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ABSTRACT
A framework for determining the shortest path and the dis-
tance between every pair of vertices on a spatial network
is presented. The framework, termed SILC, uses path co-

herence between the shortest path and the spatial positions
of vertices on the spatial network, thereby, resulting in an
encoding that is compact in representation and fast in path
and distance retrievals. Using this framework, a wide vari-
ety of spatial queries such as incremental nearest neighbor
searches and spatial distance joins can be shown to work on
datasets of locations residing on a spatial network of suffi-
ciently large size. The suggested framework is suitable for
both main memory and disk-resident datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS ; E.1 [Data Structures]: Graphs
and Networks; H.2.4 [Database Management]: Systems—
Query Processing ; G.2.2 [Discrete Mathematics]: Graph
Theory—Path and Circuit Problems; E.2 [Data Storage
Representations]: Linked Representations

General Terms
Algorithms, Performance, Design

Keywords
Location-based services, Spatial networks, SILC framework,
Query processing, Path coherence, Spatial databases

1. INTRODUCTION
Spatial databases are being deployed in GIS applications

with desirable outcomes. Some of the recent advances in
spatial database techniques have directly resulted in the
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ability to handle larger volumes of GIS data and to per-
form queries of increasing complexity. Although the main
research focus in spatial databases is the efficient storage
and query processing on data of arbitrary dimensions, GIS
applications have been the main driving force. Performing
spatial queries on transportation networks is an application
that is of immense interest to the GIS community [27, 29,
31]. Transportation networks form an integral part of GIS
applications like location-based services [23] and locational
analysis [1]. Location-based services deal with queries gen-
erated by a mobile host. Moving object databases [23, 29,
30, 38] and trip-planning [31] are closely related to location-
based services. Locational analysis [1] involves performing
a series of sophisticated spatial queries in order to derive
useful inferences. For example, urban planners wishing to
find an ‘optimal’ location for a new hospital in an urban set-
ting would issue a series of spatial queries to find a suitable
location that is accessible to the general populace within a
reasonable time.

The first contribution of our work is a novel framework
that allows efficient processing of spatial queries on spatial
networks. The proposed framework is sufficiently resilient
to allow real time processing of both approximate and exact
spatial queries on spatial networks.

Precomputing the shortest path and distance between all
pairs of vertices in a spatial network is perceived to be pro-
hibitively expensive. The second contribution of our work
is to provide firm evidence to the contrary and to show that
precomputing and storing the path-distance information is
in fact feasible. In particular, we claim that the additional
storage in the case of a road network is almost linear in the
size of the network.

The third contribution of the paper is that we introduce
the concept of progressive refinement of the inter-object dis-
tances between objects in a spatial network. This is in con-
trast to methods that require fixed computational cost in
computing inter-object distances. This flexibility allows us
to expend only a fraction of the cost in computing inter-
object distances.

1.1 Spatial Networks
In this paper we describe a framework that enables a wide

variety of spatial queries on a transportation network. To
make the discussion more general, we introduce the concept
of a spatial network, an extension to a network model. Clas-
sically, networks are modeled as a graph G(V, E), where V
denotes the set of vertices (or nodes) and E denotes the set
of edges (or arcs) of the network. The set E represents the
connectivity information of the graph; two vertices u and
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v are directly connected, if and only if edge (u, v) ∈ E. Of
particular interest is a weighted graph, where a weight is
associated with each edge. A spatial network is an exten-
sion of a network such that additional spatial components
are associated with the elements (vertices and, or edges) of
the graph.

A road network is an example of a spatial network. A
road network can be viewed as a weighted graph G(V, E),
such that each vertex represents a road intersection, and
each edge represents a road segment. The spatial position
of each vertex with respect to a reference coordinate system
is also given, usually in terms of geographical coordinates
(i.e., latitude and longitude). Moreover, the weight of an
edge represents the length of the associated road segment (or
alternatively, the time required to travel the road segment).

1.2 Preliminaries
A spatial network can be abstracted to form an equiva-

lent graph representation G = (V, E), where V is the set
of vertices, E is the set of edges, n = |V |, and m = |E|.
Given e ∈ E, w(e) denotes the distance along that edge. In
addition, for every v ∈ V , p(v) denotes the spatial position
of v with respect to a reference coordinate system. We de-
fine the spatial distance between u and v, dS(u, v), as the
shortest distance from p(u) to p(v) in the embedding space.
For vertices u, v ∈ V , we define du(v) to be the shortest
distance from u to v with respect to the network G(V, E).
We may interchangeably use the notation dN (u, v) termed
network distance to refer to du(v). We use π(u, v) ⊂ V to
denote the shortest path from u to v. Note that |π(u, v)|
denotes the number of vertices in the shortest path from u
to v. We also define lu(v) to be the next vertex visited (after
u) on the shortest path from u to v. Note that the first link
on the shortest path from u to v is (u, lu(v)). We define
the path-distance mapping M : V × V →

� + × V such that
M(u, v) = (du(v), lu(v)). For every pair of vertices u, v ∈ V ,
M(u, v) provides the distance from u to v and the first link
in the shortest path from u to v. In the above represen-
tation, the shortest path from u to v can be obtained by
the repeated invocation of M , till v is obtained. Given pi,
the ith vertex on the shortest path from u to v, M(pi, v)
provides pi+1, the next vertex in the shortest path.

