
version (QuickJoinHP2).

Fig. 23a shows the results of repeating the experiments in Fig. 21b using an L1-
norm. In this case, the EGO and GESS algorithms are shown to perform nearly
the same as before, while the performance of the Quickjoin method improves. Note
that the QuickjoinHP2 method is not shown as it assumes the use of the L2-norm.
Because the distances between objects are larger when using the L1-norm as com-
pared to when using the L2-norm, the windows created by the Quickjoin method
are relatively smaller, thereby leading to improved performance. Also, since the
distances between objects are increased, the number of objects in the join result
tends to be in the hundreds, rather than in the thousands, as with the join result
from Fig. 21b.

The results of experiments with the 32-dimensional color histogram data are
shown in Fig. 23b. The data ranges in value from 0 to 1, and the ε values produce
thousands of results. In this case, the Quickjoin algorithms significantly outper-
forms the EGO and GESS methods, which interestingly, perform identically for the
larger ε values.
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5.2 External Memory Similarity Joins

This section presents the results of experiments that require the algorithms to use
external memory to perform the similarity join, which demonstrates the I/O per-
formance of the algorithms. All of the algorithms perform sequential I/O. The
algorithms were again tested using both sets of color data, and additionally the
forest cover type data. The amount of internal memory available to the algorithms
is controlled, thereby forcing them to use external memory. The overall perfor-
mance of the Quickjoin algorithms is still better than that of the EGO and GESS
methods, even though the Quickjoin methods perform slightly more I/O than the
EGO method. Since the CPU costs are a significant factor in the performance of
similarity joins due to the expensive distance (similarity) calculations, the Quick-
join methods perform better overall since their internal memory performance is so
much better, as was shown in Section 5.1.

The external memory version of the Quickjoin algorithm was implemented as
described in Section 3.4. The window partitions are calculated using both the
generalized hyperplane applicable to any distance metric (again termed Quickjo-
inGHP in the plots) and the L2-norm hyperplane (again termed QuickjoinHP2 in
the plots). As appropriate, the internal memory Quickjoin algorithm used is the
corresponding generalized hyperplane or hyperplane version of the internal memory
Quickjoin algorithm.
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Fig. 24. Experiments with color moment data for larger ε values using an L2-norm and with

memory restricted to 1MB. (a) Execution time, and (b) I/O.

Fig. 24a shows the results of experiments with external memory, which duplicate
the experiment in Fig. 21b, but with internal memory limited to 1MB. The hyper-
plane version of Quickjoin still performs better than the EGO method, while the
performance of the generalized hyperplane version is similar to the EGO method.
Fig. 24b shows the I/O performance for the experiments in Fig. 24a. Here we find
that the hyperplane Quickjoin method performs slightly more input and output
than the EGO method, but the generalized hyperplane version performs more I/O,
which explains the performance difference shown in Fig. 24a. While the perfor-
mance of the GESS method compared well to that of the EGO method for the
internal memory experiments (Section 5.1), the GESS method did not do as well
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Fig. 25. A scalability experiment with color moment data for an ε value of 0.4 using an L2-norm

and with memory restricted to 1MB.

for the external memory experiments, as shown in Fig. 24a, due to the increased
replication, which impacts I/O, as shown in Fig. 24b.

Additionally, Fig. 25 shows the results of varying the dataset sizes. As shown,
the different algorithms maintain their relative performance at various dataset sizes,
with the Quickjoin methods performing the best.
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Fig. 26. Experiments with forest cover type data for using an L2-norm and with memory restricted

to 20MB. (a) Execution time, and (b) I/O.

To test the algorithms on a larger dataset, we used 10 dimensions of the UCI-KDD
forest cover type data [Hettich and Bay 1999], which consists of 581,012 objects.
The external memory algorithms were allowed 20 MB of memory. The number of
results returned ranged from 31 for an ε of 5 to 2,046 for an ε of 12. The results
are shown in Fig. 26. The Quickjoin algorithms outperformed the EGO and GESS
methods with near constant performance. The EGO and GESS methods were more
effected by increasing ε, though they performed similarly on this dataset.

