
Distance Browsing in Spatial Databases1

Gı́sli R. Hjaltason and Hanan Samet
Computer Science Department

Center for Automation Research
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

grh@cs.umd.edu and hjs@cs.umd.edu

Abstract

Two different techniques of browsing through a collection of spatial objects stored in an R-tree spatial
data structure on the basis of their distances from an arbitrary spatial query object are compared. The con-
ventional approach is one that makes use of a k-nearest neighbor algorithm where k is known prior to the
invocation of the algorithm. Thus if m > k neighbors are needed, the k-nearest neighbor algorithm needs
to be reinvoked for m neighbors, thereby possibly performing some redundant computations. The second
approach is incremental in the sense that having obtained the k nearest neighbors, the k + 1st neighbor can
be obtained without having to calculate the k+1 nearest neighbors from scratch. The incremental approach
finds use when processing complex queries where one of the conditions involves spatial proximity (e.g., the
nearest city to Chicago with population greater than a million), in which case a query engine can make use
of a pipelined strategy. A general incremental nearest neighbor algorithm is presented that is applicable to
a large class of hierarchical spatial data structures. This algorithm is adapted to the R-tree and its perfor-
mance is compared to an existing k-nearest neighbor algorithm for R-trees [45]. Experiments show that the
incremental nearest neighbor algorithm significantly outperforms the k-nearest neighbor algorithm for dis-
tance browsing queries in a spatial database that uses the R-tree as a spatial index. Moreover, the incremental
nearest neighbor algorithm also usually outperforms the k-nearest neighbor algorithm when applied to the
k-nearest neighbor problem for the R-tree, although the improvement is not nearly as large as for distance
browsing queries. In fact, we prove informally that, at any step in its execution, the incremental nearest
neighbor algorithm is optimal with respect to the spatial data structure that is employed. Furthermore, based
on some simplifying assumptions, we prove that in two dimensions, the number of distance computations
and leaf nodes accesses made by the algorithm for finding k neighbors is O(k +

p
k).

Keywords: distance browsing, ranking, nearest neighbors, R-trees, spatial databases, hierarchical spatial data
structures.

This is a slightly modified version of an article that appeared in ACM Transactions on Database Systems
24, 2 (June 1999), pp. 265–318. The journal version contains two minor typographic errors. In particular, the
errors were that thep symbol was left off the second k in the formulasO(k+

p
k) andO(k+

p
k+logN),

appearing in the last line of the abstract and the second paragraph of the conclusions (Section 8).

1This work was supported in part by the National Science Foundationunder grants IRI-9712715and the Department
of Energy under Contract DEFG0295ER25237.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 1

1 Introduction

In this paper, we focus on the issue of obtaining data objects in their order of distance from a given query ob-
ject (termed ranking). This issue is of primary interest in a spatial database although it also finds use in other
database applications including multimedia indexing [36], CAD, and molecular biology [37]. The desired
ranking may be full or partial (e.g., only the first k objects). This problem can also be posed in a conventional
database system. For example, given a table of individuals containing a weight attribute, we can ask “who
has a weight closest to w lbs.?”, or “rank the individuals by how much their weight differs from w lbs.”. If
no index exists on the weight attribute, then to answer the first query, a scan of all tuples must be performed.
However, if an appropriate index structure is used, then more efficient methods can be employed. For ex-
ample, using a B+-tree, the query can be answered by a single descent to a leaf, for a cost of O(logn) for n
tuples. The correct answer will be found either in that leaf or an adjacent one. To rank all the individuals, the
search would proceed in two directions along the leaves of the B+-tree, with a constant cost for each tuple.
The index can be used for any such query regardless of the reference weight w.

For multidimensional data, things are not so simple. Consider, for example, a set of points in two di-
mensions representing cities. Queries analogous to the previous ones are “what city is closest to point p?”
and “rank the cities by their distances from point p”. In a database context, we wish to know what kind of
index structures will aid in processing these queries. For a fixed reference point p and distance metric, we
might build a one-dimensional index on the distances of the cities from the point p. This would provide an
efficient execution time for this particular point (i.e., for p), but for any other point or distance metric it would
be useless. Thus we have to rebuild the index, which is a costly process if we need to do it for each query.
Contrast this to the one-dimensional case, where there is generally only one choice of metric. Furthermore,
for a given reference point, any other point can have only two positions in relation to it, larger or smaller. It
is not possible to define such a simple relationship in the multidimensional case.

As another example, suppose we want to find the nearest city to Chicago that has more than a million
inhabitants. There are several ways to proceed. An intuitive solution is to guess some area range around
Chicago and check the populations of the cities in the range. If we find a city with the requisite popula-
tion, we must make sure that there are no other cities that are closer and that meet the population condition.
This approach is rather inefficient as we have to guess the size of the area to be searched. The problem with
guessing is that we may choose too small a region or too large a region. If the size is too small, the area may
not contain any cities satisfying the population criterion, in which case we need to expand the region being
searched. If the size is too large, we may be examining many cities needlessly.

A radical solution is to sort all the cities by their distances from Chicago. This is not very practical as
we need to re-sort them each time we pose a similar query with respect to another city. Moreover, sorting
requires a considerable amount of extra work, especially when usually all that is needed to obtain the desired
result is to inspect the first few nearest neighbors.

A less radical solution is to retrieve the closest k cities and determine if any of them satisfy the population
criterion. The problem here lies in determining the value of k. As in the area range solution, we may choose
too small or too large a value of k. If k is too small, failure to find a city satisfying the population criterion
means that we have to restart the search with a value larger than k, say m. The drawback of this solution is
that such a search forces us to expend work in finding the k nearest neighbors (which we already did once
before) as part of the cost of finding the m > k nearest neighbors. On the other hand, if k is too large, we
waste work in calculating neighbors whose populations we will never check.

A logical way to overcome the drawbacks of the second and third solutions is to obtain the neighbors
incrementally (i.e., one by one) as they are needed. In essence, what we are doing is browsing through the
database on the basis of distance and we shall use the term distance browsing to describe this operation. The

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 2

result is an incremental ranking of the cities by distance where we cease the search as soon as the secondary
population condition is satisfied. The idea is that we want only a small but unknown number of neighbors.
The incremental solution finds application in a much more general setting than our specialized query exam-
ple. In particular, this includes queries that require the application of the “nearest” predicate to a subset s
of the attributes of a relation (or object class) r. This class of queries is part of a more restricted, but very
common, class that imposes an additional condition c usually involving attributes other than s. This means
that the “nearest” condition serves as a primary condition, while condition c serves as a secondary condition.
Using an incremental solution enables such a query to be processed in a pipelined fashion.

Of course, in the worst case, we will have to examine all (or most) of the neighbors even when using
an incremental approach. This may occur if few objects satisfy the secondary condition (e.g., if none of
the cities have the requisite population). In this case, it may actually be better to first select on the basis of
the secondary condition (the population criterion in our example) before considering the “spatially nearest”
condition, especially if an index exists that can be used to compute the secondary condition. Using a k-nearest
neighbor algorithm may also be preferable, provided it is more efficient than the incremental algorithm for
large values of k. It makes sense to choose this solution only if we know in advance how many neighbors
are needed (i.e., the value of k), but this value can be estimated based on the selectivity of the secondary
condition. These issues demonstrate the need for a query engine to make estimates using selectivity factors
(e.g., [3, 40, 49]) involving the numbers of values that are expected to satisfy various parts of the query and
the computational costs of the applicable algorithms.

In this paper we compare the incremental and k-nearest neighbor approaches for browsing through a
collection of spatial objects stored in an R-tree spatial data structure on the basis of their distances from an
arbitrary spatial query object. In the process we present a general incremental nearest neighbor algorithm
that is applicable to a large class of hierarchical spatial data structures, and show how to adapt this algorithm
to the R-tree. Its performance is compared to an existing k-nearest neighbor algorithm for R-trees [45]. In
addition, we demonstrate that the k-nearest neighbor algorithm of [45] can be transformed into a special case
of our R-tree adaptation of the general incremental nearest neighbor algorithm. The transformation process
also reveals that the R-tree incremental nearest neighbor algorithm achieves more pruning than the R-tree
k-nearest neighbor algorithm. Moreover, our R-tree adaptation leads to a considerably more efficient (and
conceptually different) algorithm. This is because the presence of object bounding rectangles in the tree en-
ables their use as pruning devices to reduce disk I/O for accessing the spatial descriptions of objects (stored
external to the tree). Experiments show that the incremental nearest neighbor algorithm significantly out-
performs the k-nearest neighbor algorithm for distance browsing queries in a spatial database that uses the
R-tree as a spatial index. Moreover, the incremental nearest neighbor algorithm also usually outperforms the
k-nearest neighbor algorithm when applied to the k-nearest neighbor problem for the R-tree, although the
improvement is not nearly as large as for distance browsing queries.

The rest of this paper is organized as follows. Section 2 discusses algorithms related to nearest neigh-
bor queries. Section 3 reviews the structure of R-trees. Section 4 describes the incremental nearest neighbor
algorithm as well as its adaptation to the R-tree. Section 5 introduces the k-nearest neighbor algorithm. Sec-
tion 6 presents the results of an empirical study comparing the incremental nearest neighbor algorithm with
the k-nearest neighbor algorithm. Section 7 discusses issues that arise in high-dimensional spaces, while
conclusions are drawn in Section 8.

2 Related Work

Numerous algorithms exist for answering nearest neighbor and k-nearest neighbor queries. This is motivated
by the importance of these queries in fields including geographical information systems (GIS), pattern recog-

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 3

nition, document retrieval, and learning theory. Almost all of these algorithms, many of them coming from
the field of computational geometry, are for points in a d-dimensional vector space [12, 16, 21, 22, 33, 45, 51],
but some allow for arbitrary spatial objects [26, 30], although most are still limited to a point as the query
object. In many applications, a rough answer suffices, so that algorithms have been developed that return an
approximate result [4, 10, 54], thereby saving time in computing it. Many of the above algorithms require
specialized search structures [4, 10, 16, 22, 33], but some employ commonly used spatial data structures.
For example, algorithms exist for the k-d tree [12, 21, 41, 51], quadtree-related structures [29, 30], the R-
tree [45, 54], the LSD-tree [26] and others. In addition, many of the algorithms can be applied to other spatial
data structures.

To our knowledge, only three incremental solutions to the nearest neighbor problem exist in the litera-
ture [12, 26, 29]. All these algorithms employ priority queues (see Section 4). The algorithm of [12] was
developed for the k-d tree [7]. It is considerably different from the other two algorithms in that the algorithm
of [12] stores only the data objects in the priority queue, and uses a stack to keep track of the subtrees of the
spatial data structure which have yet to be completely processed. This makes it necessary to use an elaborate
mechanism to avoid processing the contents of a node more than once. The algorithm of [26] was developed
for the LSD-tree [28]. It is very similar to our method (presented in [29]) and was published at about the
same time. The principal difference between [26] and our method is that the LSD-tree algorithm uses two
priority queues, one for the data objects and another for the nodes of the spatial data structure. This makes
the algorithm somewhat more complicated than ours, while the use of two priority queues does not offer any
performance benefits according to our experiments. Our algorithm [29] was initially developed for the PMR
quadtree [42] although its presentation was general. In this paper we expand considerably on our initial so-
lution by showing how it can be adapted to the R-tree [24] as well as comparing it with a solution that makes
use of an existing k-nearest neighbor algorithm [45]. In addition, we show how this k-nearest neighbor algo-
rithm [45] can be transformed into a special case of our R-tree adaptation of the general incremental nearest
neighbor algorithm. A byproduct of the transformation process is that the k-nearest neighbor algorithm has
been simplified considerably.

The term distance scan [5] has also been used for what we term distance browsing. Becker and Güting [5]
introduce the concept of a distance scan and motivate its use. This is done along similar lines to those of
Section 1, i.e., in the context of finding the closest object to a query point where additional conditions may
be imposed on the object. In addition, that paper provides optimization rules for mapping a “closest” operator
into a “distance scan” operation in an example GIS query language.

All the algorithms mentioned thus far assume that the objects exist in a d-dimensional Euclidean space,
so that distances are defined between every two objects in a data set as well as between an object and any
point in the space. Another class of nearest neighbor algorithms operates on more general objects, in what
is commonly called the metric space model. The only restriction on the objects is that they reside in some
metric space, i.e., a distance metric is defined between any two objects. However, in this general case, it is not
possible to produce new objects in the metric space, e.g., to aggregate or divide two objects (in a Euclidean
space, bounding rectangles are often used for this purpose). Various methods exist for indexing objects in
the metric space model as well as for computing proximity queries [11, 13, 14, 52, 53]. These methods can
only make use of the properties of distance metrics (nonnegativity, symmetry, and the triangle inequality),
and operate without any knowledge of how objects are represented or how the distances between objects are
computed. Such a general approach is usually slower than methods based on spatial properties of objects,
but must be used for objects for which such properties do not exist (e.g., images, chemical data, time series,
etc.). This approach has also been advocated for high-dimensional vector spaces. It may often be possible to
map general objects into geometric space, thereby reaping the benefit of more efficient search methods. Most
such mapping approaches are domain-specific [25, 36], but general approaches have also been proposed [18].

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 4

3 R-trees

The R-tree (e.g., Figure 1) [24] is an object hierarchy in the form of a balanced structure inspired by the B+-
tree [15]. Each R-tree node contains an array of (key, pointer) entries where key is a hyper-rectangle that
minimally bounds the data objects in the subtree pointed at by pointer. In an R-tree leaf node, the pointer is
an object identifier (e.g., a tuple ID in a relational system), while in a nonleaf node it is a pointer to a child
node on the next lower level. The maximum number of entries in each node is termed its node capacity or
fan-out and may be different for leaf and nonleaf nodes. The node capacity is usually chosen such that a node
fills up one disk page (or a small number of them). It should be clear that the R-tree can be used to index a
space of arbitrary dimension and arbitrary spatial objects rather than just points.

As described above, an R-tree leaf node contains a minimal bounding rectangle and an object identifier
for each object in the node, i.e., the geometric descriptions of the objects are stored external to the R-tree
itself. Another possibility is to store the actual object, or its geometric description, in the leaf instead of its
bounding rectangle. This is usually useful only if the object representation is relatively small (e.g., similar
in size to a bounding rectangle) and is fixed in length. If all the data about the object (i.e., all its relevant
attributes) are stored in the leaf nodes, the object identifiers need not be stored. The disadvantage of this
approach is that objects will not have fixed addresses, as some objects must be moved each time an R-tree
node is split.

R1 R2

R3 R4 R5 R6

a b c i e fg hd

(b)

R0:

R1: R2:

R6:R5:R4:R3:

R3R1

R4

R5

R6R2

a b

c

d

e

f

g h

i

(a)

R0

Figure 1: An R-tree index for a set of nine line segments. (a) Spatial rendering
of the line segments and bounding rectangles; (b) a tree access structure for
(a). The bounding rectangles for the individual line segments are omitted from
(a) in the interest of clarity.