1.3 The SILC framework
Assume that a data structure S exists that efficiently com-

putes M(u, v) for any pair of vertices u, v ∈ V in the spa-
tial network. Given S, we claim that most spatial network
queries can be efficiently processed. For instance, the dis-
tance between any two vertices u and v can be trivially ob-
tained using S, while computing the path between them may
need up to k = |π(u, v)| queries on S.

A brute force implementation of S stores two values, du(v)
and lu(v), for each pair u, v ∈ V . This representation re-
quires O(n2) storage and can compute queries on M in O(1)
time. The expensive storage costs involved with such an im-
plementation have led previous researchers [29] to reject the
brute force method in favor of alternative methods that ap-
proximate du(.). We propose the Spatially Induced Linkage
Cognizance (SILC) 1 framework as an efficient implementa-
tion of S. For any given vertex u, SILC stores an efficient

1The silk road is an ancient trade route that connected peo-
ple from different cultures. The SILC framework, although
less ambitious, connects locations on a spatial network.

representation of du(.) and lu(.), that captures the path and
distance information from u to all other vertices. The re-
sulting representation is both computationally efficient (i.e.,
provides efficient path and distance retrievals) and storage
efficient (i.e., less storage per vertex).

The SILC framework precomputes the shortest path be-
tween all pairs of vertices in a spatial network. We argue
that such an approach is feasible and that the results can be
stored given a reasonably large storage space. The Dijkstra’s
algorithm using a Fibonacci heap [5] takes O(n2 log n+nm)
time to compute the shortest path between all pairs of ver-
tices in a spatial network. When m = O(n), as in road
networks, the time complexity of the Dijkstra’s algorithm
would be O(n2 log n). Empirical studies [39] have indicated
that the Dijkstra’s algorithm may not be the fastest algo-
rithm for computing the all pairs shortest paths on road net-
works. Moreover, recent developments in the shortest paths
algorithm literature have shown better theoretical bounds
on the computational time. In particular, Henzinger et.

al. [12] present a linear time shortest path algorithm for pla-
nar graphs, while Thorup [33] provides a linear time shortest
path algorithm for general graphs with integer edge weights.
Using any of the above mentioned techniques, achieving a
complexity bound of O(n2) for computing all pairs short-
est paths is now possible. This bound is not unreason-
able considering that a sorting operation on n integers takes
O(n log n) time. A host of other techniques like parallel pro-
cessing and the use of sophisticated hardware such as Graph-
ical Processing Units (GPU) [19] could further speedup the
precomputation of all shortest paths of a graph.

Our work is the first, to the best of our knowledge, that
efficiently encodes both the path and distance information
accurately. In this paper, we define the concept of path co-

herence, that identifies the underlying coherence between
the shortest paths and the spatial positions of vertices on
a spatial network. Path coherence in spatial networks al-
lows us to subdivide the space into coherent spatial regions.
All vertices contained in a coherent region share the first
segment of their shortest path from a fixed vertex. Subse-
quently, the spatial regions are compactly represented as a
collection of Morton blocks [7]. Using the above formulation,
we show that most spatial query processing techniques that
were originally developed for traditional spatial databases,
can be applied on spatial networks.

The rest of the paper is organized as follows. Section 2
introduces the concept of path coherence and further dis-
cusses strategies that take advantage of path coherence in
spatial networks in order to encode the path and distance in-
formation between vertices compactly. Section 3 explains a
method for storing an approximate distance range between
each vertex pair. In Section 4, we show how traditional
spatial techniques can be applied to the SILC framework.
Section 5 presents the experimental results, and Section 6
compares our work with other competing techniques. Con-
cluding remarks are drawn in Section 7.

2. COLOR CODING THE MAP
We treat spatial networks as general graphs whose ver-

tices have fixed spatial positions. We observe that vertices
that are spatially close to one another share a number of
common properties. In particular, often, two vertices u, s
that are spatially close to each other share large common
segments of their shortest path to two other vertices v, t
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Figure 1: Example illustrates the coloring process of vertices for Silver Spring, MD. a) Sample vertex u
highlighted denoted by ”X”. b) Remaining vertices are assigned colors based on their shortest path to u

through one of the six adjacent vertices of u. c) Morton blocks corresponding to the colored regions in (b).

that are spatially close to each other, but far from u, s. To
illustrate the above claim with a day-to-day example, com-
muters who live in the same neighborhood (live spatially
close to one another) mostly use the same roads when trav-
eling to nearby destinations. We call the coherence between
the shortest path of nearby sources to nearby destinations
as path coherence. Path coherence occurs naturally in most
spatial networks that are of interest to the GIS community.
Wagner and Willhalm [37] discuss the reverse problem of
assigning spatial positions to vertices in a general graph so
that path coherence is induced into the the resulting spatial
network.