5.3 Metric Space Similarity Joins

In order to demonstrate the metric space capabilities of the Quickjoin algorithm,
we ran experiments on 10,000 sentences extracted from the NSF research awards
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Fig. 27. Internal memory experiments with 10,000 sentences extracted from scientific abstracts

using the edit distance with varying (a) ε and (b) number of objects with an ε of 2.

abstracts in the UCI-KDD repository [Hettich and Bay 1999]. The sentences ranged
in length from 30 to 649 words, with an average length of 169 words. For the met-
ric, we used the Levenshtein edit distance [Levenshtein 1966], which is a measure of
string (in this case, sentences) similarity. A score of zero indicates identical strings,
while a higher score indicates the number of letter differences between the strings.
We compared the metric version of the Quickjoin algorithm (the ball partition-
ing method, QuickJoinBall and the generic hyperplane version, QuickJoinGHP)
to the näıve nested-loop join implementation (NL) [Elmasri and Navathe 2004] by
varying ε, as shown in Fig. 27a. With a small edit distance (an ε of two), the ball-
partitioning version of the Quickjoin algorithm performed two orders of magnitude
better than the nested-loop implementation. As ε increases, the performance differ-
ence drops to just under an order of magnitude better. The generalized-hyperplane
version of the Quickjoin algorithm performed well only for the lowest ε values, and
quickly degraded to the performance of the nested-loop join. The number of results
(pairs of sentences within the specified ε distance) did not vary much with ε, ranging
from 1907 to 2346 pairs returned for ε values of 2 to 20. Additionally, as shown in
Fig. 27b, the Quickjoin methods scale better than the nested-loop implementation.

5.4 Pivot Selection

As described in Section 3.1, various methods can be used to choose a pivot when
partitioning the data. We examined four methods for ball partitioning:

(1) Using the average distance, referred to as ball-average in the figure.
(2) Using half of the maximum distance, referred to as ball-distance.
(3) Using a randomly chosen object’s distance, referred to as ball-random.
(4) Using the median distance, referred to as ball-median.

We examined two methods for hyperplane partitioning:

(1) Using a randomly chosen second pivot, referred to as hp-random.
(2) Using the object with the maximum distance from the first pivot as the second

pivot, referred to as hp-distance.
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Fig. 28. (a) Experiments with alternative choices for pivot selections using the Color Moments

data with an ε of 0.7. (b) Similar experiments using the abstract data with an ε of 2.

The results are shown in Fig. 28. For the ball-partitioning method, using the av-
erage distance (i.e., ball-average) for the pivot worked best on both datasets. Using
the median distance (i.e., ball-median) was slower since finding the median can be
costly. With the metric space abstract data in Fig. 28b, the median distance did
prove more effective than with the color moment data since it creates even parti-
tions, though the average distance was still faster. For the hyperplane-partitioning
method, the random pivot (i.e., hp-random) proved much faster than choosing the
most distant pivot (i.e., hp-distance), as shown in Fig. 28a. The experiments with
the generalized-hyperplane partitioning on the metric space data were no more
effective and are not shown in Fig. 28b.

6. CONCLUDING REMARKS

We have described the Quickjoin algorithm, a novel method for performing a simi-
larity join, and shown it to be highly competitive. The algorithm works by parti-
tioning the data using only the metric-space distance information, rather than using
any vector-format information. In effect, the algorithm creates partitions using the
data rather than partitioning based on space.

The method overcomes deficiencies that occur with many existing methods based
on spatial join techniques that rely on multi-dimensional indices. These problems
mostly arise because the data in higher dimensions will tend to reside near the
boundaries of the data space and the ability to use a particular dimension to dis-
criminate between objects is reduced. Additionally, these indexed methods are
limited to multi-dimensional data. For other methods derived from spatial join
techniques [Böhm et al. 2001; Dittrich and Seeger 2001], we have shown experi-
mentally that the Quickjoin method performs better.

Future work involves comparing the Quickjoin technique with similarity join
methods that make use of metric space indices [Dohnal et al. 003b] and other
techniques used in text processing and data cleaning [Dohnal et al. 003a]. In ad-
dition, exploring the possibility of adapting indexed spatial join techniques to use
metric-based indices is also worthwhile.
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APPENDIX

A.1 Depth of Recursion

The Quickjoin algorithm partitions the data in the same manner as the Quicksort
algorithm, which is known to have an average case depth of O(log(n)) [Ja’Ja’ 2000].
Here, we adapt the average case analysis of Ja’Ja’ [2000] to the Quickjoin algorithm
using Equation 3 from Section 4.1. Since we are interested in the depth of the
recursion of the Quickjoin procedure from Fig. 5, we can drop the call to the
QuickjoinWin procedure, QJW (), yielding Equation 10, with P (x) replaced by cx,
as was done with Equation 5, but dropping the unnecessary d constant and letting
n denote the total number of objects.

