
1CMSC 412 – S02  (lect 13)

Announcements
Project #1 grades were returned on Monday
– Requests for re-grades due by Tuesday

Midterm #1
– Re-grade requests due by Monday

Project #2
– Due 10 AM Monday
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Page State (hardware view)
Page frame number (location in memory or on disk)
Valid Bit
– indicates if a page is present in memory or stored on disk

A modify or dirty bit
– set by hardware on write to a page
– indicates whether the contents of a page have been modified 

since the page was last loaded into main memory
– if a page has not been modified, the page does not have to 

be written to disk before the  page frame can be reused 
Reference bit
– set by the hardware on read/write
– cleared by OS
– can be used to approximate LRU page replacement

Protection attributes
– read, write, execute
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What happens when we fault and there 
are no more physical pages?

Need to remove a page from main memory 
– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last 
stored on disk.

How to we pick a page?
– Need to choose an appropriate algorithm

• should it be global?
• should it be local (one owned by the faulting process)
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Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of 

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good  algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is 

sometimes possible 
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Page Replacement Algorithms

LRU
– Replace the page that was actually used  longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and 
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page
Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is 

used
– at the end of a given time period, reference bits are cleared
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FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1)  fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5) 
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4) 

– 9 page faults
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LRU Example  (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1)  fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (2,5,1) 
• access 2 - (5,1,2)
• access 3 - (1,2,3)  fault, replacement
• access 4 - (2,3,4)  fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults
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LRU Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1)   fault
• access 2 - (1,2)  fault
• access 3- (1,2,3)  fault
• access 4 - (1,2,3,4)  fault, replacement
• access 1 - (2,3,4,1)
• access 2 - (3,4,1,2)
• access 5 - (4,1,2,5)  fault, replacement
• access 1- (4,2,5,1)
• access 2 - (4,5,1,2)
• access 3 - (5,1,2,3)  fault, replacement
• access 4 - (1,2,3,4)  fault, replacement
• access 5 - (2,3,4,5)  fault, replacement

– 8 faults
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FIFO Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1)   fault
• access 2 - (1,2)  fault
• access 3- (1,2,3)  fault
• access 4 - (1,2,3,4)  fault, replacement
• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)
• access 5 - (2,3,4,5) fault, replacement
• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults
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Thrashing

Virtual memory is not “free”
– can allocate so much virtual memory that the system spends 

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing
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