The SILC framework takes advantage of the path coher-
ence between vertices in a spatial network in order to encode
the path and distance information between all pairs of ver-
tices. In order to illustrate the working of the path encoding
method in the SILC framework, we devise a method of as-
signing colors to vertices in a spatial network. The goal of
the coloring process is to arrive at a method that efficiently
represents the path-distance information from a vertex u to
all other vertices in a spatial network. Note that a brute
force method takes O(n) space per vertex to represent the
path-distance information. Suppose that u has D adjacent
vertices. We use D distinct colors corresponding to each
adjacent vertex of u. We assign color i to vertex v, if and
only if, lu(v) is the i-th adjacent vertex of u. In effect, all
vertices in V that share the same first link on the shortest
path from u are assigned the same color. At the completion
of the coloring operation, each vertex is colored with one of
the D colors. We also encode vertices that do not have a
path from u using a special color. For a given vertex u, we
first compute all the shortest paths from u to all other ver-
tices. The coloring operation uses these precomputed paths
to proceed with the coloring process which is described in
Algorithm 1. In line 1, all the shortest paths from u (SSSP)
are computed. In lines 2–3, all vertices v ∈ V are assigned
colors based on which adjacent vertex of u forms the next
link in the shortest path from u to v.

Algorithm 1
Procedure ColorizeMap[u]
1. Compute SSSP(u)
2. for each v ∈ V and v 6= u do
3. assign color[v] = color[lu(v)]
4. return

Figure 1 illustrates the coloring process. Once the coloring
operation has been completed, the spatial network has large

contiguous colored regions. In particular, v and w belonging
to the region denoted by color i means that the first link in
the shortest path from u to v and w is the same. The large
contiguous colored regions are due to the path coherence

between the vertices.

2.1 Colored Tiles
The coloring operation on a spatial network creates re-

gions that share the first link in the shortest path. If these
spatial regions can be accurately stored using some spatial
data structure, then the path information from u to all other
vertices in the spatial network are encoded accurately. There
are many possible ways to store these regions. We can use
object hierarchies such as an R-tree [11] or methods based
on a disjoint decomposition such as a region quadtree [25].
We use a disjoint decomposition as we do not want the re-
gions corresponding to different links to overlap which will
occur often due to their irregular shape. Having opted for
a representation based on a disjoint decomposition, we use
a regular decomposition such as a quadtree variant, instead
of one based on an irregular decomposition such as an R+-
tree [28] due to ease of implementation. In particular, we
store these colored regions in a region quadtree. We then
represent the regions as a set of Morton blocks [7]. Mor-
ton blocks provide an efficient representation of the regions,
i.e., they are known to be efficient in handling containment
queries and can be stored compactly [25]. A link and a dis-
tance interval (explained in Section 3) are associated with
each Morton block.

Algorithm 2
Procedure Mortonize[u, T ]
Input: u ∈ V . T is a PMR-quadtree on V
Output: MortonList: list of Morton blocks with associ-

ated links and distance intervals
1. MortonList ←empty

2. for each leaf-block b ∈ T visited in Morton-order do
3. if all points v in b are of same color then
4. append b to MortonList

5. else
6. recursively split b until S, the resultant set of

blocks, is single colored
7. merge S with MortonList

8. while Morton blocks can be merged do
9. merge sibling blocks if of the same color
10. for each Morton block b ∈ MortonList do
11. λ− = minv∈b

dN (u,v)
dS(u,v)
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12. λ+ = maxv∈b
dN (u,v)
dS(u,v)

13. associate (λ−, λ+) with b
14. return MortonList

Algorithm 2 is an efficient method to construct a list
of Morton blocks that represent the colored regions from
an initial PMR-quadtree [25] representation of the vertices
(line 2). Of course other representations could have been
used as the input to the algorithm but we leveraged our
existing SAND [26] spatial database system that provided a
robust disk based PMR-quadtree implementation. Blocks in
the PMR-quadtree are said to be of a uniform color if all the
vertices contained within them are of the same color. Thus,
adjacent blocks can be combined to form larger blocks, al-
though some blocks may need to be split in order to ensure
that all the vertices that they contain are of the same color.
The resulting representation is a region quadtree on the col-
ored regions. Now, each leaf-block in the region quadtree is
represented as a single Morton block and may be stored on
disk. Lines 10–13 are explained in Section 3.

Quadtree representations of regions have been shown to
be good dimensionality reducing mechanisms [25], i.e., the
storage requirements needed to represent a region R in a re-
gion quadtree is O(p), where p is the perimeter of R. Note
that the number of regions in a region quadtree correspond-
ing to a vertex is proportional to the outdegree of the vertex,
which is relatively small. Our experiments (see Section 5)
show that the storage requirements for the SILC framework
on road networks are achievable, that is, the storage per ver-
tex is almost independent of the size of the spatial network.
This represents a considerable improvement over the brute
force encoding.

