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Announcements
Project #2 is available on the web



2CMSC 412 – S02  (lect 11)

Managing Memory
Main memory is big, but what if we run out
– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

Use virtual addresses
– look like normal addresses 
– hardware translates them to physical addresses
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Advantages of Virtual Addressing

Can assign non-contiguous regions of physical 
memory to programs
A program can only gain access to its mapped pages
Can have more virtual pages than the size of physical 
memory
– pages that are not in memory can be stored on disk

Every program can start at (virtual) address 0
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Paging
Divide physical memory into fixed sized chunks 
called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are 

actually used into memory
Have a table to map virtual pages to physical pages
Consider a 32 bit addresses
– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present   Rd/Write

12 bits

20 bits
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Problems with Page Tables

One page table can get very big
– 220 entries (for most programs, most items are empty)

solution1: use a hierarchy of page tables

Virtual Address

Page Table

Physical Page #

12 bits

Main
Memory+

10 bits

Pg Tbl Ptr

Page
Directory

10 bits
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Inverted Page Tables
Solution to the page table size problem
One entry per page frame of physical memory
 <process-id, page-number>
– each entry lists process associated with the page and the page 

number
– when a memory reference: 

• <process-id,page-number,offset>occurs, the inverted page 
table is searched (usually with the help of a hashing 
mechanism)

• if a match is found in entry i in the inverted page table, the 
physical address <i,offset> is generated

– The inverted page table does not store information about pages 
that are not in memory

• page tables  are used  to maintain this information
• page table need only be consulted when a page is brought in 

from disk
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Virtual Address

4 16 12
Page # ByteSeg

Inverted Page Table Example (PPC)

Page
Table

(variable size)

one per system
Main

Memory+

Virtual Segment ID16
Segment
Registers

(per process)

24

Page Table Group
8 page table entries

Hash Function
VS ID (40)

Physical page (20)

Status bits

40

Page Table Entry (PTE)
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Faster Mapping from Virtual to Physical 
Addresses

need hardware to map between physical and virtual 
addresses
– can require multiple memory references
– this can be slow 

answer: build a cache of these mappings
• called a translation look-aside buffer (TLB)
• associative table of virtual to physical mappings
• typically 16- 64 entries
Valid Virtual Page Physical Page

For Intel x86For Intel x8620 bits 20 bits
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Sharing Memory
Pages can be shared
– several processes may share the same code or data
– several  pages can be associated with the same page frame
– given read-only data, sharing is always safe

when writes occur,  decide if processes share data
– operating systems often implement “copy on write” - pages 

are shared until a process carries out a write
• when a shared page is written, a new page frame is 

allocated 
• writing process owns  the modified page
• all other sharing processes own the original page

– page could be shared
• processes use semaphores or other means to coordinate 

access
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