QJ(n) = cn+QJ(an) +QJ((1− a)n) (10)
In the average case, Equation 10 becomes Equation 11, which takes the average

of all possible partitionings.

QJ(n) =

(
1
n

(
n−1∑
i=0

(QJ(i) +QJ(n− i)

))
+ cn (11)

With a base case shown in Equation 12.

QJ(1) = Θ(1) (12)
Combining QJ(i) and QJ(n − i) and multiplying Equation 11 by n starts the

following series of algebraic manipulations.

nQJ(n) = 2

(
n−1∑
i=0

QJ(i)

)
+ cn2

nQJ(n)− (n− 1)QJ(n− 1) = 2QJ(n− 1) + cn2 − c(n2 − 2n+ 1)
nQJ(n) = (n+ 1)QJ(n− 1) + 2cn− c
QJ(n)
n+ 1

=
QJ(n− 1)

n
+

2c
n+ 1

− c

n(n+ 1)
(13)

Expanding Equation 13 and dropping the c
n(n+1) term since it is immaterial to

an upper bound calculation, leads to the following sequence of equations.

QJ(n)
n+ 1

=
QJ(n− 1)

n
+

2c
n+ 1

QJ(n− 1)
n

=
QJ(n− 2)
n− 1

+
2c
n

QJ(n− 2)
n− 1

=
QJ(n− 3)
n− 2

+
2c

n− 1
...

QJ(2)
3

=
QJ(1)

2
+

2c
3

(14)
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Summing these equations gives

QJ(n)
n+ 1

=
n+1∑
i=3

2c
i

= 2c
(

loge(n+ 1) + γ − 3
2

)
(15)

The final equation results from the fact that
∑n+1
i=1

1
i = loge(n + 1) + γ, where

the constant is γ = 0.577 (Euler’s Constant). In other words, Equation 15 shows
that the Quickjoin procedure will perform, on average, O(n log(n)) calculations
partitioning the data. Since, at each level of recursion, the Quickjoin function
partitions all of the n data items, meaning that the Quickjoin function will termi-
nate at O(log(n)) depth, on average. Also, since the QuickjoinWin uses the same
partitioning method, it will also terminate at O(log(n)) depth.

A.2 Upper Bound On
∑dlog(n)e
i=0 (1 + w)i

QJ(x) =
dlog(n)e∑
i=0

(1 + w)i (16)

We assert that Equation 16 has an upper bound of O
(

(1 + w)dlog(n)e
)

. This is
assertion is true if Equation 17 holds and c ≥ 1, which we prove by induction.

dlog(n)e∑
i=0

(1 + w)i ≤ c(1 + w)dlog(n)e (17)

First, the base case of n = 1 is as follows, where any c ≥ 1 satisfies the relation:

dlog(1)e∑
i=0

(1 + w)i =
0∑
i=0

(1 + w)i = (1 + w)0 = 1 ≤ c(1 + w)dlog(1)e = c (18)

Assuming Equation 17 is true for n, we prove the induction in two cases. First,
if dlog(n)e = dlog(n+ 1)e, then the equation for n+ 1 becomes

dlog(n+1)e∑
i=0

(1 + w)i =
dlog(n)e∑
i=0

(1 + w)i

≤ c(1 + w)dlog(n)e

= c(1 + w)dlog(n+1)e (19)

Equation 19 holds for any c ≥ 1. Next, if dlog(n)e = dlog(n + 1)e − 1, then the
equation for n+ 1 becomes

dlog(n+1)e∑
i=0

(1 + w)i = (1 + w)dlog(n+1)e +
dlog(n)e∑
i=0

(1 + w)i

≤ (1 + w)dlog(n+1)e + c(1 + w)dlog(n)e
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= (1 + w)dlog(n+1)e +
c(1 + w)dlog(n)e+1

1 + w

= (1 + w)dlog(n+1)e +
c(1 + w)dlog(n+1)e

1 + w

= (1 + w)dlog(n+1)e ·
(

1 +
c

1 + w

)
= c(1 + w)dlog(n+1)e ·

(
1
c

+
1

1 + w

)
≤ c(1 + w)dlog(n+1)e (20)

The final equation, Equation 20, is true provided that

1
c

+
1

1 + w
≤ 1 (21)

Rewriting Equation 21 gives

c ≥ 1 + w

w
(22)

Since w is a positive constant, 1+w
w can be bounded by c, proving the bound of

O
(

(1 + w)dlog(n)e
)

.
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spaces. ACM Computing Surveys 33, 3 (Sept.), 273–322. Also University of Chile DCC Tech-
nical Report TR/DCC-99-3, June 1999.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001. Introduction to Algorithms,

Second ed. MIT Press/McGraw-Hill, Cambridge, MA.