To improve upon the storage requirements even further, a
number of alternate representations are suggested. We may
choose not to store the colored region with the highest num-
ber of Morton blocks. This may result in some savings in
storage, although path retrievals may become slightly more
expensive. The colored regions, as seen in Figure 1b, have
radial structures. A simple transformation of the space to
polar coordinates may help improve the storage costs. Chain

Code techniques [6] or variations of Medial Axis Transforma-

tion (MAT) techniques like Corner MAT [25] and Quadtree

MAT [24] could be used instead of representing regions as a
list of Morton blocks. However, unlike the Morton blocks,
they may not allow efficient computations.

2.2 Retrieving the shortest path
Given a source vertex s, a destination vertex v, and an

intermediate vertex u in the shortest path between s and v,
the next link in the shortest path is obtained by perform-
ing a simple binary search, for a Morton block containing
v, on the Morton list stored with u as described in Algo-
rithm 3. Note that SILC only stores t, the next link after u
in the shortest path from s to v. To retrieve the complete
path, subsequent invocations need to be performed by re-
placing u with t, until t equals v. Note that retrieving the
shortest path between s and v needs exactly k = |π(s, v)|
invocations of the NextinPath routine, resulting in k disk
accesses. Also, the distance between s and v can be obtained
by maintaining a variable and adding up the distances along
each individual link comprising the path. Thus, we see that
the SILC framework explicitly encodes the path information,
while the distance information is implicitly recorded.

Algorithm 3
Procedure NextinPath[s, u, v, d]
Input: s is the source vertex, and v is the destination
Input: u is an intermediate vertex
Input: d holds the network distance from s to u
Output: t is the next vertex in the shortest path
Output: b is the Morton block containing v

Output: d is the distance from s to t
1. retrieve the path encoding for u into MortonList

2. binary search on MortonList for block b containing v
3. t ←b.link
4. d ←d + w(u, t)
5. return t, b, d

3. DISTANCE ENCODING
For most spatial applications, an approximate estimate of

the distance between two vertices u and v on a spatial net-
work would suffice. Depending on the nature of the spatial
network and the space in which the vertices are embedded,
it may not be difficult to arrive at a distance function that
approximates the network distance. For example, in the
case of a road network, the geodesic distance between two
locations always lower bounds the distance along the road
segments. We construct an approximate distance function
as part of the SILC framework by storing two values λ−

and λ+ with each Morton block in the representation. For
a Morton block associated with a source u, λ− (λ+) is the
minimum (maximum) ratio of network distance to the spa-
tial distance from u to all destination vertices in the Morton
block. Given a source u, a destination v, and the values
λ− and λ+ associated with the Morton block containing
v, we have λ−dS(u, v) ≤ dN (u, v) ≤ λ+dS(u, v). In other
words, SILC can efficiently compute an interval on dN (u, v)
using dS(u, v), λ− and λ+. Minor modifications to the Mor-

tonize algorithm (Algorithm 2, lines 10–13) allow λ− and
λ+ to be incorporated in the SILC framework.

Given any two vertices, u and v in a spatial network, an
initial interval on dN (u, v) is made available by the SILC
framework. In addition, we provide the RefineDist (Al-
gorithm 4) operator in order to tighten the interval by ex-
pending some work. The operator incurs exactly one disk
access to identify t, the next link after an intermediate ver-
tex u in the shortest path from s to v. The distance interval
is improved by taking the intersection of the initial interval
between s and v, with the interval obtained using t. Subse-
quent refinements are possible by identifying the next link
in the shortest path between s and v, and so on. It is clear
that this interval converges to a single value after at most
k = |π(s, v)| invocations of the RefineDist operator, after
which the network distance between s and v is known.

Algorithm 4
Procedure RefineDist[s, u, v, d, δ−, δ+]
Input: s is the source vertex, and v is the destination
Input: u is an intermediate vertex
Input: d holds the network distance from s to u

Input: (δ−, δ+) holds an interval dN (s, v)
Output: t is the next vertex in the shortest path
Output: d holds dN (s, t)
Output: (δ−, δ+) are the updated interval on dN (s, v)
1. (t, b, d) ←NextinPath(s, u, v, d)
2. retrieve λ− and λ+ from b

3. δ− ←max(δ−, λ− × dS(t, v) + d)
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(a) (b) (c)

Figure 2: Mechanics of a nearest neighbor search [15] on a road network. a) Initial configuration: A query
point (denoted by ”X” ) and a set of locations filled circles. b) Query progression: Partial result of ranking
the dataset of points based on the length of their shortest path from the query point. Notice that location
”3” is reported as a closer neighbor to the query point than ”4”, even though the spatial distance between
location ”4” and ”X” is lesser than the spatial distance between location ”3” and ”X”. c) Final result: All
points have been ranked by their network distance to the query point.

