
1CMSC 412 – S02  (lect 7)

Announcements
Office hours
– W office hour will be 10-11 not 11-12 starting next week

Reading
– Chapter 7 (this whole week)



2CMSC 412 – S02  (lect 7)

Problems with the Producer-Consumer 
Shared Memory  Solution

Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This 
should 
be 5!



3CMSC 412 – S02  (lect 7)

Defintion of terms

Race Condition
– Where the order of execution of instructions influences the 

result produced
– Important cases for race detection are shared objects

• counters: in the last example
Mutual exclusion
– only one process at a time can be updating shared objects

Critical section
– region of code that updates or uses shared data

• to provide a consistent view of objects need to make sure 
an update is not in progress when reading the data

– need to provide mutual exclusion for a critical section



4CMSC 412 – S02  (lect 7)

Critical Section Problem

processes must 
– request permission to enter the region
– notify when leaving the region

protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a critical section may block another 
process

– guarantee bounded waiting time
• limited number of times other processes can enter the 

critical section while another process is waiting
– not depend on number or speed of CPUs

• or other hardware resources



5CMSC 412 – S02  (lect 7)

Critical Section (cont)

May assume that some instructions are atomic
– typically load, store, and test word instructions

Algorithm #1 for two processes
– use a shared variable that is either 0 or 1
– when Pk = k a process may enter the region

repeat
(while turn != 0);
// critical section
turn = 1;
// non-critical section

until false;

repeat
(while turn != 1);
// critical section
turn = 0;
// non-critical section

until false;

– this fails the progress requirement since process 0 not being 
in the critical section stops process 1.



6CMSC 412 – S02  (lect 7)

Critical Section (Algorithm 2)
Keep an array of flags indicating which processes 
want to enter the section

bool flag[2];

repeat
flag[i] = true;
while (flag[j]);

// critical section

flag[i] = false;

// non-critical section
until false;

This does NOT work either!
– possible to have both flags set to 1

Both processes 
could be here at 
the same time



7CMSC 412 – S02  (lect 7)

Critical Section (Algorithm 3)

Combine 1 & 2

bool flag[2];
int turn;

repeat
flag[i] = true;
turn = j;
while (flag[j]&& turn ==j);

// critical section

flag[i] = false;

// non-critical section
until false;

This one does work!  Why?



8CMSC 412 – S02  (lect 7)

Critical Section (many processes)

What if we have several processes?
One option is the Bakery algorithm

bool choosing[n];
integer number[n];

choosing[i] = true;
number[i] = max(number[0],..number[n-1])+1;
choosing[i] = false;
for j = 0 to n-1

while choosing[j];
while number[j] != 0 and ((number[j], j) < number[i],i);

end
// critical section
number[i] = 0



9CMSC 412 – S02  (lect 7)

Bakery Algorithm - explained

When a process wants to enter critical section, it 
takes a number
– however, assigning a unique number to each process is not 

possible
• it requires a critical section!

– however, to break ties we can used the lowest numbered 
process id

Each process waits until its number is the highest 
one
– it can then enter the critical section

provides fairness since each process is served in the 
order they requested the critical section



10CMSC 412 – S02  (lect 7)

Synchronization Hardware
If it’s hard to do synchronization in software, why not 
do it in hardware?
Disable Interrupts
– works, but is not a great idea since important events may be 

lost.
– doesn’t generalize to multi-processors

test-and-set instruction
– one atomic operation

• executes without being interrupted
– operates on one bit of memory
– returns the previous value and sets the bit to one 

swap instruction
– one atomic operation
– swap(a,b) puts the old value of b into a and of a into b