Several variations of R-trees have been devised, differing in the way nodes are split or combined during
insertion or deletion. In our experiments we make use of a variant called the R�-tree [6]. It differs from the
conventional R-tree in employing more sophisticated insertion and node-splitting algorithms that attempt to
minimize a combination of overlap between bounding rectangles and their total area. In addition, when R-
tree node p overflows, instead of immediately splitting p, the R�-tree insertion algorithm first tries to see
if some of the entries in p could possibly fit better in another node. This is achieved by reinserting a fixed
fraction of the entries in p. This increases the construction time for the index, but usually results in less node
overlap and therefore in improved query response time.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 5

4 Incremental Nearest Neighbor Algorithm

Most algorithms that traverse tree structures in a top-down manner use some form of depth-first or breadth-
first tree traversal. Finding a leaf node containing a query object q in a spatial index can be done in a depth-
first manner by recursively descending the tree structure. With this method, the recursion stack keeps track
of what nodes have yet to be visited. Having reached a leaf, we need to be able to extend this technique to
find the nearest object, as the leaf may not actually contain the nearest neighbor. The problem here is that
we have to unwind the recursion to find the nearest object. Moreover, if we want to find the second nearest
object, the solution becomes even tougher. With breadth-first traversal, the nodes of the tree are visited level
by level, and a queue is used to keep track of nodes that have yet to be visited. However, with this technique,
a lot of work has to be done before reaching a leaf node containing q. To resolve the problems with depth-first
and breadth-first traversal, the incremental nearest neighbor algorithm employs what may be termed best-first
traversal. When deciding what node to traverse next, it picks the node with the least distance in the set of
all nodes that have yet to be visited. This means that instead of using a stack or a plain queue to keep track
of the nodes to be visited, we use a priority queue where the distance from the query object is used as a key.
The key feature of our solution is that the objects as well as the nodes are stored in the priority queue.

This section is organized as follows: In Section 4.1 we specify what conditions must hold for our in-
cremental nearest neighbor algorithm to be applicable (e.g., conditions on the index, spatial object types,
distance functions, etc.). In Section 4.2 we present the general incremental nearest neighbor algorithm in
detail. In Section 4.3 we discuss ways to exploit the particular nature of the R-tree spatial index, while in
Section 4.4 we give an example of the execution of the algorithm on a simple R-tree structure. Several vari-
ants of the algorithm are described in Section 4.5. In Section 4.6 we present some analytical results for the
algorithm, while in Section 4.7 we prove its correctness. Finally, in Section 4.8 we show how to deal with a
large priority queue.

4.1 Introduction

Our incremental nearest neighbor algorithm can be applied to virtually any hierarchical spatial data structure.
In fact, it is generally applicable to any data structure based on hierarchical containment/partitioning (e.g.,
see [1]). In our description, we will assume a tree structure (althoughour method is applicable to more general
structures), where each tree node represents some regions of space and where objects (or pointers to them
in an external table) are stored in the leaf nodes whose regions intersect the objects. In the remainder of this
section, we do not make a distinction between a node and the region that it represents; the meaning should
be clear from the context. A basic requirement for the method to be applicable is that the region covered
by a node must be completely contained within the region(s) of the parent node(s)1. Examples of structures
that satisfy this requirement include quadtrees [47], R-trees [24], R+-trees [50], LSD-trees [28], and k-d-B-
trees [44]. In all these examples, the node region is rectangular, but this is not a requirement. Our algorithm
handles the possibilityof an object being represented in more than one leaf node, as in the PMR quadtree [42]
and R+-tree [50]. Although we assume in our exposition that each node has only one parent and that only
leaf nodes store objects, the algorithm could easily be adapted to handle other cases (such as the hB-tree [39]
and the cell tree with oversize shelves [23]).

Observe that the data objects as well as the query objects can be of arbitrary type (e.g., points, rectangles,
polygons, etc.). The only requirement is that consistent distance functions do and dn be used for calculating
the distance from the query object q to data objects and to nodes. This is to ensure that each object is en-
countered in at least one node that is no farther from the query object than the object itself; otherwise, the

1For structures in which each node can have more than one parent (e.g., the hB-tree [39] or Partition Fieldtree [19]) the node
region must be fully contained in the union of the regions of the parent nodes.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 6

strictly nondecreasing distances of elements retrieved from the queue cannot be guaranteed. Consistency can
be defined formally as follows: (In the definition, we do not make any assumptions about the nature of the
index hierarchy.)

Definition Let d be the combination of functions do and dn, and let e v N denote the fact that
item e is contained in exactly the set of nodesN (i.e., if e is an object, N is the set of leaf nodes
referencing the object, and if e is a node, N is its set of parent nodes2). The functions do and dn
are consistent iff for any query object q and any object or node e in the hierarchical data structure
there exists n in N , where e v N , such that d(q; n) � d(q; e).

This definition is strictly tied to the hierarchy defined by the data structure. However, since this hierarchy is
influenced by properties of the node regions and data objects, we can usually recast the definition in terms
of these properties. For example, in spatial data structures the containment of objects in leaf nodes and child
nodes in parent nodes is based on spatial containment; thus the v in the definition also denotes spatial con-
tainment. In other words, e v N means that the union of the node regions for the nodes in N completely
encloses the region covered by the object or node e. Informally, our definition of consistency means that if
p is the point in e (or, more accurately, in the region that corresponds to it) closest to q, then p must also be
contained in the region covered by some node in N . Note that since we assume spatial indexes that form
a tree hierarchy (i.e., each nonroot node has exactly one parent), in the case of nodes the definition above
simplifies to the following condition: if n0 is a child node of node n, then dn(q; n) � dn(q; n0).

An easy way to ensure consistency is to base both functions on the same metric dp(p1; p2) for points; com-
mon choices of metrics include the Euclidean, Manhattan and Chessboard metrics. We then define d(q; e) :=
minp12q;p22e dp(p1; p2), where e is either a spatial object or a node region. It is important to note that this
is not the only way to define consistent distance functions. When d is defined based on a metric dp, its con-
sistency is guaranteed by the properties of dp, specifically, nonnegativity and the triangle inequality. The
nonnegativity property states, among other things, that dp(p; p) = 0, and the triangle inequality states that
dp(p1; p3) � dp(p1; p2) + dp(p2; p3). Since e is spatially contained in N , e and N have points in common,
so their distance is zero. Thus, according to the triangle inequality, d(q; e) � d(q;N)+ d(N; e) = d(q;N),
using a broad definition of d (to allow d(N; e), which equals 0). Note that if the distance functions are de-
fined in this way, the distance from a query object to a node that intersects it is zero (i.e., it is not equal to the
distance to the boundary of the node region).

The incremental nearest neighbor algorithm works in any number of dimensions, although the examples
we give are restricted to two dimensions. Also, the query object need not be in the space of the dataset.

4.2 Algorithm Description

We first consider a regular recursive top-down traversal of the index to locate a leaf node containing the query
object. Note that there may be more than one such node. The traversal is initiated with the root node of the
spatial index (i.e., the node spanning the whole index space) as the second argument.

FINDLEAF(QueryObject, Node)

1 if QueryObject is in node Node then
2 if Node is a leaf node then
3 Report leaf node Node
4 else
2In most spatial data structures, each node has only one parent node; the hB-tree is an exception.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 7

5 for each Child of node Node do
6 FINDLEAF(QueryObject, Child)
7 enddo
8 endif
9 endif

The first task is to extend the algorithm to find the object nearest to the query object. In particular, once a
leaf node containing QueryObject has been found in line 3, we could start by examining the objects contained
in that node. However, the object closest to the query object might reside in another node. Finding that node
may in fact require unwinding the recursion to the top and descending again deeper into the tree. Furthermore,
once that node has been found, it does not aid in finding the next nearest object.

To resolve this dilemma, we replace the recursion stack of the regular top-down traversal with a priority
queue. In addition to using the priority queue for nodes, objects are also put on the queue as leaf nodes are
processed. The key used to order the elements on the queue is distance from the query object. In order to
distinguish between two elements at equal distances from the query object, we adopt the convention that
nodes are ordered before objects, while objects are ordered according to some arbitrary (but unique) rule.
This secondary ordering makes it possible to avoid reporting an object more than once, which is necessary
when using a disjoint decomposition, e.g., a PMR quadtree [42] or an R+-tree [50], in which nonpoint objects
may be associated with more than one node.

A node is not examined until it reaches the head of the queue. At this time, all nodes and objects closer to
the query object have been examined. Initially, the node spanning the whole index space is the sole element
in the priority queue. At subsequent steps, the element at the head of the queue (i.e., the closest element not
yet examined) is retrieved, and this is repeated until the queue has been emptied. Informally, we can visualize
the progress of the algorithm for a query object q as follows, when q is a point (see Figure 2). We start by
locating the leaf node(s) containing q. Next, imagine a circle centered at q being expanded from a starting
radius of 0; we call this circle the search region. Each time the circle hits the boundary of a node region, the
contents of that node are put on the queue, and each time the circle hits an object, we have found the object
next nearest to q. Note that when the circle hits a node or an object, we are guaranteed that the node or object
is already in the priority queue, since the node that contains it must already have been hit (this is guaranteed
by the consistency condition).

Figure 3 presents the algorithm. Lines 1–2 initialize the queue. Notice that it is not really necessary to
provide the correct distance when enqueueing the root node, since it will always be dequeued first. In line 9,
the next closest object is reported. At that point, some other routine (such as a query engine) can take control,
possibly resuming the algorithm at a later time to get the next closest object, or alternately terminating it if
no more objects are desired.

Recall that for some types of spatial indexes, a spatial object may span several nodes. In such a case, the
algorithm must guard against objects being reported more than once [2]. The test (i.e., the if statement) in
line 12 ensures that objects that have already been reported are not put on the queue again. (Note that this
test is not needed in the case when Element is a nonleaf node, as it holds implicitly by the assumption that
child nodes are fully contained in their parent nodes.) For this to work properly, nodes must be retrieved from
the queue before spatial objects at the same distance. Otherwise, an object may be retrieved from the queue
before a node n containing it that is at the same distance from the query object (this means that the object
was contained in another node that has already been dequeued). When the object is then encountered again
in node n, there is no way of knowing that it has already been reported. The loop in lines 6–8 eliminates
duplicate instances of an object from the queue. By inducing an ordering on objects that are at the same
distance from the query object, all of the instances of an object will be clustered at the front of the queue
when the first instance reaches the front. We explicitly check for duplicates in this manner because for many

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 8

q

o

Figure 2: The circle around query object q depicts the search region after re-
porting o as next nearest object. For simplicity, the leaf nodes are represented
by a grid; in most spatial indexes, the shapes of the leaf nodes are more irregu-
lar than in a grid. Only the shaded leaf nodes are accessed by the incremental
nearest neighbor algorithm. The region with darker shading is where we find
the objects in the priority queue.

INCNEAREST(QueryObject, SpatialIndex)

1 Queue NEWPRIORITYQUEUE()
2 ENQUEUE(Queue, SpatialIndex.RootNode, 0)
3 while not ISEMPTY(Queue) do
4 Element DEQUEUE(Queue)
5 if Element is a spatial object then
6 while Element = FIRST(Queue) do
7 DELETEFIRST(Queue)
8 enddo
9 Report Element

10 elseif Element is a leaf node then
11 for each Object in leaf node Element do
12 if DIST(QueryObject, Object) � DIST(QueryObject, Element) then
13 ENQUEUE(Queue, Object, DIST(QueryObject, Object))
14 endif
15 enddo
16 else /* Element is a nonleaf node */
17 for each Child node of node Element in SpatialIndex do
18 ENQUEUE(Queue, Child, DIST(QueryObject, Child))
19 enddo
20 endif
21 enddo

Figure 3: Incremental nearest neighbor algorithm.

priority queue implementations (e.g., binary heap), it is not efficient to detect duplicates among the queue
elements, as these implementations only maintain a partial among the elements. A possible alternative is
to use a priority queue implementation that maintains a total order among all the queue elements (e.g., a
balanced binary tree) and thus is able to detect duplicates efficiently.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 9

4.3 Adapting to R-trees

In this section, we demonstrate how to adapt the general incremental algorithm presented above to R-trees
by exploiting some of the unique properties of R-trees. If the spatial objects are stored external to the R-tree,
such that leaf nodes contain only bounding rectangles for objects, then this adaptation leads to a considerably
more efficient (and conceptually different) incremental algorithm. This enables the bounding rectangles to
be used as pruning devices, thereby reducing the disk I/O needed to access the spatial descriptions of the
objects. In addition, R-trees store each object just once, making it unnecessary to worry about reporting an
object more than once. This also removes the need to enforce the secondary ordering on the priority queue
used by the general algorithm (see Section 4.2).

The inputs to the R-tree incremental nearest neighbor algorithm are a query object q and an R-tree R
containing a set of spatial data objects. As with the general incremental nearest neighbor algorithm, the data
objects as well as the query object may be of any dimension and of arbitrary type (e.g., points, rectangles,
polygons, etc.), as long as consistent distance functions are used for calculating the distance from q to data
objects and bounding rectangles. In the case of an R-tree, this means that if e is a data object or a rectangle
completely contained in rectangle r, then d(q; r) � d(q; e).

The general algorithm can be used virtually unchanged if object geometry is stored in the R-tree leaf
nodes, the only changes being the ones already described. If the spatial objects are stored external to the R-
tree, the primary difference from the general algorithm is in the use of the bounding rectangles stored in the
leaf nodes. To exploit that information, a third type of queue element is introduced: object bounding rectan-
gle. The distance of an object bounding rectangle is never greater than the distance of the object, provided the
distance functions used are consistent. Informally, the modifications to the algorithm are as follows: When
an R-tree leaf is being processed in the main loop of the algorithm, instead of computing the real distances of
the objects, the distances of their bounding boxes are computed and inserted into the queue. Only when an
object’s bounding box is retrieved from the queue is the actual distance computed. If the object is closer to
the query object than the next element on the priority queue, it can be reported as the next nearest neighbor.
Otherwise, the object is inserted into the queue with its real distance.

Figure 4 shows our algorithm. In lines 1–2, the queue is initialized. In line 9, the next closest object is
reported. In line 7, an object p is enqueued with its real distance as the key after it has been determined that
there are elements on the queue with a key less than the real distance from p to the query object q. If there are
no such elements, p is reported as the next nearest object. Line 13 enqueues an object bounding rectangle;
brackets around Object signal that it is not the object itself but instead the bounding rectangle along with a
pointer to the corresponding object. The general incremental nearest neighbor algorithm had an extra test at
this point to guard against reporting duplicates, but that is not needed here.

The R-tree variant given above can be used for any spatial data structure method that separates the stor-
age of bounding rectangles and the actual geometric descriptions of objects. For complex objects, for exam-
ple polygons, one can even conceive of several levels of refinement, e.g., with the use of orthogonal poly-
gons [17].

4.4 Example

As an example, suppose that we want to find the three nearest neighbors to query pointq in the R-tree given in
Figure 1, where the spatial objects are line segments which are stored external to the R-tree. Below, we show
the steps of the algorithm and the contents of the priority queue. The algorithm must compute the distances
between q and the line segments and bounding rectangles. These distances are given in Table 1 (BR means
bounding rectangle). They are based on an arbitrary coordinate system and are approximate. When depicting

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 10
INCNEAREST(QueryObject, R-tree)

1 Queue NEWPRIORITYQUEUE()
2 ENQUEUE(Queue, R-tree.RootNode, 0)
3 while not ISEMPTY(Queue) do
4 Element DEQUEUE(Queue)
5 if Element is an object or its bounding rectangle then
6 if Element is the bounding rectangle of Object and not ISEMPTY(Queue)

and DIST(QueryObject, Object) > FIRST(Queue).Key then
7 ENQUEUE(Queue, Object, DIST(QueryObject, Object))
8 else
9 Report Element (or if bounding rectangle, the associated object)

as the next nearest object
10 endif
11 elseif Element is a leaf node then
12 for each entry (Object, Rect) in leaf node Element do
13 ENQUEUE(Queue, [Object], DIST(QueryObject, Rect))
14 enddo
15 else /* Element is a nonleaf node */
16 for each entry (Node, Rect) in node Element do
17 ENQUEUE(Queue, Node, DIST(QueryObject, Rect))
18 enddo
19 endif
20 enddo

Figure 4: Incremental nearest neighbor algorithm for an R-tree where spatial
objects are stored external to the R-tree.