4. δ+ ←min(δ+, λ+ × dS(t, v) + d)
5. return t, d, δ−, δ+

3.1 Distance Functions
The SILC framework explicitly encodes the path and an

approximate distance between every pair of vertices, while
the network distance is implicitly recorded. The approxi-
mate distance is recorded as a distance interval that con-
sists of a lower bound, and an upper bound. Determining
the distance interval between a pair of vertices costs almost
nothing, while computing the network distance between ver-
tices takes extra work and should be avoided if possible. All
distance measures used in the SILC framework are distance
intervals. We point out that the distance interval is sufficient
in most cases where only the relative positions of objects
need to be determined. For example, the nearest neighbor
to a query object q, is an object p which is closer to q than
any other object in the dataset. p is determined to be the
closest neighbor to q, if the upper distance bound provided
by the distance interval of p from q is less than the lower
distance bound of all other objects in the dataset. In other
words, if the distance interval of p is less than and non-
intersecting with that of all other objects in the dataset,
there is no ambiguity that p is the closest neighbor of q.
Each invocation of the RefineDist operator discussed in
Algorithm 4 causes the interval to become tighter. When
the interval converges to a single value, it corresponds to
the network distance between the vertex pair. We point
out that the network distance between a vertex pair can be
achieved with at most k = |π(p, q)| disk accesses, by the
repeated invocation of the RefineDist operator.

We now redefine some of the concepts related to dis-
tances commonly used in spatial algorithms. A distance
d = (δ−, δ+) is recorded as an interval with a lower bound
δ− and an upper bound δ+. When δ− equals δ+, d is the
network distance. Union of two distance intervals d1, d2

is the tightest interval that contains both d1 and d2. The
Intersects operator of two distance intervals d1, d2 deter-
mines if the two intervals share a common value.

The IntrvlDistN operator of a vertex v and a region
R finds a distance interval such that the interval contains
the network distance from v to each vertex contained in
R. In spatial algorithms MinDistS (MaxDistS) between

a point v and a region R is the minimum (maximum) pos-
sible spatial distance between v and any point contained
in R. IntrvlDistN function returns a distance interval
d = (δ−, δ+) such that for any vertex t contained in R,
δ− ≤ dN (v, t) ≤ δ+. We are able to compute suitable val-
ues for δ− and δ+ by using the MinDistS and MaxDistS

distances between v and R and the path-distance map of v

as shown in Algorithm 5

Algorithm 5
Procedure IntrvlDistN [v, R, MortonList ]
Input: R is a region, v is a vertex
Input: MortonList is the path encoding for v
Output: d = (δ−, δ+) forms the distance interval
1. for each bi ∈ MortonList intersecting R do
2. retrieve λ− and λ+ from bi

3. ri ←intersection of bi and R
4. µ−

i ←λ−×MinDistS (v, ri)
5. µ+

i ←λ+×MaxDistS (v, ri)
6. return Union of all (µ−

i , µ+
i )

To summarize the SILC framework, it explicitly encodes
the shortest path and a distance interval (approximate dis-
tance) between all pairs of vertices, while implicitly record-
ing the network distance. Each vertex stores a set of Morton
blocks associated with a link and distance interval λ+ and
λ−; collectively referred to as the pilot-data of a vertex.

4. APPLICATIONS
The SILC framework enables the use of many well known

query processing techniques – that were developed for clas-
sic spatial databases – on spatial networks. In this section,
we briefly describe a set of sample spatial queries that can
be implemented using the SILC framework. To begin with,
we assume that a set of objects (points) are provided as
input to our algorithm. We assume a spatial data struc-
ture (e.g., a PMR quadtree [21]) is built over these points
based on their spatial positions. Also, a spatial network
with a precomputed SILC encoding is made available to the
algorithms. For the sake of simplicity we assume that each
point in the set is associated with exactly one vertex on the
spatial network. An object that lies on the interior of a di-
rected edge (u, v) can be modeled as an object at u, and then
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Figure 3: Mechanics of an incremental distance join [14] on a road network. a) Initial configuration: The road
network and two sets of locations denoted by filled and and hollow circles. b) Query progression: At each
step, the distance join fetches the next closest pair of points, one drawn from either of the sets of locations.
The lines in a darker shade, denote the shortest path between the latest pair of points retrieved by the join
algorithm, and the lines in a lighter shade correspond to the shortest paths between previously obtained
pairs. c) Final result: All pairs of points obtained by the distance join and the shortest paths between them.

suitably adjusting the distance measures. Using the above
formulation, we can perform a variety of spatial queries as
demonstrated in this section.

The rest of the section is organized as follows. Section 4.1
describes a set of queries that can be performed using the
framework and Section 4.2 describes an incremental best-
first search (BFS) algorithm and an incremental distance
join variant that works on the proposed framework.

4.1 Queries on a spatial network
Here, we describe a few basic queries that are performed

on a spatial network. For each query we construct an appli-
cation scenario.

• path and distance queries: Compute the shortest
path and distance between two locations on a spatial
network. (e.g., find the distance and the path from the
accident scene to the hospital.)

• range queries: Find all locations that exist within a
distance of r from a specified query point. (e.g., find
all hospitals that are within one mile road distance – or
equally, can be reached within five minutes of driving
– from the accident scene.)

• incremental nearest neighbors: Incrementally re-
trieve the nearest neighbors to a query point. (e.g.,
find the nearest hospitals to the accident scene in the
increasing order of the trip time.)

• distance join and distance semi-join: Given two
sets of spatial objects, S and R, incrementally retrieve
the closest pair of objects. Distance semi-join [14] re-
quires that objects from S appear only once in the
output. (e.g., given a set of stores and another set
of warehouses, incrementally retrieve the closest pair
containing a store and a warehouse, in the increasing
order of the trip time. The distance semi-join finds the
closest warehouse to each store.)