Dittrich, J.-P. and Seeger, B. 2000. Data redundancy and duplicate detection in spatial join

processing. In Proceedings of the 16th IEEE International Conference on Data Engineering.
San Diego, CA, 535–546.

Dittrich, J.-P. and Seeger, B. 2001. GESS: a scalable similarity-join algorithm for mining large

data sets in high dimensional spaces. In Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San Francisco, California, 47–56.

Dohnal, V., Gennaro, C., Savino, P., and Zezula, P. 2003. D-index: Distance searching index

for metric data sets. Multimedia Tools Appl. 21, 1 (sep), 9–33.

Dohnal, V., Gennaro, C., Savino, P., and Zezula, P. 2003a. Similarity join in metric spaces.
In Advances in Information Retrieval, 25th European Conference on IR Research, ECIR 2003.

Pisa, Italy, 452–467.

Dohnal, V., Gennaro, C., and Zezula, P. 2003b. Similarity join in metric spaces using ed-

index. In Database and Expert Systems Applications, 14th International Conference, DEXA
2003. Prague, Czech Republic, 484–493.

Elmasri, R. and Navathe, S. B. 2004. Fundamentals of Database Systems, Fourth ed. Addison-

Wesley, Upper Saddle River, NJ.

Enderle, J., Hampel, M., and Seidl, T. 2004. Joining interval data in relational databases. In
Proceedings of the ACM SIGMOD Conference. Paris, France, 683–694.

Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., and Eq-

uitz, W. 1994. Efficient and effective querying by image content. Journal of Intelligent Infor-

mation Systems 3, 3/4, 231–262.

Faloutsos, C. and Lin, K.-I. 1995. FastMap: a fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Proceedings of the ACM SIGMOD

Conference. San Jose, CA, 163–174.

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of
the ACM SIGMOD Conference. Boston, 47–57.

Harada, L., Nakano, M., Kitsuregawa, M., and Takagi, M. 1990. Query processing for
multi-attribute clustered records. In 16th International Conference on Very Large Data Bases,

D. McLeod, R. Sacks-Davis, and H.-J. Schek, Eds. Brisbane, Queensland, Australia, 59–70.

Hettich, S. and Bay, S. D. 1999. The UCI KDD archive [http://kdd.ics.uci.edu]. Irvine, CA:
University of California, Department of Information and Computer Science.

Hjaltason, G. R. and Samet, H. 2003. Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems 28, 4 (Dec.), 517–580.

Hoare, C. A. R. 1962. Quicksort. Computer Journal 5, 1 (Feb.), 10–15.

Hristescu, G. and Farach-Colton, M. 1999. Cluster-preserving embedding of proteins. Tech-

nical report, Department of Computer Science, Rutgers University, Piscataway, NJ.

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.



36 · E.H. JACOX and H. SAMET

Huang, Y.-W., Jing, N., and Rundensteiner, E. A. 1997. Integrated query processing strategies

for spatial path queries. In Proceedings of the 13th IEEE International Conference on Data
Engineering, A. Gray and P.-A. Larson, Eds. Birmingham, United Kingdom, 477–486.

Huttenlocher, D. P., Kedem, K., and Kleinberg, J. M. 1992. On dynamic voronoi diagrams

and the minimum Hausdorff distance for point sets under euclidean motion in the plane. In
SCG ’92: Proceedings of the Eighth Annual Symposium on Computational Geometry. Berlin,

Germany, 110–119.

Jacox, E. and Samet, H. 2003. Iterative spatial join. ACM Transactions on Database Sys-
tems 28, 3 (Sept.), 268–294.

Jacox, E. and Samet, H. 2007. Spatial join techniques. ACM Transactions on Database Sys-

tems 32, 1 (Mar.). To appear and also an expanded version in University of Maryland Computer

Science Technical Report TR–4730, June 2005.

Jagadish, H. V. 1990. Linear clustering of objects with multiple attributes. In Proceedings of

the ACM SIGMOD Conference. Atlantic City, NJ, 332–342.

Ja’Ja’, J. 2000. A perspective on quicksort. Computing in Science and Engineering 2, 1 (Jan.),
43–49.