Seg. Dist. BR Dist.
a 17 13
b 48 27
c 57 53
d 59 30
e 48 45
f 86 74
g 81 74
h 17 17
i 21 0

BR Dist.
R0 0
R1 0
R2 0
R3 13
R4 11
R5 0
R6 44

Table 1: Distances of line segments and bounding rectangles from the query
point q in the R-tree of Figure 1.

the contents of the priority queue, the line segments and bounding rectangles are listed with their distances,
in increasing order of distance, with ties broken using alphabetical ordering. Bounding rectangles of objects
are denoted by the corresponding object names embedded in brackets (e.g., [h]). The algorithm starts by
enqueueing R0, after which it executes the following steps:

1. Dequeue R0, enqueue R1 and R2. Queue: f(R1,0), (R2,0)g.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 11

2. Dequeue R1, enqueue R3 and R4. Queue: f(R2,0), (R4,11), (R3,13)g.

3. Dequeue R2, enqueue R5 and R6. Queue: f(R5,0), (R4,11), (R3,13), (R6,44)g.

4. Dequeue R5, enqueue [c] and [i] (i.e., the bounding rectangles of c and i). Queue: f([i],0),
(R4,11), (R3,13), (R6,44), ([c],53)g.

5. Dequeue [i]. The distance of i is 21, which is larger than the distance of R4, so enqueue i. Queue:
f(R4,11), (R3,13), (i,21), (R6,44), ([c],53)g.

6. Dequeue R4, and enqueue [d], [g], and [h]. Queue: f(R3,13), ([h],17), (i,21), ([d],30),
(R6,44), ([c],53), ([g],74)g.

7. DequeueR3, enqueue[a] and[b]. Queue: f([a],13), ([h],17), (i,21), ([b],27), ([d],30),
(R6,44), ([c],53), ([g],74)g.

8. Dequeue [a]. The distance of a is 17, which is not larger than the distance of [h], so a is reported as
nearest neighbor. Queue: f([h],17), (i,21), ([b],27), ([d],30), (R6,44), ([c],53), ([g],74)g.

9. Dequeue [h]. The distance of h is 17, which is not larger than the distance of i, so h is reported as
second nearest neighbor. Queue: f(i,21), ([b],27), ([d],30), (R6,44), ([c],53), ([g],74)g.

10. Dequeue i and report it as third nearest neighbor.

Observe that node R6 is left on the priority queue at the end of the execution. This corresponds to the
k-nearest neighbor algorithm not being invoked on that node (see Section 5.2). For larger examples, the
incremental algorithm will generally achieve more pruning than the k-nearest neighbor algorithm, but never
less.

Also note that the second and third nearest neighbors were obtained with very little additional work once
the nearest neighbor was found. This is often the case with the incremental nearest neighbor algorithm re-
gardless of the underlying spatial index. In other words, once the nearest neighbor has been found, the next
few nearest neighbors can be retrieved with virtually no additional work.

4.5 Variants

With relatively minor modifications, the incremental nearest neighbor algorithm can be used to find the far-
thest object from the query object. In this case, the queue elements are sorted in decreasing order of their
distances. This is not enough, though, since objects or nodes contained in a node n are generally at larger
distances from the query object q than n is. This means that elements would be enqueued with larger keys
than the node they are contained in, which breaks the condition that elements are dequeued in decreasing
order of distance. Instead, the key used for a node n on the queue must be an upper bound on the distance
from q to an object in the subtree at n, e.g., dmax(q; n) = maxp2n dp(q; p). The function implementing dmax

must satisfy a consistency condition similar to that defined above for dn; the only difference is that for dmax,
we replace � in the condition by �.

Another extension to the algorithm is to allow a minimum and a maximum to be imposed on the distances
of objects that are reported. However, in order to effectively utilize a minimum, the distance function dmax

defined above is needed. Then, a node n is put on the queue only if dmax(q; n) is greater or equal to the
minimum desired distance. Notice that in this case, the algorithm performs a spatial selection operation in
addition to the ranking.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 12

Figure 5 gives a version of the algorithm with these two extensions added. The arguments Min and Max
specify the minimum and maximum desired distance, and DoFarthest is a Boolean variable that is true when
the farthest object is desired. In the latter case, negative distances are used as keys for the priority queue, so
that elements get sorted in decreasing order of distance. The condition KeySign(d � e) � 0 in line 19 of
Figure 5 encompasses the conditions d � e and d � e, for when DoFarthest is false and true, respectively.
In line 16, the key of the leaf node is assigned to e. This is the minimum or maximum distance of the node,
depending on the value of DoFarthest. The reason for multiplying the key by KeySign in line 16 is to cancel
out the effect of multiplying the value of d by KeySign in line 33, which makes it negative when looking for
the farthest objects.

A powerful way of extending the incremental nearest neighbor algorithm is to combine it with other spa-
tial queries and/or restrictions on the objects or nodes. As an example, the algorithm can be combined with a
range query by checking each object and node against the range prior to inserting it onto the priority queue,
and rejecting those that do not fall in the range. Many such combined queries can be obtained by manipulat-
ing the distance functions so that they return special values for objects and nodes that should be rejected.

The incremental nearest neighbor algorithmcan clearly be used to solve the traditionalk-nearest neighbor
problem, i.e., given k and a query object q find the k nearest neighbors of q. This is done by simply retrieving
k neighbors with the algorithm and terminating once they have all been determined.

4.6 Analysis

Performing a comprehensive theoretical analysis of the incremental nearest neighbor algorithm is compli-
cated, especially for high-dimensional spaces. Prior work in this area is limited to the case where both the
data objects and the query object are points [8, 26]. A number of simplifying assumptions were made, e.g.,
that the data objects are uniformly distributed in the data space. In this section, we discuss some of the issues
involved, and sketch a rudimentary analysis for two-dimensional points, based on the one in [26].

We wish to analyze the situation after finding the k nearest neighbors. Let o be the kth nearest neighbor of
the query object q, and let r be the distance of o from q. The region within distance r from q is called the search
region. Since we assume that q is a point, the search region is a circle (or a hypersphere in higher dimensions)
with radius r. Figure 2 depicts this scenario. Observe that all objects inside the search region have already
been reported by the algorithm (as the next nearest object), while all nodes intersecting the search region
have been examined and their contents put on the priority queue. A further insight can be obtained about
the contents of the priority queue by noting that if n is a node that is completely inside the search region, all
nodes and objects in the subtree rooted at n have already been taken off the queue. Thus all elements on the
priority queue are contained in nodes intersecting the boundary of the search region (the dark shaded region
in Figure 2).

Before proceeding any further, we point out that the algorithm does not access any nodes or objects that
lie entirely outside the search region (i.e., that are farther from q than o is). This follows directly from the
queue order and the consistency conditions. In particular, the elements are retrieved from the priority queue
in order of distance, and the consistency conditions guarantee that we never insert elements into the queue
with smaller distances than that of the element last dequeued. Conversely, any algorithm that uses a spatial
index must visit all the nodes that intersect the search region; otherwise, it may miss some objects that are
closer to the query object than o. Thus we have established that the algorithm visits the minimal number of
nodes necessary for finding the kth nearest neighbor. This can be characterized by saying that the algorithm
is optimal with respect to the structure of the spatial index. However, this does not mean that the algorithm
is optimal with respect to the nearest neighbor problem; how close the algorithm comes to being optimal in
this respect depends on the spatial index.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 13
INCNEAREST(QueryObject, SpatialIndex, Min, Max, DoFarthest)

1 Queue NEWPRIORITYQUEUE()
2 ENQUEUE(Queue, SpatialIndex.RootNode, 0)
3 if DoFarthest then
4 KeySign �1
5 else
6 KeySign 1
7 endif
8 while not ISEMPTY(Queue) do
9 Element DEQUEUE(Queue)

10 if Element is a spatial object then
11 while Element = FIRST(Queue) do
12 DELETEFIRST(Queue)
13 enddo
14 Report Element
15 elseif Element is a leaf node then
16 e Element.Key*KeySign
17 for each Object in leaf node Element do
18 d DIST(QueryObject, Object)
19 if d � Min and d � Max and KeySign�(d� e) � 0 then
20 ENQUEUE(Queue, Object, KeySign � d)
21 endif
22 enddo
23 else /* Element is a nonleaf node */
24 for each Child node of node Element in SpatialIndex do
25 dmin MINDIST(QueryObject,Child)
26 dmax MAXDIST(QueryObject,Child)
27 if dmax �Min and dmin �Max then
28 if DoFarthest then
29 d dmax

30 else
31 d dmin

32 endif
33 ENQUEUE(Queue, Child, KeySign � d)
34 endif
35 enddo
36 endif
37 enddo

Figure 5: Enhanced incremental nearest neighbor algorithm

Generally, two steps are needed to derive performance measures for the incremental nearest neighbor
algorithm. First, the expected area of the search region is determined. Then, based on the expected area
of the search region and an assumed distribution of the locations and sizes of the leaf nodes, we can de-
rive such measures as the expected number of leaf nodes accessed by the algorithm (i.e., intersected by the
search region) or the expected number of objects in the priority queue. Henrich [26] describes one such ap-
proach, which uses a number of simplifying assumptions. In particular, it assumes N uniformly distributed
data points in the two-dimensional interval [0; 1] � [0; 1], the leaf nodes are assumed to form a grid at the

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 14

lowest level of the spatial index with average occupancy of c points, and the search region is assumed to be
completely contained in the data space. Since we assume uniformly distributed points, the expected area of
the search region is k=N and the expected area of the leaf node regions is c=N . The area of a circle of radius

r is �r2, so for the search region we have �r2 = k=N , which means that its radius is r =
q

k
�N

. The leaf

node regions are squares, so their side length is s =
p
c=N . Henrich [26] points out that the number of leaf

node regions intersected by the boundary of the search region is the same as that intersected by the boundary
of its circumscribed square. Each of the four sides of the circumscribed square intersects b2r=sc � 2r=s leaf
node regions. Since each two adjacent sides intersect the same leaf node region at a corner of the square, the
expected number of leaf node regions intersected by the search region is bounded by

4(2r=s� 1) = 4

2
p
k=(�N)p
c=N

� 1

!
= 4

0
@2

s
k

�c
� 1

1
A :

It is reasonable to assume that, on the average, half of the c points in these leaf nodes are inside the search
region, while half are outside. Thus the expected number of points remaining in the priority queue (the points
in the dark shaded region in Figure 2) is at most

c

2
4

0
@2

s
k

�c
� 1

1
A = 2c

0
@2
s

k

�c
� 1

1
A =

4p
�

p
ck � 2c � 2:26

p
ck � 2c:

The number of points inside the search region (the light shaded region in Figure 2) is k. Thus the expected
number of points in leaf nodes intersected by the search region is at most k+2:26

p
ck� 2c. Since each leaf

node contains c points, the expected number of leaf nodes that were accessed to get these points is bounded
by k=c+ 2:26

p
k=c� 2.

To summarize, the expected number of leaf node accesses is O(k +
p
k) and the expected number of

objects in the priority queue is O(
p
k). Intuitively, the “extra work” done by the algorithm comes from the

boundary of the search region. Roughly speaking, the k term in the expected number of leaf node accesses
accounts for the leaf nodes completely inside the search region, while the

p
k term accounts for the leaf nodes

intersected by the boundary of the search region. The points on the priority queue lie outside the search region
(since otherwise they would have been taken off the queue) but inside leaf nodes intersected by the boundary
of the search region. If the average leaf node occupancy and average node fan-out are fairly high (say 50 or
more), the number of leaf node accesses dominates the number of nonleaf node accesses, and the number of
objects on the priority queue greatly exceeds the number of nodes on the queue. Thus we can approximate
the total number of node accesses and total number of priority queue elements by the number of leaf node
accesses and the number of objects on the priority queue. However, the traversal from the root of the spatial
index to a leaf node containing the query object will add an O(logN) term to both of these measures.

If the spatial index is disk-based, the cost of disk accesses is likely to dominate the cost of priority queue
operations. However, if the spatial index is memory-based, the priority queue operations are the single largest
cost factor for the algorithm. In typical priority queue implementations (e.g., binary heap), the cost of each
insertion and deletion operation isO(logm)wherem is the size of the priority queue. The number of objects
inserted into the priority queue isO(k+

p
k), each for a cost ofO(log

p
k) (since the expected size is bounded

by O(
p
k)), for a total cost of O(k +

p
k) � O(log

p
k) = O(k log k) (again, if we take the nonleaf nodes

into account, the formulas become somewhat more complicated).

The analysis that we have outlined is based on assumptions that generally do not hold in practice. In
particular, the data is rarely uniformly distributed and the search region often extends beyond the data space.
Nevertheless, our analysis allows fairly close predictions of actual behavior for two-dimensional point data
even when these assumptions do not hold. For higher dimensions the situation is somewhat more compli-
cated. A detailed analysis in that context is presented in [8].

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 15

4.7 Correctness

Now let us turn to the correctness of the algorithm in Figure 3. We ignore for the moment the issue of re-
porting an object more than once. Given a data object o, define its ancestor set, denoted by A(o), to include
o itself, leaf nodes n that contain o for which do(q; o) � dn(q; n) (at least one such node is guaranteed to
exist by the consistency of the distance functions), and all ancestors n0 of n. Applied recursively, the con-
sistency property ensures that do(q; o) � dn(q; n

0). The elements in A(o) can be interpreted as representing
the object o. The following theorem guarantees that an unreported object always has a representative on the
queue. This directly implies that every object will eventually be reported, since only bounded numbers of
objects and nodes are ever put on the queue.

Theorem Let R be the set of objects already reported, and Q the set of elements on the queue.
The following is an invariant for the outer while-loop of INCNEAREST: For each object o in
SpatialIndex, we have A(o)\ (Q[R) 6= ; (i.e., at least one element in A(o) is in Q or in R).

Proof: We prove the theorem for an arbitrary object o by induction. Since we choose o arbitrarily,
the proof holds for all objects. The induction is on the number of loop executions. If we can
show that the invariant holds before the first execution, and that no loop execution falsifies it (i.e.,
makes it not hold after the execution of the loop, assuming that it held before the execution), then
we have shown that the invariant always holds. Clearly, it holds initially, as the only element on
the queue is the root node of SpatialIndex, and the root is an ancestor of all nodes and thus is in
A(o) for o.

Now assume that the invariant holds at the beginning of an execution of the while-loop. We
will show that it also holds at the end of it. If o 2 R (i.e., o has been reported), the invariant
trivially holds, as owill not be affected during the loop execution. Otherwise, by the assumption
that the invariant holds, there exists some a 2 A(o) such that a 2 Q. The invariant is unaffected
if the next element to be dequeued is not a, so let us assume that a will be dequeued next.

If a = o, then o is subsequently reported, thereby moving from Q to R, and the invariant is
maintained. If a is a node, we consider the case of a leaf and nonleaf node separately:

1. If a is a leaf node, the for-loop at line 11 enqueues all objects with a distance from q of at
least dn(q; a) (i.e., at least DIST(QueryObject ;Element)). Since o is stored in a (recall
that a 2 A(o)) and since do(q; o) � dn(q; a) by the construction of A(o), o is indeed put
on the queue.

