
1CMSC 412 – S02 (lect 10)

Announcements
Midterm is next Tuesday
– Covers through lecture today (chapters 1-8)
– can skip 4.5, 5.3-5.9, 7.7-7.9

Project #2 is available on the web

No office hours on next Tuesday

2CMSC 412 – S02 (lect 10)

Deadlock Avoidance

Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly
Assume that each process lets us know its maximum
resource request
Safe state:
– system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock
– A system is in a safe state if there exists a safe sequence

3CMSC 412 – S02 (lect 10)

Safe Sequence

Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i
If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

4CMSC 412 – S02 (lect 10)

Banker’s Algorithm
Each process must declare the maximum number of
instances of each resource type it may need
Maximum can’t exceed resources available to system
Variables:
n is the number of processes
m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of each

type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

5CMSC 412 – S02 (lect 10)

Work is a vector of length m (resources)
Finish is a vector of length n (processes)

1. Work = Available; Finish = false
2. Find an i such that Finish[i] = false and Needi <=

Work if no such i, go to 4
3. Work += Allocationi; Finish[i] = true; goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

6CMSC 412 – S02 (lect 10)

Banker’s Algorithm - Example

Alloc Max Avail Need
A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time Max - alloc

System is in a safe state, since the sequence <P1, P3, P4, P2, P0> satisfy the
safety criteria.

7CMSC 412 – S02 (lect 10)

Resource Request Algorithm
(1) If Requesti <= Needi then goto 3

– otherwise - the process has exceeded its maximum claim
(2) If Requesti <= Available then goto 3

– otherwise process must wait since resources are not available
(3) Check request by having the system pretend that it

has allocated the resources by modifying the state as
follows:
– Available =Available - Requesti
– Allocation = Allocation + Requesti
– Needi = Needi - Requesti

Find out if resulting resource allocation state is safe,
otherwise the request must wait.

8CMSC 412 – S02 (lect 10)

Deadlock Detection

Resource Allocation Graph
– Graph consists of vertices

• type P = {P1,..,Pn} represent processes
• type R = {R1,..,Rm} represent resources

– Directed edge from process Pi to resource type Rj signifies
that a process i has requested resource type j

– request edge
– A directed edge from Rj to Pi indicates that resource Rj has

been allocated to process Pi

– assignment edge

9CMSC 412 – S02 (lect 10)

Resource types may have more than one instance
Each resource vertex represents a resource type.
Each resource instance is of a unique resource type,
each resource instance is represented by a
“subvertex” associated with a resource vertex
– (Silverschatz represents resource vertices by squares,

resource instance “subvertices” by dots in the square.
Process vertices are represented by circles)

A request edge points to a resource vertex
An assignment edge points from a resource
“subvertex” to a process vertex

Deadlock Detection (cont.)

10CMSC 412 – S02 (lect 10)

Resource Allocation Graph

When a process Pi requests an instance of
resource type Rj, a request edge is inserted
into the resource allocation graph
When the request can be fulfilled, the request
edge is transformed into an assignment edge
When the process is done using the
resource, the assignment edge is deleted
If the graph contains no cycles, no deadlock
can exist

11CMSC 412 – S02 (lect 10)

Deadlock!

.

.P1 P2

R1

R2

12CMSC 412 – S02 (lect 10)

Deadlock??

R1

.

. .P1

P2
R2

P3

13CMSC 412 – S02 (lect 10)

No!!

P2

P3

P3 could finish with
its instance of R1, release
the instance, then P2
would claim that
instance of R1

.

. .P1

R2

R1

14CMSC 412 – S02 (lect 10)

.

. .P1

R2

R1

Then, P2 could
finish with its instances
of R1 and R2 and
release these resources.
P1 then gets what it wants

P3

P2

15CMSC 412 – S02 (lect 10)

Detecting Deadlock
Work is a vector of length m (resources)
Finish is a vector of length n (processes)

Allocation is an n x m matrix indicating the number of
each resource type held by each process
Request is an m x n matrix indicating the number of
additional resources requested by each process

1. Work = Available;
if Allocation[i] != 0 Finish = false else Finish = true;

2. Find an i such that Finish[i] = false and Requesti <=
Work if no such i, go to 4

3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some i, system is in deadlock
Note: this requires m x n2 steps

This is the difference from the
Banker’s algorithm.

16CMSC 412 – S02 (lect 10)

Recovery from deadlock

Must free up resources by some means
Process termination
– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if it
is freed.

Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

