
1CMSC 412 – S02 (lect 3)

Announcements
● Program #1

– Is on the web

● Reading
– Chapter 3
– Chapter 4 (for Thursday)

2CMSC 412 – S02 (lect 3)

System Calls

● Provide the interface between application programs
and the kernel

● Are like procedure calls
– take parameters
– calling routine waits for response

● Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

3CMSC 412 – S02 (lect 3)

System Call Mechanism

● Use numbers to indicate what call is made
● Parameters are passed in registers or on the stack
● Why do we use indirection of system call numbers

rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

4CMSC 412 – S02 (lect 3)

Types of System Calls
● File Related

– open, create

– read, write

– close, delete
– get or set file attributes

● Information
– get time
– set system data (OS parameters)

– get process information (id, time used)

● Communication
– establish a connection

– send, receive messages

– terminate a connection

● Process control
– create/terminate a process (including self)

5CMSC 412 – S02 (lect 3)

System Structure

● Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system
– MS-DOS (user programs can call low level I/O routines)

● Layered Structure
– layer n can only see the functionality that layer n-1 exports
– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering
– can be slow if there are too many layers

● Hybrid Approach
– most real systems fall somewhere in the middle

6CMSC 412 – S02 (lect 3)

Policy vs. Mechanism

● Policy - what to do
– users should not be able to read other users files

● Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

● Want to be able to change policy without having to
change mechanism
– change default file protection

● Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

7CMSC 412 – S02 (lect 3)

Processes

● What is a process?
– a program in execution
– “An execution stream in the context of a particular state”
– a piece of code along with all the things the code can affect

or be affected by.
• this is a bit too general. It includes all files and

transitively all other processes
– only one thing happens at a time within a process

● What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

8CMSC 412 – S02 (lect 3)

Multi-programming

● Systems that permit more than one process at once
– virtually all computers today

● Permits more efficient use of resources
– while one process is waiting another can run

● Provides natural abstraction of different activities
– windowing system
– editor
– mail daemon

● Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS
– provides processor protection

9CMSC 412 – S02 (lect 3)

Process State

● Processes switch between different states based on
internal and external events

● Each process is in exactly one state at a time
● Typical States of Processes (varies with OS)

– New: The process is just being created
– Running: Instructions are being executed

• only one process per processor may be running
– Waiting: The process is waiting for an event to occur

• examples: I/O events, signals
– Ready: The process is waiting to be assigned to a processor
– Terminated: The process has finished execution

10CMSC 412 – S02 (lect 3)

Process State Transitions

new

readyready runningrunning

waitingwaiting

terminatedterminated

admitted

interrupt

dispatch

I/O request or event waitI/O request or
event wait done

Kill

exit

11CMSC 412 – S02 (lect 3)

Components of a Process

● Memory Segments
– Program - often called the text segment
– Data - global variables
– Stack - contains activation records

● Processor Registers
– program counter - next instruction to execute
– general purpose CPU registers
– processor status word

• results of compare operations
– floating point registers