2. If a is a nonleaf node, then all its child nodes are enqueued. Since a is in A(o) (i.e., a is
an ancestor of a leaf node n that contains o), at least one of the child nodes of a is in A(o),
maintaining the invariant.

Thus we see that for both leaf and nonleaf nodes, at least one of the enqueued elements is
in A(o). Thus the invariant is maintained for object o. Since o was chosen arbitrarily, we have
thus shown that the invariant holds for all objects.

As mentioned, the theorem guarantees that an unreported object always has a representative on the queue.
Since elements are retrieved from the queue in order of distance, and all elements inA(o) are no farther from
the query point than o, at some point o will be put on the queue and eventually reported. Also, when o is
reported, it is indeed the next closest object to q. If not, then there exists an unreported object o0 closer to q.
However, since all representatives of o0 are also closer to q than o is, at least one of them would be dequeued
before o, contradicting the assumption that o was most recently dequeued.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 16

The correctness of the duplicate removal (lines 6–8 in Figure 3) follows directly from the ordering im-
posed on the priority queue. Thus the only way an object can be reported more than once is if it is inserted
again into the queue after it has been reported. However, this is avoided by the test in line 12, and the fact
that nodes are always processed before objects at the same distance from the query object.

4.8 Priority Queue

The cost of priority queue operations plays a role in the performance of the incremental nearest neighbor
algorithm. The larger the queue size gets, the more costly each operation becomes. Also, if the queue gets
too large to fit in memory, its contents must be stored in a disk-based structure instead of in memory, making
each operation even more costly. An example of the worst case of the queue size for the R-tree incremental
nearest neighbor algorithm arises when all leaf nodes are within distance d from the query object q, while
all data objects are farther away from q than d. This is shown in Figure 6 where the query object as well
as the data objects are points. In this case, all leaf nodes must be processed by the incremental algorithm,
and all data objects must be inserted into the priority queue before the nearest neighbor can be determined.
Note that any nearest neighbor algorithm that uses this R-tree has to visit all the leaf nodes, since the nearest
neighbor is farther away from the query object than all the leaf nodes, and there is no other way to make sure
that we have seen the nearest neighbor. Furthermore, note that a worst case like that depicted in Figure 6 is
highly unlikely to arise in practice since it depends on a particular configuration of both the data objects and
the query object.

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

Figure 6: An example of an R-tree of points with node capacity of 8, showing a
worst case for nearest neighbor search.

As pointed out in Section 4.6, the objects on the priority queue are contained in leaf nodes intersected by
the boundary of the search region. For two-dimensional uniformly distributed data points we mentioned that
the expected number of points in the priority queue when finding the k nearest neighbors is O(

p
k). Even

if k is as large as several hundred million (of course, the data set has to be even larger than k), the size of
the priority queue is still manageable for keeping in memory. However, more complex objects than points
and very skewed data distributions may cause larger proportions of the objects to be inserted into the priority
queue. Moreover, as the number of dimensions grows, the size of the priority queue as a function of k tends
to get larger (see Section 7). Thus we must be prepared to deal with a very large priority queue.

In cases where the priority queue exceeds the size of available memory it must be stored in whole or in
part in a disk-resident structure. One possibility is to use a B-tree structure to store the entire contents of

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 17

the priority queue. With proper buffer management, we should be able to arrange that the B-tree nodes that
store elements with smaller distances (which will get dequeued early) will be kept in memory. However, we
believe that when the priority queue actually fits in memory, using B-trees will be considerably slower than
using fast heap-based approaches [20], since the B-tree must expend more work on maintaining the queue
elements in fully sorted order. In contrast, heap methods impose a much looser structure on the elements. A
hybrid scheme for storing the priority queue, where a portion of the priority queue is kept in memory and a
portion is kept on disk, therefore seems more appropriate.

A simple way to implement a hybrid memory/disk-based priority queue is to partition the queue elements
based on distance. Below, we outline how this can be done. The contents of the priority queue are split into
three tiers. The first tier is kept in a memory-based heap structure, while the second and third tiers are kept
in a disk file (the difference is that a little more structure is imposed on the contents of the second tier). Let
D0; D1; D2; : : : ; Dm be some monotonically increasing sequence, whereD0 = 0 andDm is an upper bound
on the largest possible distance from the query object q to a data object (e.g., the distance from q to the farthest
corner of the data space). We use the sequence to define ranges of distances, and associate different ranges
with the various tiers. When a new element with a distance of r from the query object is inserted into the
priority queue, that element gets added to the tier whose associated distance range matches r. Initially, tier 1
is associated with the distance range [D0; D1) (i.e., queue elements in this range are stored in the memory-
based heap structure), tier 2 with the range [D1; Dp), and tier 3 with the range [Dp+1; Dm). The contents of
tier 2 are divided into p ranges, [D1; D2); [D2; D3); : : : ; [Dp; Dp+1). The value of p depends on how many
ranges it is cost-effective to maintain, but it can be as high as m. When tier 1 is exhausted, we move the
elements in distance range [D1; D2) from tier 2 to tier 1 and associate tier 1 with that distance range. The
next time tier 1 is exhausted, we move elements in distance range [D2; D3) into tier 1, and so on. If this
happens often enough, eventually we will exhaust tier 2. When this happens, we scan the entire contents of
tier 3 and rebuild tiers 1 and 2 with new ranges. Note that moving elements from tier 3 to tier 2 only when
tier 2 is exhausted rather than each time tier 1 is exhausted reduces the number of scans of tier 3, which may
contain a large number of elements.

In general, when the distance of the elements at the head of the priority queue is in the range [Di; Di+1)
for some i = 0; : : : ; m (i.e., all neighbors with distances less than Di from q have already been reported),
then tier 1 is associated with the range [Di; Di+1), tier 2 with the range [Di+1; Di+s+1), and tier 3 with the
range [Di+s+2; Dm), where s = p � (imod p). We keep the elements in tier 2 in a set of linked lists, one
for each interval [Dj ; Dj+1) where j = i + 1; : : : ; i + s. In order to save on disk I/Os, we can associate
a buffer with each of these linked lists and group elements into pages of fixed size. An alternative to using
linked lists within the same file is to use a separate file for each range. Also, rather than associating range
[Di+1; Di+s+1) with tier 2, we can associate with it the entire range [Di+1; Di+p+1), so that newly inserted
elements in that range get inserted into tier 2 rather than tier 3. However, we still do not want to scan tier
3 each time we exhaust tier 1, so tier 3 will also contain elements in the range [Di+s+1; Di+p+1). These
elements get moved into tier 2 when tier 3 gets scanned next, which happens when imod p = 0.

A variation of this technique is to use an additional tier, between tier 1 and tier 2, in which elements are
stored in an unsorted list in memory. The idea is that because we limit the size of the memory-based heap,
the insertion and deletion operations on it are less expensive. Keeping the new tier 2 in memory but outside
the heap makes it inexpensive to add elements to it (i.e., this does not require disk I/Os). Moreover, if only
a small number of neighbors is requested, the elements in tier 2 will never need to be placed on the heap.

The remaining question is how to choose the sequence D0; D1; D2; :::; Dm. A naive way is to simply
guess some distance threshold DT , and then set Di = i � DT . Alternatively, we can assume some data
distribution and use it to derive an appropriate sequence. For example, recall from Section 4.6 that under the
assumptions made there, the expected number of leaf nodes intersected by the boundary of a search region of
radius r is bounded by 4(2r=s� 1), where s =

p
c=N is the expected side length of each leaf node region.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 18

Again, assuming that half of the points in these nodes (i.e., c=2) are outside the search region, the expected
number of points on the priority queue is at most c

2
4(2r=s�1) = 2c(2r=s�1). Assuming that we have space

in memory for M priority queue elements means that Di must satisfy the equation i �M = 2c(2Di=s� 1),
so that

Di =

�
i �M
2c

+ 1

�
=2 � s:

Of course, this derivation is based on assumptions that generally do not hold in practice. Nevertheless, it
should work fairly well in practice for two-dimensional points. Moreover, it gives an indication of how to
obtain such a sequence for other ways of analyzing the size of the priority queue.

5 k-Nearest Neighbor Search in R-trees

An alternative approach to nearest neighbor search in R-trees was proposed in [45]. This approach is appli-
cable when finding the k nearest neighbors where k is fixed in advance. This is in contrast to the incremental
nearest neighbor algorithm, where k does not have to be fixed in advance. The key idea of the k-nearest
neighbor algorithm is to maintain a global list of the candidate k nearest neighbors as the R-tree is traversed
in a depth-first manner. As we will see, the fact that the k-nearest neighbor algorithm employs a pure depth-
first traversal means that at any step the algorithm can only make local decisions about which node to visit
(i.e., the next node to visit must be a child node of the current node), whereas our incremental nearest neigh-
bor algorithm makes global decisions based on the contents of the priority queue (i.e., it can choose among
the child nodes of all nodes that have already been visited).

In this section, we first describe a somewhat simplified version of the k-nearest neighbor algorithm in [45]
and show an example of its execution. Next, we prove that our simplified version is in fact equivalent to the
algorithm presented in [45]: Both versions visit the same nodes in the R-tree. Finally, we show how the
k-nearest neighbor algorithm can be transformed in a sequence of steps into an incremental algorithm.

5.1 Algorithm Description

In the k-nearest neighbor algorithm [45], the R-tree is traversed in a depth-first manner. The complications
mentioned in Section 4 that arise in performing nearest neighbor search with a depth-first traversal are over-
come by maintaining a list of the candidate k nearest neighbors. In particular, once we reach a leaf node
containing the query object, we insert the contents of that node into the candidate list, and unwind the re-
cursive traversal of the tree. Once the candidate list contains k members, the largest distance of any of its
members from the query object can be used to prune the search.

Figure 7 shows the k-nearest neighbor algorithm. In the figure, NearestList denotes the list of the k can-
didate nearest neighbors, and NearestList.MaxDist denotes the largest distance from the query object of any
of the members of NearestList; if NearestList contains fewer than k members, this distance is taken to be
1. When an object is inserted into NearestList in line 4 of KNEARESTTRAVERSAL, an existing member is
replaced if the list already contains k members. In particular, we replace the member that is farthest from
the query object (i.e., the one at distance NearestList.MaxDist). Before inserting an object into NearestList,
we first make sure that its distance from the query object is smaller than NearestList.MaxDist (line 3 of KN-
EARESTTRAVERSAL). Note that NearestList.MaxDist decreases monotonically as more objects are inserted
into the list, since we always replace objects with objects closer to the query object.

In KNEARESTTRAVERSAL, if Node is a nonleaf node, its child nodes are visited in order of distance
from the query object. This is done by building the list ActiveBranchList of the entries in Node, and sorting

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 19

it by distance from the query object (see Section 5.3 for different ways of defining this order). Next, we iter-
ate through the list (in the sorted order) and recursively invoke KNEARESTTRAVERSAL on the child nodes.
Once the distance of Child from the query object is larger than NearestList.MaxDist, we ignore Child and
the rest of the entries in ActiveBranchList. We can do this because this means that no object in the subtree of
Child (or the remaining entries in ActiveBranchList) will get inserted into NearestList.

KNEAREST(k, QueryObject, SpatialIndex)

1 NearestList NEWLIST(k)
2 KNEARESTTRAVERSAL(NearestList, k, QueryObject, SpatialIndex.RootNode)
3 return NearestList

KNEARESTTRAVERSAL(NearestList, k, QueryObject, Node)

1 if Node is a leaf node then
2 for each Object in Node do
3 if DIST(QueryObject, Object) < NearestList.MaxDist then
4 INSERT(NearestList, DIST(QueryObject, Object), Object)
5 endif
6 enddo
7 else
8 ActiveBranchList entries in Node
9 SORTBRANCHLIST(QueryObject, ActiveBranchList)

10 for each Child node in ActiveBranchList do
11 if DIST(QueryObject, Child) < NearestList.MaxDist then
12 KNEARESTTRAVERSAL(NearestList, k, QueryObject, Child)
13 else
14 exit loop
15 endif
16 enddo
17 endif

Figure 7: k-nearest neighbor algorithm.

The difference between the k-nearest neighbor algorithm in Figure 7 and the original presentation in [45]
is in the treatment of ActiveBranchList. We use only one pruning strategy to eliminate entries from considera-
tion, by comparing their distances to NearestList.MaxDist, while [45] identifies two other pruning strategies.
However, in Section 5.4 we will show that the other two pruning strategies in fact do not allow any more
pruning than the one that we use.

If the objects are stored outside the R-tree (i.e., the R-tree leaf nodes contain bounding rectangles and
object references), a minor optimization can be made in line 4 of KNEARESTTRAVERSAL. We first com-
pute the distance from the query object to the bounding rectangle. Only if this distance is less than Near-
estList.MaxDist do we compute the real distance from Object to the query object. Otherwise, Object is not
accessed, thereby potentially saving a disk I/O, as in this scenario the objects are stored outside the R-tree.
Recall that d(q; r) � d(q; o) if r is a bounding rectangle of the object o, i.e., the distance of o from q is never
less than the distance of r from q.

In [45] it is suggested that a sorted buffer be used to store NearestList. However, we found that for large
values of k, the manipulation of NearestList started to become a major factor in the execution time of the al-
gorithm. Therefore, we replaced the sorted buffer with a simple priority queue structure, sorted in decreasing
order of distance, thereby making it easy to replace the farthest object.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 20

5.2 Example

As an example of the algorithm, we describe its use in finding the three nearest neighbors to query point q
in the R-tree given in Figure 1. Below, we show the steps of the algorithm and the contents of the Active-
BranchLists and of NearestList. The example makes use of the distances between q and the line segments
and bounding rectangles given in Table 1. An invocation with node x is denoted by k-NN(x). We start by
applying it to the root of the R-tree, R0. Next, we describe the subsequent invocations of the algorithm. Each
of the line segment elements in NearestList is listed along with its distance from q. In our specification of
NearestList we also list the maximum distance used for pruning (i.e., NearestList.MaxDist). Initially, Near-
estList is empty and the maximum distance is1.

1. k-NN(R0): ActiveBranchList for R0 is (R1, R2).

(a) k-NN(R1): ActiveBranchList for R1 is (R4, R3).

i. k-NN(R4): insert d, g, h on NearestList: f(h,17), (d,59), (g,81) : 81g.
ii. k-NN(R3): insert a, b in NearestList (replacing d, g): f(h,17), (a,17), (b,48) : 48g.

(b) k-NN(R2): ActiveBranchList for R2 is (R5, R6).

i. k-NN(R5): i replaces b, but c is too distant: f(h,17), (a,17), (i,21) : 21g.
ii. k-NN(R6): this invocation does not occur, as the distance of R6 from q is � 21.

The final contents of NearestList is f(h,17), (a,17), (i,21)g which is returned as the list of the three
nearest neighbors of q.