4.2 Incremental Neighbor search
We use a variant of the Best First Search(BFS) method

by Hjaltason and Samet [13] to compute the nearest neigh-
bors to a query point on a spatial network. Figure 2 is an

illustration of the application of our method to a road net-
work dataset. As the inter-distance between objects in the
SILC framework are distance intervals, minor modifications
are made to the original algorithm. Algorithm 6 depicts
the working of a BFS method on a spatial network. The
algorithm takes three inputs, a pointer T to the root of a hi-
erarchical spatial data structure containing the set of points
(e.g., a set of hospitals) from which neighbors are drawn,
a query point q and MortonList, the path-encoding of q.
The algorithm uses a priority queue Q of points and blocks,
collectively referred to as objects. The distance interval of
objects from q are stored. Additionally, a few additional
pieces of state information are stored when the object s is
a point, i.e., an intermediate vertex u in the shortest path
from s to q, and the distance d from s to u. Q retrieves
stored objects in an increasing δ− ordering from q.

Lines 1–3 are executed once for each instance of an in-
cremental nearest neighbor query. The priority queue, Q,
is initialized by inserting the root T . At each iteration of
the algorithm, the top element in the queue is examined. If
the element is a Leaf block, then it is replaced with all the
points contained within the block. If a Non-leaf block is
retrieved, then all of its children are inserted into the prior-
ity queue. If a Point p is found, then the distance interval
of p is checked with the top element in the queue for pos-
sible collisions. A collision takes place when the distance
interval of p intersects with the distance interval of the top
element in the queue, in which case the distance interval of p
is refined by applying the RefineDist operator (described
in Algorithm 4) and is re-inserted back into the queue. If
the distance interval of p is non-intersecting with the top
element of the queue, p is reported (line 16) as the next
neighbor to q and the function returns to the caller. More
neighbors of q can be retrieved by making subsequent invo-
cations to the routine, – starting at line 4– resulting in an
incremental retrieval of neighbors.

Algorithm 6
Procedure NetworkBFS[T , q, MortonList ]
Input: T ←root node of spatial structure on P

Input: q is the query point
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Figure 4: b) Median and c) average sizes of pilot data associated with a) rectangle-shaped regions containing
subsets of roads in the USA.

Dataset Vertices Edges average
outdegree

Silver Spring (SS) 4400 5800 2.7
Washington (DC) 12400 18000 2.9

Boston (BOS) 17400 24000 2.69
New York City (NYC) 40000 62000 3.1
Major Roads (USA) 380000 400000 2.2

Figure 5: Sample datasets.

Input: MortonList is the path encoding of q
Output: p is the next nearest neighbor to q drawn from P
1. Init: (δ−, δ+) ←IntrvlDistN (q, T , MortonList)
2. Q ←an empty priority queue on tuples
3. Q.insert(Key=δ−, (T, δ−, δ+, q, 0))
4. while not (Q.empty()) do
5. (p, δ−, δ+, u, d)←Q.pop() (∗ Extract top element ∗)
6. if p is a Block then
7. for each child block or point R in p do
8. (δ−, δ+)←IntrvlDistN (q, R, MortonList)
9. Q.insert(Key=δ−, (R, δ−, δ+, q, 0))
10. else (∗ p is a point ∗)
11. ( , µ−, µ+, , ) ←Q.top()
12. if Intersects((µ−, µ+), (δ−, δ+)) then
13. (u, d, δ−, δ+)←RefineDist (q, u, p, d, δ−, δ+)
14. Q.insert(Key=δ−, (p, δ−, δ+, u, d))
15. else
16. report p (and return)

The distance join and distance semi-join algorithms of
Hjaltason and Samet [14] can be similarly adapted to work
on spatial networks. The variant we propose, uses a pri-
ority queue similar to the one used in the NetworkBFS

(Algorithm 6). The distance join algorithm takes two sets
of locations as input, and then constructs pairs of elements
(blocks or points), one of which is drawn from either set
(see [14] for more details). The priority queue retrieves ob-
jects in an increasing IntrvlDistN ordering of the distance
between the element pairs. Figure 3 illustrates the working
of our algorithm on a sample road dataset.

5. EXPERIMENTS
The SILC framework presented in this paper provides a

compact representation of the path and distance informa-
tion between any pair of vertices on a spatial network. In
this section, we present an experimental evaluation of our

technique. The experiments were carried out on a Linux
(2.4.2 kernel) quad 2.4 GHz Xeon server with one gigabyte
of RAM. We implemented our algorithms using GNU C++.
A number of publicly available road network datasets were
used in the evaluation. These were obtained from the US
Tiger Census [34] and the National Atlas [35] websites. Some
of the datasets that we used are described in Figure 5.