Kahveci, T., Lang, C., and Singh, A. K. 2003. Joining massive high-dimensional datasets. In

Proceedings of the 19th IEEE International Conference on Data Engineering. Bangalore, India,
264–276.

Kalashnikov, D. and Prabhakar, S. 2003. Similarity joins for low- and high- dimensional

data. In Proceedings of the 8th International Conference on Database Systems for Advanced

Applications (DASFAA’03). Kyoto, Japan, 7–16.

Kedem, G. 1982. The quad-CIF tree: a data structure for hierarchical on-line algorithms. In Pro-

ceedings of the 19th Design Automation Conference. Las Vegas, NV, 352–357. Also University

of Rochester Computer Science Technical Report TR–91, September 1981.

Kitsuregawa, M., Harada, L., and Takagi, M. 1989. Join strategies on KD-tree indexed

relations. In Proceedings of the 5th IEEE International Conference on Data Engineering. Los

Angeles, 85–93.

Koperski, K. and Han, J. 1995. Discovery of spatial association rules in geographic information
systems. In Advances in Spatial Databases—4th International Symposium, SSD’95, M. J.

Egenhofer and J. R. Herring, Eds. vol. 951 of Springer-Verlag Lecture Notes in Computer
Science. Portland, ME, 47–66.

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., and Protopapas, Z. 1996. Fast nearest

neighbor search in medical image databases. In Proceedings of the 22nd International Confer-

ence on Very Large Data Bases (VLDB), T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, Eds. Mumbai (Bombay), India, 215–226.

Koudas, N. and Sevcik, K. C. 1997. Size separation spatial join. In Proceedings of the ACM

SIGMOD Conference, J. Peckham, Ed. Tucson, AZ, 324–335.

Koudas, N. and Sevcik, K. C. 1998. High dimensional similarity joins: algorithms and perfor-

mance evaluation. In Proceedings of the 14th IEEE International Conference on Data Engi-
neering. Orlando, FL, 466–475.

Koudas, N. and Sevcik, K. C. 2000. High dimensional similarity joins: algorithms and per-

formance evaluation. IEEE Transactions on Knowledge and Data Engineering 12, 1 (Jan-

uary/February), 3–18.

Levenshtein, V. A. 1966. Binary codes capable of correcting deletions, insertion, and reversals.
Cybernetics and Control Theory 10, 8, 707–710.

Linial, N., London, E., and Rabinovich, Y. 1995. The geometry of graphs and some of its algo-

rithmic applications. Combinatorica 15, 215–245. Also see Proceedings of the 35th IEEE Annual
Symposium on Foundations of Computer Science, pages 577–591, Santa Fe, NM, November

1994.

Lo, M.-L. and Ravishankar, C. V. 1995. Generating seeded trees from data sets. In Advances in
Spatial Databases—4th International Symposium, SSD’95, M. J. Egenhofer and J. R. Herring,
Eds. vol. 951 of Springer-Verlag Lecture Notes in Computer Science. Portland, ME, 328–347.

ACM Transactions on Database Systems, Vol. V, No. N, December 2007.



Metric Space Similarity Joins · 37

Merrett, T. H., Kambayashi, Y., and Yasuura, H. 1981. Scheduling of page-fetches in join

operations. In Very Large Data Bases, 7th International Conference. Cannes, France, 488–498.

Neyer, G. and Widmayer, P. 1997. Singularities make spatial join scheduling hard. In Algo-

rithms and Computation, 8th International Symposium, ISAAC. Singapore, 293–302.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. 1984. The grid file: an adaptable, sym-
metric multikey file structure. ACM Transactions on Database Systems 9, 1 (Mar.), 38–71.

Orenstein, J. A. 1986. Spatial query processing in an object-oriented database system. In

Proceedings of the ACM SIGMOD Conference. Washington, DC, 326–336.

Orenstein, J. A. 1989. Strategies for optimizing the use of redundancy in spatial databases.
In Design and Implementation of Large Spatial Databases—1st Symposium, SSD’89, A. Buch-

mann, O. Günther, T. R. Smith, and Y.-F. Wang, Eds. vol. 409 of Springer-Verlag Lecture

Notes in Computer Science. Santa Barbara, CA, 115–134.

Papadias, D. and Arkoumanis, D. 2002. Approximate processing of multiway spatial joins in

very large databases. In Advances in Database Technology - EDBT 2002, 8th International

Conference on Extending Database Technology, C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Salte-
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