
1CMSC 412 – S02 (lect 13)

Announcements
Project #1 grades were returned on Monday
– Requests for re-grades due by Tuesday

Midterm #1
– Re-grade requests due by Monday

Project #2
– Due 10 AM Monday

2CMSC 412 – S02 (lect 13)

Page State (hardware view)
Page frame number (location in memory or on disk)
Valid Bit
– indicates if a page is present in memory or stored on disk

A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to

be written to disk before the page frame can be reused
Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

Protection attributes
– read, write, execute

3CMSC 412 – S02 (lect 13)

What happens when we fault and there
are no more physical pages?

Need to remove a page from main memory
– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

How to we pick a page?
– Need to choose an appropriate algorithm

• should it be global?
• should it be local (one owned by the faulting process)

4CMSC 412 – S02 (lect 13)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

5CMSC 412 – S02 (lect 13)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page
Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

6CMSC 412 – S02 (lect 13)

FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4)

– 9 page faults

7CMSC 412 – S02 (lect 13)

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (2,5,1)
• access 2 - (5,1,2)
• access 3 - (1,2,3) fault, replacement
• access 4 - (2,3,4) fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults

8CMSC 412 – S02 (lect 13)

LRU Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (2,3,4,1)
• access 2 - (3,4,1,2)
• access 5 - (4,1,2,5) fault, replacement
• access 1- (4,2,5,1)
• access 2 - (4,5,1,2)
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 8 faults

9CMSC 412 – S02 (lect 13)

FIFO Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)
• access 5 - (2,3,4,5) fault, replacement
• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

10CMSC 412 – S02 (lect 13)

Thrashing

Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

	Announcements
	Page State (hardware view)
	What happens when we fault and there are no more physical pages?
	Page Replacement Algorithms
	Page Replacement Algorithms
	FIFO Example (3 frames)
	LRU Example (3 frames)
	LRU Example (4 frames)
	FIFO Example (4 frames)
	Thrashing