The framework presented in the paper can be used for in-
teractive query processing on large spatial network datasets
such as road networks. One of the critical requirements for
building a scalable interactive application is that the size of
the input should not significantly affect the performance of
the application. The size of a spatial network, denoted by n,
is the number of vertices comprising the input. The size of
the spatial network has the following effects on the perfor-
mance of our algorithm: (i) The size of the pilot-data stored
with each vertex in the SILC framework depends on n and
grows gracefully as n gets larger; (ii) The size of the pilot-
data directly affects the time taken to perform the path and
distance computations.

We tested our algorithm by taking random samples from a
large road-network dataset. In particular, we used a dataset
containing all the major roads in the USA (i.e., more than
380,000 vertices and 400,000 edges). Sample random rect-
angular regions were drawn from the dataset and the road
network segments contained completely within them were
extracted to serve as inputs to the evaluation of our algo-
rithm (see Figure 4a). By taking the samples at random we
were able to account for variations such as rural versus ur-
ban, and spatial network configurations that would lead to
different pilot data sizes on account of the number of blocks
needed for the underlying region quadtree.

From Figure 4b and 4c, we see that the size of the pilot
data associated with each vertex grows gradually for smaller
graphs until a stable value is reached for larger spatial graph
inputs. This seems to suggest that the per-vertex storage
requirement of our encoding is almost independent of, or
minimally dependent on, n.

In the first set of experiments, we selected pairs of ver-
tices at random from the Silver Spring, MD road data and
computed the shortest path between them and their road
distance by repeated invocations of Algorithm 3. This al-
gorithm takes k steps for a path of length k. Figure 6a
tabulates the CPU and I/O cost (in milliseconds) of this
operation as a function of the different path lengths. As
expected, the cost of computing the shortest path is di-
rectly proportional to the length of the path between the
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Figure 6: a) CPU time (top) and I/O time (bottom) to retrieve the shortest path between two arbitrary
vertices versus the length of the path between them for the Silver Spring, MD map. b) CPU time (top) and
I/O time (bottom) normalized by path length versus the size (i.e., number of vertices) of a randomly chosen
rectangular sample of the data in the USA map of Figure 4a. c) Relationship between the deviation ratio of
the shortest path length and the percentage of the path completed for three sample paths from the Silver
Spring, MD map.

constituent vertices, and pairs. Also, retrieving a path of
length k results in k disk accesses.

The second set of experiments tabulate the effect of the
number of vertices n in the data set on the CPU and I/O
costs (in milliseconds) of the shortest path algorithm. We
used a set of randomly generated spatial networks obtained
by extracting rectangular samples from the USA road data [35],
which is a large road network. For each sample we extracted
a number of vertex pairs at random and computed the CPU
and I/O cost of the shortest path between them which was
normalized by the length k of this path and is shown in Fig-
ure 6b. From the figure, we see that these normalized costs
are relatively independent of n, which is in keeping with
our earlier observation that that the size of the pilot-data is
nearly independent of n.

The third set of experiments is designed to show the effec-
tiveness of the RefineDist operator used in Algorithm 4.
As we pointed out, every block keeps track of the maximum
and minimum deviation of the network distance between the
starting and ending vertices s and e for paths through points
within the block (i.e., along the network) from the spatial
distance between s and e. Use of the RefineDist operator
tightens the interval as the path is computed by incurring
one additional disk access and is important in processing the
different spatial queries discussed in Section 4. Figure 6c
shows the relation between the ratio of the deviation of the
computed network distance interval to the actual network
distance, and the percentage of the path completed for three
sample paths from the Silver Spring, MD road dataset. Each
marker in Figure 6c corresponds to one RefineDist oper-
ation. From the figure we observe that as we approach the
destination, the error quickly reduces to a small value.

6. RELATED WORK
Shortest path computation on general graphs has been ex-

tensively investigated in the field of theoretical computer sci-
ence. The best known algorithm to find single source short-
est paths (SSSP) is the Dijkstra’s algorithm [2]. A variation
of the Dijkstra’s algorithm that uses a Fibonacci heap struc-
ture [5] runs in O(n log n + m) time to find a single shortest
path and takes O(n2 log n+nm) time to find all pairs short-
est paths (APSP). The Dijkstra’s algorithm requires that
all edges have non-negative weight. The Floyd-Warshall al-

gorithm [4], on the other hand, can work on graphs with
negative edge weights and takes O(n3) time to compute the
all pairs shortest paths. A recent survey paper by Zhan
and Noon [39] compares the relative performance of many
of the classical shortest path algorithms when applied on a
road-network dataset.

Of particular interest are techniques that deal with disk-
based representations and bucketing [16, 22] strategies for
storing large graphs. Few techniques strike a balance be-
tween preprocessing and real-time computation of the path
and distance information. The hierarchal graph represen-
tation by Jing et. al. [17], and the more recent work by
Filho and Samet [3], propose precomputing a hierarchal set
of graphs from an input spatial network. Each level in
the representation progressively simplifies the graph struc-
ture by replacing a set of vertices in the graph input by a
smaller set, thereby reducing the size of the representation.
Path and distance between pairs of vertices are identified at
run time using the precomputed set of graphs. Mitchell et.

al. [20] describe an algorithm for computing shortest paths
on 3D meshes, and Surazhsky et. al. [32] demonstrate an
effective implementation. Note that the SILC framework is
also applicable to 3D meshes.