5.3 Node Ordering and Metrics

The ordering used to sort the elements in ActiveBranchList in Figure 7 can be based on various metrics for
measuring the distances between QueryObject and the elements’ bounding rectangles. Two such metrics are
considered in [45], MINDIST and MINMAXDIST. For bounding rectangle r of node n, MINDIST(q; r) is
the minimum possible distance from q to an object in the subtree rooted at n, while MINMAXDIST(q; r)
is the maximum distance from q at which an object in the subtree rooted at n is guaranteed to be found
(i.e., it is the minimum of the maximum distances at which an object can be found). MINDIST and MIN-
MAXDIST are calculated by using the geometry (i.e., position and size) of the bounding rectangle r of node
n and do not require examining the actual contents of n. A more precise definition is given as follows.
MINDIST(q; r) is the distance from q to the closest point on the boundary of r (not necessarily a corner),
while MINMAXDIST(q; r) is the distance from q to the closest corner of r that is “adjacent” to the corner
farthest from q. Figure 8 shows two examples of the calculation of MINDIST and MINMAXDIST, which are
shown with a solid and a broken line, respectively. Notice that for the bounding rectangle in Figure 8a the
distance from q to a is less than the distance from q to b, thereby accounting for the value of MINMAXDIST

being equal to the former rather than the latter, while the opposite is true for Figure 8b. In some sense, the
two orderings represent the optimistic (MINDIST) and the pessimistic (MINMAXDIST) choice. To see this,
observe that if r1 and r2 are minimum bounding rectangles in order of increasing value of MINDIST (i.e.,
MINDIST(q; r1) �MINDIST(q; r2)), then at best, r1 contains an object o1 at a distance close to its MINDIST

value, such that DIST(q; o1) �MINDIST(q; r2); but this need not hold, as r2 may contain an object closer to
q. If r1 and r2 are in order of increasing MINMAXDIST value, on the other hand, then in the worst case, the
object in r1 nearest to q is at distance MINMAXDIST(q; r1), which is no larger than MINMAXDIST(q; r2).

Experiments reported in [45] showed that ordering ActiveBranchList using MINDIST consistently per-
formed better than using MINMAXDIST. This was confirmed in our experiments, although we do not include

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 21

q

r

o

a

b

q

o

r

b

a

(a) (b)

Figure 8: An example of MINDIST (solid line) and MINMAXDIST (broken line)
for a bounding rectangle r. The distance of the object o from q is bounded from
below by MINDIST(q; r) and from above by MINMAXDIST(q; r). Notice that in
(b) point b is closer to q than point a while this is not the case in (a).

that result in Section 6 which describes our experimental findings. We suspect that this indicates that the op-
timism inherent in MINDIST usually provides a better estimate of the distance of the nearest object than the
pessimism inherent in MINMAXDIST, so that MINDIST order will in general lead to the nearest object(s) be-
ing found earlier in the ActiveBranchList. In this paper we therefore assume that ActiveBranchList is ordered
using MINDIST. In fact, the algorithm in Figure 7 depends on this, as we discuss at the end of Section 5.4.

The metrics have other uses, regardless of which one is used for ordering ActiveBranchList. Since MINDIST

represents the minimum distance at which an object could be found in a bounding rectangle r, it provides a
means of pruning nodes from the search, given that a bound on the maximum distance is available. On the
other hand, for any bounding rectangle r, MINMAXDIST(q; r) is an upper bound on the distance of the object
o nearest to q. It should be clear that MINMAXDIST by itself does not help in pruning the search, as objects
closer to q could be found in elements of n at positions with higher MINMAXDIST values. Moreover, since
it only bounds the distance at which the closest element can be found, this property is of limited value, as it
is only useful when we are seeking the nearest neighbor (i.e., k = 1).

5.4 Pruning Strategies

As already mentioned, the algorithm of [45] employs a set of three pruning strategies to prune entries from
ActiveBranchList as the entries are processed. Two classes of pruning strategies are identified in [45], termed
downward pruning and upward pruning. In downward pruning, entries on ActiveBranchList are eliminated
prior to processing the nodes (i.e., before entering the for-loop in line 10 of KNEARESTTRAVERSAL in Fig-
ure 7). In upward pruning, entries on ActiveBranchList are eliminated after processing each node (i.e., after
returning from the recursive call to KNEARESTTRAVERSAL in line 10 in Figure 7). Of the three pruning
strategies discussed in [45], two are said to be applicable to downward pruning and one to upward pruning.
Below, we will discuss these three pruning strategies in turn, and show that one of them is sufficient when
used in a combination of upward and downward pruning3.

Strategy 1 is used in downward pruning. It allows pruning an entry from ActiveBranchList whose bound-
ing rectangle r1 is such that MINDIST(q; r1) >MINMAXDIST(q; r2), where r2 is some other bounding rect-
angle in ActiveBranchList. However, as already pointed out, using MINMAXDIST for pruning is of limited
value as it is only useful when k = 1.

3It may appear that we use this pruning strategy only for upward pruning in line 11 of KNEARESTTRAVERSAL in Figure 7.
However, since the condition is checked before the recursive call to KNEARESTTRAVERSAL, the if statement actually does both
upward and downward pruning.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 22

Strategy 2 prunes an object o when DIST(q; o) >MINMAXDIST(q; r), where r is some bounding rect-
angle. Again, this strategy is only applicable to k = 1. This strategy is claimed to be of use in downward
pruning in [45], but its inclusion is somewhat puzzling, since it does not help in pruning nodes from the
search. It is possible that the authors intended strategy 2 to be used to prune objects in leaf nodes. However,
this does not appear to be particularly fruitful, since it still requires the objects to be accessed and their dis-
tances from q calculated. Another possible explanation for the inclusion of this strategy is that it can be used
to discard the nearest object found in a subtree s in ActiveBranchList after s has been processed. However,
the purpose of this is not clear, since a better candidate will replace this object later on, anyway.

Strategy 3 prunes any node from ActiveBranchList whose boundingrectangle r is such that MINDIST(q; r) >
NearestList:MaxDist . It is applicable for any value of k and in both downward and upward pruning. Note
that although strategy 3 is not explicitly labeled as a downward pruning strategy in [45], its use in down-
ward pruning is noted. In particular, before entering the for-loop in line 10 of KNEARESTTRAVERSAL in
Figure 7, we can eliminate entries in ActiveBranchList with distances larger than NearestList.MaxDist (no
pruning will occur, though, unless NearestList contains at least k entries).

Recalling that strategy 1 is only applicable when k = 1, it can be shown that even in this case apply-
ing strategy 3 in upward pruning eliminates at least as many bounding rectangles as applying strategy 1 in
downward pruning. To see this, let r be the bounding rectangle in ActiveBranchList with the smallest MIN-
MAXDIST value. Using strategy 1, we can prune any entry in ActiveBranchList with bounding rectangle r0

such that MINDIST(q; r0) >MINMAXDIST(q; r). However, strategy 1 will not prune r or any entry in Ac-
tiveBranchList preceding it, regardless of the ordering used. If ActiveBranchList is ordered based on MIN-
MAXDIST, this clearly holds, since MINDIST(q; r) �MINMAXDIST(q; r). If ActiveBranchList is ordered
based on MINDIST, the nodes preceding r have MINDIST values smaller than that of r, so their MINDIST

values must also be smaller than MINMAXDIST(q; r). Now, let us see what entries can be pruned from
ActiveBranchList by strategy 3 after processing the node corresponding to r. In particular, at that point,
DIST(q; o) �MINMAXDIST(q; r) where o is the candidate nearest object; this follows directly from the
definition of MINMAXDIST. Therefore, when strategy 3 (based on DIST(q; o)) is now applied to Active-
BranchList, it will prune at least as many entries as strategy 1 (based on MINMAXDIST(q; r)).

The fact that we have eliminated strategies 1 and 2, and we are interested in finding more than k neighbors,
implies that MINMAXDIST is not necessary for pruning as it is not involved in strategy 3. Thus, assuming
that MINMAXDIST is not used for node ordering, the CPU cost of the algorithm is reduced, since we do not
have to compute the MINMAXDIST value of each bounding rectangle; this is especially important because
MINMAXDIST is more expensive to compute than MINDIST. We also observe that there is really no need
to distinguish between downward and upward pruning in the sense that there is no need to explicitly remove
items from ActiveBranchList. Instead, we just test each element on ActiveBranchList when its turn comes.
If ActiveBranchList is ordered according to MINDIST, then once we prune one element, we can terminate all
computation at this level, as all remaining elements have larger MINDIST values. This is exactly what we
do in the if statement in line 11 of KNEARESTTRAVERSAL in Figure 7.

5.5 Transformation

In this section we show how the k-nearest neighbor algorithm can be transformed into an incremental algo-
rithm, and that the result is identical to our R-tree incremental algorithm. This discussion reveals the main
difference between the two algorithms, namely that the control structure of the k-nearest neighbor algorithm
is fragmented among the nodes on the path from the root to the current node (as specified in the ActiveBranch-
List of each invocation of the algorithm), while the incremental nearest neighbor algorithm employs a unified
control structure embodied in its priority queue.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 23

Recall that the R-tree k-nearest neighbor algorithm traverses the R-tree in a depth-first manner. It keeps
track of the state of the traversal (i.e., which nodes or bounding rectangles it has yet to process) by use of an
ActiveBranchList for each level (note that at most one node is active at each level at any given time). In addi-
tion, in its original formulation (i.e., assuming a sorted buffer implementation) it keeps track of the distances
from the query object of the data objects that it has seen by use of NearestList sorted in increasing order of
distance from the query object. Output of the k nearest neighbors only occurs at the end of the traversal since
the R-tree is being traversed in its entirety (subject to the pruning of nodes in ActiveBranchList).

If we want to transform the R-tree k-nearest neighbor algorithm into an incremental algorithm, we need to
also keep track of the nodes in the R-tree that have been encountered (i.e., inserted into an ActiveBranchList)
but not processed. These are the elements of the various instances of ActiveBranchList; let B denote their
union. We assume that elements are removed from NearestList as they are processed. With the aid ofB, it is
now possible to tell if the first element o in NearestList should be reported as the next nearest neighbor to q.
In particular, this is the case if o is closer to q than the closest node inB, as all objects not yet encountered are
in subtrees of nodes in B. Without the global knowledge that B embodies, it is not possible to report even
the nearest neighbor until we have unwound the recursive traversal of the algorithm up to the root node of
the R-tree, because before then we do not know what is in the other subtrees of the root.

Thek-nearest neighbor algorithmcan be modified to maintain this global unprocessed node list B, thereby
enabling it to report nearest neighbors incrementally. This process can be made more efficient by keeping B

in sorted order based on distance from q. However, this still leaves open the question of how to efficiently
add and remove nodes from B.

Having made this modification, we can go even further and change the control structure. In particular,
instead of keeping to the strict depth-first traversal, the listB can be used to guide the traversal, i.e., the node
in B closest to q is taken as the next node to process. As a node is processed, it is deleted from B, and as
a nonleaf node is processed, all its entries are added to B. Note also that as described above, B is sorted in
MINDIST order. It could be ordered by MINMAXDIST, but such an ordering has the disadvantage that the
node on B nearest to q would not be immediately accessible. Furthermore, we observe that the penalty for
choosing to process a wrong node is far less than the penalty for doing so in the k-nearest algorithm since
all that is done is to inspect the node’s entries, rather than traversing its entire subtree (subject to pruning, of
course).

Note that with this transformation it is now possible to allow an unbounded k, as the last element in
NearestList, i.e., the one farthest from q, no longer plays a role. Of course, this also means that NearestList
is no longer bounded, except by the total number of objects in the R-tree.

The entire process can be performed most easily by merging B and NearestList into one list called Com-
binedNearestList. By ordering CombinedNearestList in increasing order of distance we are able to preserve
the role of the previous contents of ActiveBranchList, in that nodes that would have been pruned will be at
greater distances in the CombinedNearestList than the kth nearest object. Thus they and their subtrees will
not be traversed when outputting the k nearest neighbors. Observe that the transformed algorithm makes use
only of the MINDIST distance metric, thereby rendering moot the issue of whether or not to use the MIN-
MAXDIST [45] metric. Also, the transformed algorithm will in general achieve more pruning of nodes than
the original k-nearest neighbor algorithm.

We conclude our discussion of the k-nearest neighbor algorithm by pointing out that the transformation
yields an algorithm equivalent to the incremental algorithm presented earlier when CombinedNearestList is
organized with a priority queue.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 24

6 Experimental Results

In order to evaluate the R-tree incremental nearest neighbor algorithm of Figure 4 (denoted by INN), we
compared it to the result of using the R-tree k-nearest neighbor algorithm of [45] (denoted by k-NN) for dis-
tance browsing (Section 6.1). We also measured the incremental cost of using INN, i.e., the cost of obtaining
the k + 1st neighbor once we have already obtained the kth neighbor (Section 6.2). By varying the number
of objects that are browsed, we were able to see the true advantage of our method of computing the nearest
neighbors incrementally rather than committing ourselves to a predetermined number of nearest neighbors,
as would be the case if we used the k-nearest neighbor algorithm. (Remember that we do not know in ad-
vance how many objects will be browsed before finding the desired object.) Finally, we compare INN with
k-NN for computing the result of a k-nearest neighbor query (Section 6.3). These studies were performed
for small numbers of neighbors (i.e., less than 25), as this is the most common situation in which distance
browsing is useful. Nevertheless, we also treat the case of a large number of neighbors in Section 6.3.

In the experiments mentioned above we measured the execution time, the disk I/O behavior and the num-
ber of distance computations for two representative maps. In order to discern whether the size of the maps
was a factor, we performed experiments in which the size was varied (Section 6.4). In addition, for an ex-
treme case, we experimented with a very large data set (Section 6.5). Finally, in Section 6.6 we report the
maximum size of the priority queue for the experiments in Sections 6.3 and 6.4.

The data sets used in the experiments consisted of line segments, both real-world data and randomly
generated data. The real-world data consisted of four data sets from the TIGER/Line File [43] (see Figure 9):

1. Howard County: 17,421 line segments.

2. Water in the Washington DC metro area: 37,495 line segments.

3. Prince George’s County: 59,551 line segments.

4. Roads in the Washington DC metro area: 200,482 line segments.

The randomly generated line segment maps were constructed by generating random infinite lines in a man-
ner independent of translation and scaling of the coordinate system [38]. These lines were clipped to the
map area to obtain line segments, and then subdivided further at their intersection points with other line seg-
ments so that at the end, line segments meet only at endpoints. Note that the random maps do not necessarily
model real-world maps perfectly. In particular, by their construction, random maps cover an entire square
area, whereas this is not the case for most real maps (e.g., TIGER/Line File county maps). Furthermore, the
random maps tend to be rather uniform, while real maps tend to have dense clusters of small line segments
mixed with more sparsely covered areas. Nevertheless, these randomly generated maps do capture some im-
portant features of real maps (e.g., there is a low probability of more than four line segments meeting at a
point), and they enabled us to run the experiments on a wide range of map sizes for maps with similar char-
acteristics.

Our experiments differ from those in [45], which used a Hilbert-packed R-tree [31, 46], whereas we used
an R�-tree. The Hilbert-packed R-tree is a static structure, constructed by applying a Peano-Hilbert space
ordering (e.g., [47]) to spatial objects on the basis of their centroids. The leaf nodes of the R-tree are then built
by filling them with the objects, and the nonleaf nodes are built on top, with bounding rectangles computed
for the nodes. Notice that the conventional R-tree node splitting rules were not applied in the construction
of the Hilbert-packed R-tree since each node is filled to capacity by the Hilbert-packed R-tree construction
algorithm. As we are interested in dynamic environments we chose to use the R�-tree rather than the Hilbert-
packed R-tree for our experiments except where noted.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 25

(a) (b)

(c) (d)

Figure 9: The four real-world data sets from the TIGER/Line File: (a) Howard,
(b) Water, (c) PG, and (d) Roads.

