
1CMSC 412 – S02 (lect 11)

Announcements
Project #2 is available on the web

2CMSC 412 – S02 (lect 11)

Managing Memory
Main memory is big, but what if we run out
– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

3CMSC 412 – S02 (lect 11)

Advantages of Virtual Addressing

Can assign non-contiguous regions of physical
memory to programs
A program can only gain access to its mapped pages
Can have more virtual pages than the size of physical
memory
– pages that are not in memory can be stored on disk

Every program can start at (virtual) address 0

4CMSC 412 – S02 (lect 11)

Paging
Divide physical memory into fixed sized chunks
called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are

actually used into memory
Have a table to map virtual pages to physical pages
Consider a 32 bit addresses
– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

12 bits

20 bits

5CMSC 412 – S02 (lect 11)

Problems with Page Tables

One page table can get very big
– 220 entries (for most programs, most items are empty)

solution1: use a hierarchy of page tables

Virtual Address

Page Table

Physical Page #

12 bits

Main
Memory+

10 bits

Pg Tbl Ptr

Page
Directory

10 bits

6CMSC 412 – S02 (lect 11)

Inverted Page Tables
Solution to the page table size problem
One entry per page frame of physical memory
 <process-id, page-number>
– each entry lists process associated with the page and the page

number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is brought in

from disk

7CMSC 412 – S02 (lect 11)

Virtual Address

4 16 12
Page # ByteSeg

Inverted Page Table Example (PPC)

Page
Table

(variable size)

one per system
Main

Memory+

Virtual Segment ID16
Segment
Registers

(per process)

24

Page Table Group
8 page table entries

Hash Function
VS ID (40)

Physical page (20)

Status bits

40

Page Table Entry (PTE)

8CMSC 412 – S02 (lect 11)

Faster Mapping from Virtual to Physical
Addresses

need hardware to map between physical and virtual
addresses
– can require multiple memory references
– this can be slow

answer: build a cache of these mappings
• called a translation look-aside buffer (TLB)
• associative table of virtual to physical mappings
• typically 16- 64 entries
Valid Virtual Page Physical Page

For Intel x86For Intel x8620 bits 20 bits

9CMSC 412 – S02 (lect 11)

Sharing Memory
Pages can be shared
– several processes may share the same code or data
– several pages can be associated with the same page frame
– given read-only data, sharing is always safe

when writes occur, decide if processes share data
– operating systems often implement “copy on write” - pages

are shared until a process carries out a write
• when a shared page is written, a new page frame is

allocated
• writing process owns the modified page
• all other sharing processes own the original page

– page could be shared
• processes use semaphores or other means to coordinate

access

	Announcements
	Managing Memory
	Advantages of Virtual Addressing
	Paging
	Problems with Page Tables
	Inverted Page Tables
	Inverted Page Table Example (PPC)
	Faster Mapping from Virtual to Physical Addresses
	Sharing Memory