Wagner and Willhalm [36] present a geometric approach

for speeding up shortest path computations in a spatial net-
work. For each edge e = (u, v) ∈ E in the network, consider
the set S(e) containing all vertices t ∈ V , such that the
shortest path from u to t passes through e. For each edge
e ∈ E of the network, the method first computes S(e), and
then associates – and stores – L(e), a geometric container

with e. The geometric shape as defined by L(e) contains
all the elements t ∈ S(e) and possibly few extra ones. Geo-
metric containers can be of any simple geometric shape like
circles, ellipses, or bounding boxes and require only O(1)
bits to store. Thus, the extra amount of space required for
storing geometric containers is linear in the number of edges
of the spatial network. Geometric containers are then used
to speed up future shortest path queries on the graph rep-
resentation. A shortest path query from s to r, only visits
those edges e whose geometric container spatially contains
r. This pruning may lead to significant speed-up. Although,
shortest path queries can still be quite expensive. First of
all, the geometric container stored along with each edge is an
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approximation of the actual region spanned by S(e). Con-
sequently, L(e) may contain many vertices, whose shortest
path from u does not pass through e. Therefore, e may not
be pruned from shortest path queries with such vertices as
the destination. As a result the path and distance compu-
tations may be quite expensive as multiple paths need to
be examined. The method does not explicitly store the dis-
tances between vertices, hence, distance computations are
as expensive as the shortest path queries.

Recent work by Goldberg and Harrelson [8] introduces a
strategy, termed ALT, utilizing the A∗ search heuristic for
speeding up the shortest path computations on a spatial net-
work. To begin with, a set of points on the spatial network,
called landmarks, are chosen. The shortest distance between
all the vertices in the network and the landmarks are com-
puted and explicitly stored. Given a shortest path query
between two vertices, the method first identifies a subset
of landmarks that can potentially aid the A∗ search pro-
cess. With the aid of the distances to the landmark points
and using the triangle inequality, a large number of edges
can be pruned away from the search. Goldberg and Wer-
neck [9] describe an implementation of the ALT algorithm
on a handheld device as a standalone application. We point
out that our method is more suited for a client-server sce-
nario, where a large number of shortest path and distance
queries are handled simultaneously.

The Road Network Embedding (RNE) technique proposed
by Shahabi et. al. [29] is similar to the work of Goldberg and
Harrelson [8]. Instead of explicitly storing the distances from
all vertices to the landmark points, the RNE technique em-
beds the vertices of the spatial network in a high-dimensional
vector space using the distances from all vertices in the spa-
tial network to a random set of landmark points. Once
projected to this high-dimensional space, an L∞ Minkowski
metric (i.e., the Chessboard metric) can be used to find the
distances between points. In effect, the embedding method
trades a complicated network distance function for a simpler
distance function in a high-dimensional space. However, this
embedding method does not preserve distances nor does it
preserve the relative positions between the objects. The
RNE approach has a number of other drawbacks. First of
all, the method can only provide approximate distances be-
tween points with O(log n) distortion. Also, as the path
information is not stored, an approximate path between ver-
tices can be retrieved at a significantly higher cost than the
SILC framework. Moreover, the RNE approach embeds the
vertices in a high-dimensional vector space. Consequently,
we suspect that this method may lead to poor performance
owing to the curse of dimensionality. In a related note, the
recent work by Gupta et. al. [10] propose a hypercube em-
bedding of a planar graph with unit edge weight resulting in
the representation of vertices in the planar graph as points
in a high-dimensional space. A Hamming or Manhattan dis-
tance between two points in the projected space corresponds
to the network distance between the vertices in the original
planar graph. In contrast to the RNE approach, the hyper-
cube embedding is able to preserve exact distances between
vertices in a planar graph.

To place the SILC framework in proper perspective, we
view it as an extension to both the geometric framework of
Wagner et. al. [36] and the ALT method [8] of Goldberg
et. al.. Wagner et. al. in [36] compute and store a simple
shape (geometric container) for each edge. The containers

of the edges incident at a vertex may overlap. In contrast,
our SILC method uses a complex geometric container with
no overlap between containers. The geometric containers
are represented as a set of Morton blocks, thereby enabling
efficient storage and handling of containment queries. In
contrast, the ALT method by Goldberg [8] and the RNE
method by Shahabi [29] compute the distances between all
vertices to a few landmarks. This is similar to computing
the distances to all vertices and then randomly choosing
a representative set. In contrast, our method stores the
aggregation of the distances over a certain region, which is
determined by the path representation.

7. CONCLUDING REMARKS
We have presented the SILC framework and have shown

the applicability of traditional spatial techniques to spatial
networks. In a future study, we plan to undertake a more
elaborate theoretical study of the storage requirements of
the proposed framework. We also plan to provide a detailed
comparative study with other competitive techniques, and
to investigate disk organization strategies for efficient path
retrievals. Although we do not make any provisions for up-
dates on spatial networks, a method similar to the one pro-
posed in [18] could be used. Note that SILC allows for
updates on the datasets of locations which makes it desir-
able for applications involving moving objects.
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