Most of the data sets that we used were small enough to fit in main memory of many modern computers
(except in the experiments reported in Section 6.5). Nevertheless, we used a disk-based R-tree structure, and
employed buffers to store a limited number of recently used R-tree nodes (128). We therefore believe that
our results will scale well to large data sets. The fact that we employ buffered I/O, with the added possibility
of a requested disk block being in a disk cache or in operating system buffers, complicates the comparison
between the two algorithms. There are two extremes: for each I/O, the requested disk block is found in
memory, or every I/O leads to disk activity. Given a query for a fixed number of neighbors, the incremental
nearest neighbor (INN) algorithm shows less improvement over the k-nearest neighbor algorithm (k-NN)
in the former case (i.e., if the entire data sets resides in memory), and may even be slower, as will be seen
for the small random data sets. This is mainly due to the overhead incurred by priority queue operations.
However, for the other extreme the INN algorithm would show even more advantage than we found, as it
always requests fewer R-tree nodes and objects than the k-NN algorithm.

For each experiment, we ran multiple queries on the same data set for the same number of neighbors. This
was done so that more than one query point could be tested, as well as to make sure that the timing results were
meaningful (given the timing granularity of the system we used). Since our R-tree implementation utilizes
buffered I/O, this means that a query may access disk blocks that have already been loaded into the buffer
by earlier queries in the same sequence. We feel that this was a reasonable choice to make, since the buffers

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 26

were small compared to the data size, and clearing them prior to each query would have affected the timing
results. Also, in a real world scenario, it is likely that a user will execute more than one query for a given
map.

We use three measures for comparing the algorithms: execution time, R-tree node I/O (frequently re-
ferred to as disk I/O [6, 32]), and object distance calculations. The R-tree node I/O is reported as the number
of accesses, and may not correspond to actual disk I/O if nodes can be found in database or system buffers.
However, we have found that the number of accesses predicts the relative performance of actual disk I/O
reasonably well. Furthermore, any saving due to buffering will show up in reduced execution time. Thus we
used the disk I/O characterization.

In all the experiments that we conducted, the maps were embedded in a 16K by 16K grid, and the capacity
of each R-tree node was 50. In order to simplify the analysis of the execution time results, we chose to store
the actual line segments in the R-tree leaf nodes instead of just their bounding boxes. Also, the organization
of the external object storage has a large effect on the performance, and thus introduces an extra variable into
the comparison of the two algorithms. Query points were uniformly distributed over the space covered by
the map data, and the distance functions used to measure the distances of lines and bounding rectangles from
the query points were based on the squared Euclidean metric (in order to avoid computing square roots).
The experiments were run sufficiently often to obtain consistent results with a different query point each
time. Execution times are reported in milliseconds per query; they include the CPU time consumed by the
algorithm and its system calls. We used a SPARCstation 5 Model 70 rated at 60 SPECint92 and 47 SPECfp92,
and a GNU C++ compiler set for maximum optimization (–O3).

6.1 Cumulative Cost of Distance Browsing

In this section we focus on the distance browsingquery when we do not know in advance how many neighbors
will be needed before the query terminates. In this case, we need to reapply the k-nearest neighbor algorithm
as the value of k changes. In contrast, in the case of the incremental nearest neighbor algorithm, we need to
reinvoke the algorithm to obtain just one neighbor (i.e., the next nearest one). For these experiments we used
the map of Prince George’s County (denoted by PG in the figures) as well as a randomly generated line map
of a similar size, containing 64,000 lines (denoted by R64K). We included the random line map to see if the
performance was affected by some unknown characteristics of the PG map.

Figures 10 through 12 show each measure’s cumulative cost for distance browsing through the database
by finding the neighbors incrementally. There are a number of ways of using a k-nearest neighbor algorithm
to perform distance browsing. In our tests (shown in the figures) we use two such methods: (1) Executek-NN
each time we need a new neighbor. (2) Invoke k-NN for every five neighbors. Thus, for example, in case (2)
the cost of computing the 11th through 14th neighbors is the same as the cost of computing the 15th neighbor
(which requires invoking the k-NN algorithm for k = 5, 10, and 15). From the figures, it is clear that using
the incremental nearest neighbor (INN) algorithm for distance browsing significantly outperforms simulating
incremental access with the k-NN algorithm. In fact, the difference quickly becomes an order of magnitude.
The figures use a logarithmic scale for the y-axis in order to bring out relative scale. Since the differences
were so great, in order to simplify the presentation, we include results only for the k-NN algorithm for the
PG map, as the results for the random data were similar.

The method that we used above for choosing the value of k when performing distance browsing with
the k-NN algorithm is not the best that we can do for larger values of k. For example, it would be better to
multiply k by 2 each time the algorithm must be re-invoked. In addition, the k-NN algorithm can be adapted
to make it more suitable for use in distance browsing. In particular, after finding the m nearest neighbors
and determining that we must find the m0 > m nearest neighbors, we can use the distance of themth nearest

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 27

10

100

5 10 15 20 25

E
xe

cu
tio

n
tim

e
(m

s,
 lo

g
sc

al
e)

Number of nearest neighbors

INN (PG)
INN (R64K)

k-NN, k=1,2,... (PG)
k-NN, k=5,10,... (PG)

Figure 10: Cumulative execution time
for distance browsing.

10

100

5 10 15 20 25

R
-t

re
e

no
de

 d
is

k
I/O

s
(lo

g
sc

al
e)

Number of nearest neighbors

INN (PG)
INN (R64K)

k-NN, k=1,2,... (PG)
k-NN, k=5,10,... (PG)

Figure 11: Cumulative R-tree node
disk I/O for distance browsing.

100

1000

5 10 15 20 25

O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

 (
lo

g)

Number of nearest neighbors

INN (PG)
INN (R64K)

k-NN, k=1,2,... (PG)
k-NN, k=5,10,... (PG)

Figure 12: Cumulative object distance
calculations for distance browsing.

100

150

200

250

300

350

400

450

500

1 10 100 1000

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 IN
N

 (
%

)

Number of nearest neighbors (logscale)

Prune (5)
Restart (5)
Prune (50)

Restart (50)

Figure 13: Execution time of k-NN
relative to that of INN when used for
distance browsing when the k-NN ap-
proach is made as good as possible.

neighbor as a minimum distance when the k-NN algorithm is re-invoked with k = m0 (actually, k is set
to m0 � m, since the m nearest neighbors would be excluded from the search). This minimum distance
can be used to prune the search in much the same way as we described using minimum distance in the INN
algorithm in Section 4.5. Some complications arise if other objects have the same distance from q as themth

nearest neighbor. The best way to resolve this is to return all neighbors with that distance, which means that
sometimes we obtain more neighbors than we requested. In Figure 13 we compare the execution time when
using such an adapted k-NN algorithm (labelled “Prune”) for distance browsing to the execution time when
using the INN algorithm. Also, we show the result for the unmodified algorithm, where we must restart the
search from scratch when the k-NN algorithm must be re-invoked (labelled “Restart”). We show the results
only for the real-world data set (PG), as they were almost identical when using the random data set.

We use two different starting values for k in Figure 13, namely 5 and 50 (shown in parentheses). Each
time the k-NN algorithm is re-invoked, k is doubled. The figure shows that if the k-NN algorithm must be
re-invoked at least once, it usually takes more than twice (and up to nearly five times) as long as the INN
algorithm. Using the “Prune” variant of the k-NN algorithm does not pay off unless a rather large number
of neighbors is needed (over 100 or 200 in these experiments). The reason why this variant takes longer for
a smaller number of neighbors is that not enough nodes get pruned to offset the cost of more node distance

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 28

computations (for each node we must compute two distances, a minimum and a maximum, instead of just the
minimum). Another observation is that the k-NN approach is highly sensitive to the initial value of k, and
which initial value is better depends on how many neighbors we need (which we do not know in advance in
distance browsing). The spikes on the curves occur where the k-NN algorithm is re-invoked an additional
time for higher values of k, and between a spike and the next low point, no more neighbors are computed4.
The reason the slope of the curve decreases after each spike is that in the range from a spike to the next low
point, the cost of the k-NN approach remains constant (since no more neighbors are computed) while the cost
of the INN approach increases gradually as we must compute additional neighbors. Note that the absolute
low point on the two curves corresponds to the case where the number of neighbors needed happens to be
equal to the initial value of k (5 and 50, respectively). For those values of k, the k-NN algorithm is not much
slower than the INN algorithm (about 25% slower for k = 5 and 14% slower for k = 50).

6.2 Incremental Cost of Distance Browsing

The results of the experiments conducted in Section 6.1 show the total cost of distance browsing after retriev-
ing the kth neighbor. Using INN to implement each browsing step requires us to examine just one neighbor
regardless of how many browsing steps we have already executed. In contrast, use of k-NN for distance
browsing requires us to examine k + 1 neighbors when k browsing steps have already been executed. In
this section, we compare the two algorithms in terms of the cost of each browsing step (i.e., the incremental
cost). This is shown in Figures 14 through 16. For the INN algorithm, the incremental cost can be seen to
fluctuate somewhat, but it is always at least one order of magnitude less than the cost of the k-NN algorithm
once the first neighbor has been obtained. Although not shown here, we found that this holds for all values
of k. Again, we use a logarithmic scale for the y-axis so that the fluctuation in the cost of the incremental
algorithm can be seen more clearly.

We evaluated the incremental execution time for up to 1000 neighbors in the PG map. Interestingly,
we found that the incremental execution time clusters around an average of about .04 ms after the first 100
neighbors or so. This is in agreement with the results that we will discuss in Section 6.3, where we find that
the average execution time per neighbor is around .04 ms when retrieving a few thousand neighbors or more
in the PG and R64K maps. Thus we see that for a given map, the incremental execution time is remarkably
close to constant after a small fraction of the objects have been retrieved (for the PG map this was around
100 neighbors or less than 0.2% of the map size).

For the R-tree node disk I/Os (Figure 15), the incremental algorithm (INN) was at least an order of mag-
nitude better than k-NN after the first neighbor had been found. INN appears to be decreasing (i.e., between
.1 and .2 after 25 neighbors), but levels off after a few hundred neighbors have been found. (The graph is not
a step function because the number of node accesses is averaged over many queries.)

For the object distance calculations (Figure 16), the incremental algorithm (INN) was at least an order of
magnitude better than k-NN after the first few neighbors had been found. The improvement approaches two
orders of magnitude when 25 neighbors have been found, and continues in this manner for larger values ofk
(not shown here). The average number of distance calculations performed for each incremental invocation is
seen to be decreasing. This continues as more neighbors are retrieved and is below 1.2 after 300 neighbors.
Thus INN quickly reaches a stage of accessing only about one object per reported neighbor.

4There should be a spike at 5 neighbors for “Prune (5)”, but instead it occurs at 6 neighbors. The reason for this is that occasionally
when requesting the nearest five neighbors, the sixth nearest neighbor has the same distance as the fifth one, so the k-NN algorithm
does not need to be re-invoked when we want to obtain the sixth neighbor (the same is true for the second spike at 10 neighbors).

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 29

0.01

0.1

1

5 10 15 20 25

E
xe

cu
tio

n
tim

e
(m

s,
 lo

g
sc

al
e)

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 14: Incremental execution
times for distance browsing.

0.1

1

10

5 10 15 20 25

R
-t

re
e

no
de

 d
is

k
I/O

s
(lo

g
sc

al
e)

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 15: Incremental R-tree node
disk I/O for distance browsing.

1

10

100

5 10 15 20 25

O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

 (
lo

g)

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 16: Incremental object distance
calculations for distance browsing.

2.5

3

3.5

4

4.5

5

5 10 15 20 25

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 17: Execution time for k-
nearest neighbor query.

6.3 k-Nearest Neighbor Queries

We now consider what the cost would be if we used the incremental nearest neighbor algorithm to solve the k-
nearest neighbor problem. In other words, instead of browsing the database on the basis of distance, obtaining
one neighbor at a time, we address the related problem of finding all k neighbors at once, as we would do if
we knew in advance how many neighbors we need. It is interesting to see if a performance penalty is incurred
in solving this classical problem by using our incremental algorithm, rather than using approaches such as
the k-NN algorithm which obtain all k neighbors at once. We ran a sequence of tests in the same manner as
those reported in Sections 6.1 and 6.2; the results are shown in Figures 17 through 19. From these figures we
observe that using the INN algorithm leads to no sacrifice of performance. In fact, the incremental algorithm
outperforms the k-nearest neighbor algorithm for the two maps for all values of k.

In addition to the experiments mentioned above, we ran k-nearest neighbor queries for values of k from
1 up to the size of the data set. The results of these experiments are reported in Figures 20 through 22, where
the cost measures are divided by the number k of nearest neighbors, so that we are reporting the cost per
neighbor. For the incremental nearest neighbor algorithm, this value is close to the average incremental cost
for all but the smallest values of k (for small k, the cost of retrieving the first neighbor dominates the cost).
Dividing the cost measures by k makes it possible to distinguish the cost measures for large values of k,
which is difficult otherwise. In Figures 20–22, the y axis uses a logarithmic scale.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 30

For the execution time (Figure 17), we see that the two algorithms have similar growth patterns, with k-
NN being somewhat slower than INN (about 11-14% for PG and 4-10% for R64K). While the improvement
of INN over k-NN is modest for values of k up to 25, Figure 20 reveals that the difference widens as k grows
larger, up to 75% for PG and 87% for R64K (for k = 215 = 32; 768). Even for values of k as small as
several hundred, the improvement of INN over k-NN is 20-30%. Note how the performance of INN for the
two maps is very similar, whereas the performance of k-NN is worse for the PG map than for the R64K map.
This observation holds for the other two cost measures as well. This suggests that INN is much less sensitive
than k-NN to the distribution of data objects.

For very large values of k, we may ask whether it is not better to simply calculate distances for the entire
database and then sort on the distance. If all the objects are ranked with the INN algorithm (or the k-NN
algorithm), we must also compute the distances for all the objects in the database. The question then reduces
to whether the overhead of the INN algorithm(for computing distances of nodes and manipulating the priority
queue) exceeds the cost of sorting all the distance values once they have been computed. Interestingly, we
found that for the PG map, using the INN algorithm to rank all the objects was faster than computing all the
distances and sorting them, whereas the k-NN algorithm was a little slower than the sorting approach. Of
course, this result cannot be generalized, as it depends on numerous factors, such as size of the data set, the
spatial index being used, and whether the spatial objects are stored directly in the leaf nodes of the R-tree or
in an external object table.

For the R-tree node disk I/Os (Figure 18) we see that INN is always better than k-NN, while the rate of
growth is similar for both and appears to be linear in k for low values of k. In fact, we found that this same
pattern held for all values of k, as we see in Figure 21. The figures show that for each value of k, INN achieves
more pruning of the input tree than k-NN. This partially explains its better execution time performance. For
values of k ranging between 26 and 215, INN accesses 20-53% fewer nodes for PG and 12-35% for R64K,
with the largest difference occurring at k = 29 for both maps.

6

7

8

9

10

11

12

13

5 10 15 20 25

R
-t

re
e

no
de

 d
is

k
I/O

s

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 18: R-tree node disk I/O for k-
nearest neighbor query.

40

60

80

100

120

140

5 10 15 20 25

O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

Number of nearest neighbors

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 19: Object distance calcula-
tions for k-nearest neighbor query.

For the object distance calculations (Figure 19), we see that the INN algorithm again outperforms the k-
NN algorithm. Figure 22 shows that this holds for all values ofk, except when ranking all the map objects (in
which case the number of distance calculations equals the number of map objects in both cases, as no pruning
of objects or nodes is possible). The shapes of the curves in Figure 22 can be seen to be very similar to those
in Figure 21. This is not surprising when we realize that the number of distance calculations is proportional
to the number of R-tree leaf nodes that are accessed, and the leaf nodes in an R-tree greatly outnumber the
nonleaf nodes.

Figure 23 shows the fraction of total execution time that is attributed to disk I/O operations in the above

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 31

0.1

1

0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(m

s,
 lo

gs
ca

le
)

log2(Number of nearest neighbors)

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 20: Execution time per neigh-
bor for k-nearest neighbor query.

0.1

1

0 2 4 6 8 10 12 14 16

R
-t

re
e

no
de

 d
is

k
I/O

s
(lo

gs
ca

le
)

log2(Number of nearest neighbors)

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 21: R-tree node disk I/O per
neighbor for k-nearest neighbor query.

experiments. We compute this by recording the node accesses performed during the execution of the al-
gorithms, and measuring the time needed to do nothing but access those nodes. The figure shows that the
fraction of time spent by the INN algorithm in doing I/O is relatively constant, but starts to decrease for a
large number of neighbors. In contrast, the fraction of time spent by the k-NN algorithm in doing I/O has a
much larger variation, initially increasing rapidly, and decreasing significantly as the number of neighbors
needed increases. In fact, eventually the fraction of time spent in doing I/O by the k-NN algorithm is consid-
erably less than that spent by the INN algorithm as the number of neighbors increases; thus the INN algorithm
becomes more efficient from a CPU cost perspective. (This may be due, in part, to the fact that for a large
number of neighbors, the priority queue for the INN algorithm is considerably smaller than the NearestList
maintained by the k-NN algorithm, as discussed in Section 6.6 and seen in Figure 31.)

1

10

0 2 4 6 8 10 12 14 16O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

 (
lo

gs
ca

le
)

log2(Number of nearest neighbors)

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 22: Object distance calcula-
tions per neighbor for k-nearest neigh-
bor query.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

I/O
 c

os
t r

el
at

iv
e

to
 to

ta
l c

os
t (

%
)

log2(Number of nearest neighbors)

INN (PG)
k-NN (PG)

INN (R64K)
k-NN (R64K)

Figure 23: Fraction of total execution
time taken by disk I/Os in computing k-
nearest neighbor query.

6.4 Results for Varying Data Size

In the previous sections we investigated the performance of the two algorithms by varying the number of
neighbors for both distance browsing and computing the k nearest neighbors for similarly sized data sets. It
is important that the performance of the algorithms remain reasonable even when the size of the data set is
increased. To verify that this is indeed the case, we tested the performance of INN and k-NN on both random

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 32

and real-world map data. Our experiments showed the same relationships for the two algorithms between the
cumulative and incremental costs of distance browsing, as well as computing the k nearest neighbors, that we
found in the experiments reported in Sections 6.1–6.3 (provided the maps are nontrivial in size). In particular,
they confirmed the superiority of INN over k-NN. In the interest of saving space we do not show these results
here.

In the rest of this section, we focus on the relative behavior of the algorithms when finding the nearest
neighbor (i.e., k = 1). This operation is important as it is the first step in distance browsing, and as we saw
in Section 6.2 its execution time dominates the cost of distance browsing for small values of k.

Figures 24 through 26 show the performance of the two algorithms when finding the nearest neighbor.
The x-axis in the figure is log2N , where N is the number of line segments. The real-world maps appear
in the same order in which they were described above (from left to right: Howard County, Water, Prince
George’s County, and Roads). The random maps that we tested contained 1000, 2000, 4000, 8000, 16000,
32000, 64000, 128000 and 256000 line segments.

For the execution time (Figure 24), we see that the INN algorithm is faster for most of the maps; k-NN
took from 10-19% more time for the real-world maps, and up to 14% more time for the randomly generated
maps. The exceptions are the three smallest randomly generated maps. This can be explained partly by the
fact that these maps were small enough to fit in the R-tree node buffer, and partly by the fact that their small
sizes gave less room for improvement (see Figures 25 and 26). Even so, for larger values of k, INN became
better than k-NN for these data sets. For all the randomly generated maps, which have similar characteristics,
the rate of growth of the execution time can be seen to be nearly identical for the two algorithms. In fact, the
rate of growth appears to be very nearly logarithmic in the number of line segments (recall that the x-axis
uses a log scale). The execution times for the real-world maps correlate remarkably well with the execution
times for the random maps of comparable size.

0.5

1

1.5

2

2.5

3

3.5

4

10 11 12 13 14 15 16 17 18

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

log2(Number of line segments)

INN (Real)
k-NN (Real)

INN (Random)
k-NN (Random)

Figure 24: Execution time for finding
one neighbor.

4

5

6

7

8

10 11 12 13 14 15 16 17 18

R
-t

re
e

no
de

 d
is

k
I/O

s

log2(Number of line segments)

INN (Real)
k-NN (Real)

INN (Random)
k-NN (Random)

Figure 25: R-tree node disk I/O for
finding one neighbor.

For the R-tree node disk I/Os (Figure 25) we find the same relative behavior of the algorithms, with INN
being always better than k-NN, while the rate of growth is similar for both. The rate of growth appears to
be logarithmic in the number of line segments. This compares with the results reported in [45] for k-NN,
where it was observed that the number of R-tree node accesses grew linearly with the height of the tree. Our
experiments are not in exact agreement with that observation, but asymptotically, the two observations are
equivalent, since in R-trees the height of the tree grows logarithmically with the number of objects.

For the object distance calculations (Figure 26), again, INN performs better than k-NN.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 33

30

35

40

45

50

55

60

10 11 12 13 14 15 16 17 18

O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

log2(Number of line segments)

INN (Real)
k-NN (Real)

INN (Random)
k-NN (Random)

Figure 26: Object distance calcula-
tions for finding one neighbor.

100

1000

10000

100000

0 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e
(m

s,
 lo

gs
ca

le
)

log(Number of nearest neighbors)

INN
k-NN

Figure 27: Execution time for large
data set.

6.5 Results for Large Data Sets

Admittedly, the data sets that we used in the experiments reported above were moderate in size. For the
largest data set that we used, the spatial index occupies approximately 9 MB of disk space, which is small
enough to fit into the main memory of most modern computers. Even so, in our experiments, we only used
a small amount of main memory for buffers (128 nodes), and the size of the priority queue remained small
compared to the data size (100 KB in the worst case for the experiments in Section 6.3, or about 3% of the
size of the map files). Thus we believe that our results will also hold for larger data sets, i.e., data sets much
larger than the size of main memory.

In order to verify this claim, we conducted an experiment with a randomly generated data set of 8 million
lines. As it was prohibitively slow to build an R�-tree for such a large data set, we built instead a Hilbert-
packed R-tree [31], which occupied almost 300 MB. We used the same level of fan-out (50) and the same
amount of buffering (128 nodes) as in our previous experiments (though it might have been better to use a
larger fan-out and buffer sizes for such a large data set). Incidentally, we found that both algorithms per-
formed more poorly with a Hilbert-packed R-tree than with an R�-tree for the same data set. This appears to
be due to the greater amount of node overlap in the Hilbert-packed R-tree. The incremental nearest neighbor
algorithm proved to be much less sensitive to the level of node overlap, due to its superior pruning of the
R-tree nodes.

Figures 27–29 show the results of our experiments on this large map, which consisted of k-nearest neigh-
bor queries for values of k from 1 through the size of the data set (8 million). Unfortunately, we were not
able to run the k-NN algorithm for k = 8 million, as there was not enough memory to hold the neighbor list
for 8 million neighbors. This is in contrast to the INN algorithm, where the priority queue contained at most
about 83,000 elements, or about 1% of the number of neighbors. The speedup in execution time for INN
over k-NN ranged from 1.8 to 5.8. k-NN accessed from 1.8 to 5.3 times as many nodes and performed up to
6 times as many distance calculations as INN.

6.6 Priority Queue Size

In Section 4.8 we showed that in the worst case, all the data objects must be inserted into the priority queue
when using the incremental nearest neighbor algorithm. In our experiments, however, we found that the
priority queue remained modest in size. The size of the priority queue affects the performance of queue op-
erations during the algorithm’s execution. Also, a very large queue requires a disk-based implementation,

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 34

100

1000

10000

100000

0 1 2 3 4 5 6 7

R
-t

re
e

no
de

 d
is

k
I/O

s
(lo

gs
ca

le
)

log(Number of nearest neighbors)

INN
k-NN

Figure 28: Node disk I/Os for large
data set.

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7O
bj

ec
t d

is
ta

nc
e

ca
lc

ul
at

io
ns

 (
lo

gs
ca

le
)

log(Number of nearest neighbors)

INN
k-NN

Figure 29: Object distance calcula-
tions for large data set.

thereby slowing the algorithm down. However, in most applications the maximum queue size remains rel-
atively modest, which permits using a memory-based data structure for the queue. For example, consider
Figure 30, which shows the maximum size of the queue when computing the nearest neighbor (i.e., k = 1)
using the same data sets as in Section 6.4. Notice that for the worst case situation described above, in this first
step of distance browsing for the given query object, all objects must be inserted into the queue before de-
termining the nearest neighbor. From the figure it is evident that the maximum queue size grows remarkably
slowly as the number of line segments increases. The results for the random maps suggest that this growth
is logarithmic in the number of line segments.

Figure 31 shows the maximum size of the priority queue when using the incremental nearest neighbor
algorithm after k distance browsing operations for the maps used in Section 6.1 (k ranged from 1 up to the
size of the map). In the figure, the y-axis is logarithmic. We see that the maximum queue size M grows
extremely slowly. Note also that M is relatively small (less than 5% in the worse case) in comparison with
the sum of the number of data objects and R-tree nodes for the two comparably-sized maps, which is M ’s
theoretical maximum. When k reaches a value of 210 � 1000, the priority queue needed by the incremental
nearest neighbor algorithm is smaller than the priority queue needed to store the sorted buffer for the k-NN
algorithm. A similar picture emerged for the large map used in Section 6.5, where the size of the priority
queue was an even smaller fraction of the map size (1% in the worst case).

150

200

250

300

350

400

450

500

10 11 12 13 14 15 16 17 18

P
rio

rit
y

qu
eu

e
ite

m
s

log2(Number of line segments)

Real
Random

Figure 30: Maximum queue size for
finding the nearest neighbor (i.e., k =
1).

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

P
rio

rit
y

qu
eu

e
ite

m
s

(lo
gs

ca
le

)

log2(Number of nearest neighbors)

INN (PG)
INN (R64K)

k-NN

Figure 31: Maximum queue size for a
wide range of k.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 35

7 High-Dimensional Space

As already pointed out, the incremental nearest neighbor algorithm is independent of the dimensionality of
the data objects and is equally applicable to data embedded in low-dimensional and high-dimensional spaces.
Unfortunately, it is difficult to effectively index high-dimensional data and nearest neighbor search also be-
comes more costly. In this section we address some of the issues that arise. As it is hard to reason about
arbitrary data distributions, some of the conclusions we draw are based on uniformly-distributed data.

High-dimensional data arises in a number of current applications, including multimedia databases, data
warehouses, and information retrieval. Usually, such data is limited to points, but more general objects also
arise [8]. As an example of an application that leads to high-dimensional data, color histograms have been
used in image databases to allow searching for images with a specific color or with a combination of colors
similar to some query image. The colors in an image are described by d-dimensional vectors, in which each
element encodes the intensity of a particular range of colors (e.g., by using RGB values). To compare the
closeness of the sets of colors in two images, a complex distance function is used, involving matrix multi-
plication. Using that distance function, we can use a nearest neighbor search on an image database to find
the image closest in color to some query image. The number of dimensions, d, for color histograms is typi-
cally 64, 100 or 256. In other applications, the number of dimensions can be even higher (as much as several
thousand).

Most spatial indexing structures do not work very well for high dimensions. The R-tree, for example,
has been found to degenerate for dimensions higher than 7 or so [9]. Specifically, what happens is that even
for range queries with small query windows, so many of the index pages must be read that reading them is
more expensive than sequential scan of the data. Several indexing structures have been proposed to address
this issue; for example the X-tree [9] and LSDh-tree [27], based on the R-tree and LSD-tree, respectively.
However, even these often do not provide much speedup compared to sequential scan for dimensions above
20 or so. An approach often taken to speed up access to point data of very high dimension is to map the points
into a space of lower dimension [18, 34], in which case we can use the incremental nearest neighbor algorithm
on the lower-dimensional space. In order to guarantee the accuracy of the result, the output of the algorithm
can be filtered based on the distances of the corresponding higher-dimensional points [48]. Another approach
is to abandon the goal of indexing the data points based on space occupancy and instead use properties of
the distance metric employed (see the discussion of the metric space model in Section 2). If a hierararchical
index method based on distance (e.g., [11, 14, 52]) is employed, our algorithm is still applicable. In fact, the
k-nearest neighbor algorithm presented in [14] is similar to our algorithm in that it uses a priority queue for
nodes to guide the traversal of the index.

If we use the Euclidean distance metric, the nearest neighbor search region (Section 4.6) is spherical. On
the other hand, the node regions for most types of spatial index structures are hyper-rectangular in shape.
This has the effect of making nearest neighbor search more expensive, as more points are accessed than nec-
essary. To see why this is true, consider that in two dimensions the areas of a square and a circle, both with
radius r, are 4r2 and �r2, respectively. Thus the ratio of the area of the circle to the area of the square is
�=4 � 79%. In three dimensions the ratio of the volume of a sphere to the volume of a cube is about 52%,
and in four dimensions the corresponding ratio for a hypersphere and hypercube is 10%. In general, the ra-
tio between the volume of a hypersphere and its circumscribed hypercube decreases exponentially with the
number of dimensions. Intuitively, the reason for this is that the number of “corners” of the hypercube grows
exponentially with dimension. This effect has a direct consequence for nearest neighbor search using the Eu-
clidean distance metric. To see why, let us assume that we have uniformly-distributed data points inside a
hypercube of radius r and a search region of radius r centered inside the hypercube; the hypercube represents
the smallest bounding box of the set of hyper-rectangular leaf node regions that intersect the search region.
Then the proportion of the data points inside the search region decreases exponentially with the number of

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 36

dimensions; e.g., for four dimensions, only about 10% are inside the search region. The large number of
data points inside the hypercube but outside the search region represent wasted effort for a nearest neighbor
search. In order to alleviate this effect, spatial index structures that use hyperspheres as node regions [55]
have been proposed for use in nearest neighbor applications for higher dimensions. However, since this can
lead to a much higher level of overlap between nodes than using hyperrectangles, a compromise is to use
shapes formed by intersections of hyperspheres and hyperrectangles [35], essentially smoothing out the cor-
ners of the hyperrectangles.

In Section 4.6 we pointed out that the objects on the priority queue are contained in the leaf nodes in-
tersected by the boundary of the search region (and similarly for the nodes on the priority queue). As the
number of dimensions grows, the ratio of the number leaf nodes intersected by the boundary of the search
region to the number of leaf nodes intersected by the interior of the search region tends to grow. Thus the
size of the priority queue also tends to grow with the number of dimensions. For uniformly-distributed points
spread evenly among the leaf nodes, where each leaf node covers about the same amount of space, it can be
shown that this ratio grows exponentially with the number of dimensions. This is true even if both the search
region and leaf node regions are hypercubes (i.e., if we use the Chessboard metric L1). Of course, this is
only of major significance when the number of desired neighbors is large, since the volume of the search
region depends on the number of neighbors.

Some of the problems arising from operating in high-dimensional spaces can be alleviated by relaxing
the requirement that the nearest neighbors be computed exactly. Our goal is to report neighbors as quickly as
possible. In the incremental nearest neighbor algorithm, when an object o is slightly farther from the query
object q than a node n, the algorithm must process n before reporting o. In a high-dimensional space, as
we have seen, this may cause a lot of extra work. Instead, what we can do is to report o as the next nearest
neighbor if its distance from q is not “much” larger than that of n. In particular, suppose o is the object on
the priority queue closest to q, and n is the node on the queue closest to q. We propose to report o as the
next (approximate) nearest neighbor if do(q; o) � (1 + �)dn(q; n), where � is some nonnegative constant.
This leads to a definition of approximate nearest neighbor that conforms to that in [4]: if r is the distance
of the kth nearest neighbor, then the distances of the objects returned by an approximate k-nearest neighbor
search must be no larger than (1 + �)r. Obviously, for � = 0 we get the exact result, and the larger � is,
the less exact the result is. The only change required to the incremental nearest neighbor algorithm to make
it approximate in this sense is in the key used for nodes on the priority queue. Specifically, for a node n
we use (1 + �)dn(q; n) as a key instead of dn(q; n). In [4]5, it was found that a significant reduction in
node accesses results from finding the k approximate nearest neighbors as opposed to the k exact nearest
neighbors. Moreover, with relatively high probability, the result is the same in the exact and approximate
cases. For example, for approximate nearest neighbor search in 16 dimensions using � = 3 (meaning that a
300% relative error in distance is allowed), it was found [4] that the speedup in execution time was on the
order of 10 to 50 over exact nearest neighbor search, while the average relative error was only 10% and the
true nearest neighbor was found almost half the time.

8 Concluding Remarks

A detailed comparison of two approaches to browsing spatial objects in an R-tree on the basis of their dis-
tances from an arbitrary spatial query object was presented. It was shown that an incremental algorithm(INN)
significantly outperforms (in terms of execution time, R-tree node disk I/O, and object distance calculations)
a solution based on a k-nearest neighbor algorithm (k-NN). This was true even when the k-NN approach
was optimized for this application by carefully choosing the increments for k and using previous search re-

5The algorithm described in [4] is not incremental, but it accesses the same set of nodes as the incremental nearest neighbor
algorithm modified as described above

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 37

sults for pruning when the k-NN algorithm must be re-invoked. The incremental approach was also found
to have superior performance when applied to the problem of computing the k nearest neighbors of a given
query object. Our experiments confirm that the INN algorithm achieves a higher level of pruning than the
k-NN algorithm. This is important as it reduces the amount of R-tree node disk I/O as well as the number of
distance calculations, which, when combined, account for a major portion of the execution time. Moreover,
as the data sets became larger, the superiority of INN algorithm became more pronounced.

The experimental results were in reasonably close agreement with our rudimentary analysis of the INN
algorithm, which predicts that the number of node accesses isO(k+

p
k+logN), where k is the number of

neighbors andN the size of the data set. The superior performance of our algorithm in the experimental study
was perhaps not surprising, as we prove informally that, at any step in its execution, the incremental nearest
neighbor algorithm is optimal with respect to the spatial data structure that is employed. From a practical
standpoint, this means that a minimum number of nodes is visited in order to report each object. In other
words, upon reporting the kth neighbor ok of the query object q, the algorithm has only accessed nodes that
lie within a distance of d(q; ok) of q. Our adaptation of the algorithm to the R-tree has the added benefit that
a minimum number of objects is accessed, i.e., only objects whose minimum bounding rectangles lie within
a distance of d(q; ok) of q.

In the experiments reported in Section 6, we used an R-tree variant in which the spatial objects were stored
directly in the leaf nodes of the R-tree. This is not always practical, especially for complex and variable-
size objects such as polygons. The other alternative is to store the objects in an external file, in which case
the leaf nodes store the bounding boxes of the spatial objects and pointers to the objects. We performed
additional experiments where the maps used in Section 6 were stored in such an R-tree, and we used the INN
variant given in Figure 46. These experiments revealed an even larger advantage for the incremental nearest
neighbor algorithm over the k-nearest neighbor algorithm (typically over 50%). This is primarily because
the INN algorithm accessed many fewer data objects (for the purpose of calculating their distances from the
query object) than the k-NN algorithm. The k-NN algorithm typically accessed 4-6 times as many objects
as the INN algorithm for low values of k, and up to twice as many for values of k as high as 5% of the map
size. Reducing the number of object accesses and object distance calculations when using the incremental
algorithm has an even greater effect in terms of reducing the execution time for more complex spatial objects
(e.g., polygons).

In a worst-case scenario, all the leaf nodes in the spatial data structure must be accessed (see Figure 4.8
and the discussion in Section 4.8). In contrast to the incremental algorithm presented in Figure 3, the vari-
ant presented in Figure 4 for the R-tree implementation where the spatial objects are stored external to the
R-tree alleviates the worst case described above by making use of bounding rectangles in leaf nodes, thereby
enabling it to avoid accessing many data objects from disk7. In particular, in the original version of the algo-
rithm, the spatial index was not assumed to have bounding rectangles, which meant that for this worst case all
data objects had to be accessed from disk in order to measure their distances from the query object. The use
of bounding rectangles stored in the tree leads to a considerably more efficient (and conceptually different)
incremental algorithm for R-trees in that the bounding boxes can be used as pruning devices to reduce disk
I/O for accessing spatial descriptions of objects.

Future work involves comparing the behavior of the incremental nearest neighbor algorithm on different
spatial data structures such as PMR quadtrees, R-trees, and R+-trees, as well as adapting the algorithm to
other classes of index structures, such as distance-based indexes [11, 14, 52]. We also wish to investigate

6We decided to report only the results of experiments where the spatial objects are stored in the leaf nodes rather than external
to the R-tree. This was done, in part, because the organization of the external object storage has a large effect on the performance,
and thus introduces an extra variable into the comparison of the algorithms.

7Recall from footnote 6 that we decided to report only the experiments in which the spatial objects are stored in the leaf nodes
rather than external to the R-tree.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 38

further the use of the algorithm with very large data sets and in high-dimensional spaces, where the priority
queue may have to be stored on disk.

References

[1] P. M. Aoki. Generalizing “search” in generalized search trees. In Proceedings of the 14th International
Conference on Data Engineering, pages 380–389, Orlando, FL, Feb 1998.

[2] W. G. Aref and H. Samet. Uniquely reporting spatial objects: Yet another operation for comparing
spatial data structures. In Proceedings of the Fifth International Symposium on Spatial Data Handling,
pages 178–189, Charleston, SC, August 1992.

[3] W. G. Aref and H. Samet. Estimating selectivity factors of spatial operations. In Optimization in
Databases — Fifth International Workshop on Foundations of Models and Languages for Data and
Objects, pages 31–40, Aigen, Austria, September 1993. (Also Technical Report: Informatik-Bericht
93/9, Technische Univerität Clausthal, Clausthal–Zellerfeld.)

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for
approximate nearest neighbor searching. In Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 573–582, Arlington, VA, January 1994. Revised version:
http://www.cs.umd.edu/˜mount/.

[5] L. Becker and R. H. Güting. Rule-based optimization and query processing in an extensible geometric
database system. ACM Transactions on Database Systems, 17(2):247–303, June 1992.

[6] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: An efficient and robust access
method for points and rectangles. In Proceedings of the ACM SIGMOD Conference, pages 322–331,
Atlantic City, NJ, June 1990.

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of
the ACM, 18(9):509–517, September 1975.

[8] S. Berchtold, C. Böhm, D. A. Keim, and H. P. Kriegel. A cost model for nearest neighbor search in
high-dimensional data space. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database systems (PODS), pages 78–86, Tucson, AZ, May 1997.

[9] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-dimensional data.
In Proceedings of the 22nd International Conference on Very Large Data Bases, pages 28–39, Mumbai,
India, September 1996.

[10] M. Bern. Approximate closest-point queries in high dimensions. Information Processing Letters,
45(2):95–99, February 1993.

[11] S. Brin. Near neighbor search in large metric space. In U. Dayal, P. M. D. Gray, and S. Nishio, editors,
Proceedings of the 21st International Conference on Very Large Data Bases, pages 574–584, Zurich,
Switzerland, September 1995.

[12] A. J. Broder. Strategies for efficient incremental nearest neighbor search. Pattern Recognition, 23(1–
2):171–178, January 1990.

[13] W. A. Burkhard and R. Keller. Some approaches to best-match file searching. Communications of the
ACM, 16(4):230–236, April 1973.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 39

[14] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric
spaces. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors, Proceedings of the 23rd International Conference on Very Large Data Bases, pages 426–435,
Athens, Greece, August 1997.

[15] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June 1979.

[16] C. M. Eastman and M. Zemankova. Partially specified nearest neighbor searches using k-d–trees. In-
formation Processing Letters, 15(2):53–56, September 1982.

[17] C. Esperança and H. Samet. Orthogonal polygons as bounding structures in filter-refine query process-
ing strategies. In M. Scholl and A. Voisard, editors, Advances in Spatial Databases — Fifth Interna-
tional Symposium, pages 197–220, Berlin, Germany, July 1997. (Also Springer-Verlag Lecture Notes
in Computer Science 1262.)

[18] C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proceedings of the ACM SIGMOD Conference, pages 163–174,
San Jose, CA, May 1995.

[19] A. U. Frank and R. Barrera. The Fieldtree: A data structure for geographic information systems. In
A. Buchmann, O. Günther, T. R. Smith, and Y. F. Wang, editors, Design and Implementation of Large
Spatial Databases — First Symposium, pages 29–44, Santa Barbara, CA, July 1989. (Also Springer-
Verlag Lecture Notes in Computer Science 409.)

[20] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: A new form of self-
adjusting heap. Algorithmica, 1(1):111–129, 1986.

[21] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3):209–226, September 1977.

[22] K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing k-nearest neighbors.
IEEE Transactions on Computers, 24(7):750–753, July 1975.

[23] O. Günther and H. Noltemeier. Spatial database indices for large extended objects. In Proceedings of
the Seventh International Conference on Data Engineering, pages 520–526, Kobe, Japan, April 1991.

[24] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM
SIGMOD Conference, pages 47–57, Boston, MA, June 1984.

[25] J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color histogram indexing for
quadratic form distance functions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(7):729–736, July 1995.

[26] A. Henrich. A distance-scan algorithm for spatial access structures. In Proceedings of the Second ACM
Workshop on Geographic Information Systems, pages 136–143, Gaithersburg, MD, December 1994.

[27] A. Henrich. The LSDh-tree: An access structure for feature vectors. In Proceedings of the 14th IEEE
International Conference on Data Engineering, pages 362–369, Orlando, FL, February 1998.

[28] A. Henrich, H. W. Six, and P. Widmayer. The LSD tree: Spatial access to multidimensional point and
non-point data. In P. M. G. Apers and G. Wiederhold, editors, Proceedings of the 15th International
Conference on Very Large Data Bases, pages 45–53, Amsterdam, The Netherlands, August 1989.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 40

[29] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In M. J. Egenhofer and J. R. Herring,
editors, Advances in Spatial Databases — Fourth International Symposium, pages 83–95, Portland,
ME, August 1995. (Also Springer-Verlag Lecture Notes in Computer Science 951.)

[30] E. G. Hoel and H. Samet. Efficient processing of spatial queries in line segment databases. In O. Günther
and H. J. Schek, editors, Advances in Spatial Databases — Second Symposium, pages 237–256, Zurich,
Switzerland, August 1991. (Also Springer-Verlag Lecture Notes in Computer Science 525.)

[31] I. Kamel and C. Faloutsos. On packing R-trees. In Proceedings of the Second International Conference
on Information and Knowledge Management, pages 490–499, Washington, DC, November 1993.

[32] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In J. Bocca, M. Jarke,
and C. Zaniolo, editors, Proceedings of the 20th International Conference on Very Large Data Bases,
pages 500–509, Santiago, Chile, September 1994.

[33] B. Kamgar-Parsi and L. N. Kanal. An improved branch and bound algorithm for computing k-nearest
neighbors. Pattern Recognition Letters, 3(1), January 1985.

[34] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity searching in dynamic
databases. In Proceedings of the ACM SIGMOD Conference, pages 237–248, Seattle, WA, June 1998.

[35] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor
queries. In J. Peckham, editor, Proceedings of the ACM SIGMOD Conference, pages 369–380, Tucson,
AZ, May 1997.

[36] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neighbor search in
medical image databases. In Proceedings of the 22nd International Conference on Very Large Data
Bases, pages 215–226, Mumbai, India, September 1996.

[37] H.-P. Kriegel, T. Schmidt, and T. Seidl. 3D similarity search by shape approximation. In M. Scholl and
A. Voisard, editors, Advances in Spatial Databases — Fifth International Symposium, pages 11–28,
Berlin, Germany, July 1997. (Also Springer-Verlag Lecture Notes in Computer Science 1262.)

[38] M. Lindenbaum and H. Samet. A probabilistic analysis of trie-based sorting of large collections of line
segments. Computer Science Department TR-3455, University of Maryland, College Park, MD, April
1995.

[39] D. Lomet and B. Salzberg. A robust multi-attribute search structure. In Proceedings of the Fifth IEEE
International Conference on Data Engineering, pages 296–304, Los Angeles, CA, February 1989.

[40] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity factors for multi-
dimensional queries. In Proceedings of the ACM SIGMOD Conference, pages 28–36, Chicago, IL, June
1988.

[41] O. J. Murphy and S. M. Selkow. The efficiency of using k-d–trees for finding nearest neighbors in
discrete space. Information Processing Letters, 23(4):215–218, November 1986.

[42] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector data. Computer Graph-
ics, 20(4):197–206, August 1986. (Also Proceedings of the SIGGRAPH’86 Conference, Dallas, TX,
August 1986.)

[43] Bureau of the Census. Tiger/Line precensus files. Washington, DC, 1989.

[44] J. T. Robinson. The k–d–b–tree: A search structure for large multidimensional dynamic indexes. In
Proceedings of the ACM SIGMOD Conference, pages 10–18, Ann Arbor, MI, April 1981.

ACM Transactions on Database Systems 24, 2 (June 1999), pp. 265–318 41

[45] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings of the ACM
SIGMOD Conference, pages 71–79, San Jose, CA, May 1995.

[46] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed R-trees. In
Proceedings of the ACM SIGMOD Conference, pages 17–31, Austin, TX, May 1985.

[47] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[48] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proceedings of the ACM
SIGMOD Conference, pages 154–165, Seattle, WA, June 1998.

[49] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection
in a relational database management system. In Proceedings of the ACM SIGMOD Conference, pages
23–34, Boston, MA, June 1979.

[50] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+–tree: a dynamic index for multi–dimensional
objects. In P. M. Stocker and W. Kent, editors, Proceedings of the 13th International Conference on
Very Large Databases, pages 71–79, Brighton, England, September 1987. (Also Computer Science
Department, University of Maryland, College Park, MD, TR–1795.)

[51] R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica,
6(4):579–589, 1991.

[52] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Process-
ing Letters, 40(4):175–179, November 1991.

[53] T. L. Wang and D. Shasha. Query processing for distance metrics. In D. McLeod, R. Sacks-Davis, and
H. Schek, editors, Proceedings of the 16th International Conference on Very Large Databases, pages
602–613, Brisbane, Australia, August 1990.

[54] D. A. White and R. Jain. Algorithms and strategies for similarity retrieval. Technical Re-
port VCL-96-101, Visual Computing Laboratory, University of California, San Diego, CA, 1996.
http://vision.ucsd.edu/papers/simret.

[55] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceedings of the 12th IEEE Inter-
national Conference on Data Engineering, pages 516–523, New Orleans, LA, February 1996.

