Srlrar_\g ly Connecle] Comgonents

Note Title 12/3/2007

We define “strongly connected” to mean
that for every pair of vertices (u,v) in
the component, there 1s a path from u
to v and from v to u.

In the following graph, what are the
strongly connected components?

nis in qraph G-

;M_%y_gonne cled Comp{nt

wWe will use
Sinsh $me
4"0 AC-L'/MWL&.

wherg {0
resame in G

<Skp | : Perform DFS on (¢

Fiad Stroggly Connecked (omponents (60”4—')

Slep 2 Per form DFS on G where thnjlvcn a chola)
Cheose verlex with lasgest Pinsh value.

T
G must
have arrowss

—Every hme you reach o dead enJ) you-pmash one
S "0’56 conneded component + Start next

Dilestro's Al qor Fhm j(:O/ Shoresd Path

\J

on & Direcled, Weighied Graph

This 1s a GREEDY algorithm.

/ffinds shortest path between start and all other vertices

Initialize a predecessor array for vertices to all null
Initialize a cost array which represents cost to start to all «
Set the cost of start to itself as 0

Q=all vertices in V
while Q is not empty {
u = remove the vertex which has the lowest cost from start
for each vertex v which is adjacent to u {
if (cost from start to v) > (cost from start to u + cost of u to v)
then {
update the cost from start to v
mark u as the predecessor of v

}
}
}
}

- The cost of the shortest path to any destination is known.

- The path to this destination can be reverse engineered by starting
at the destination, and going backwards based on the predecessor
list until reaching the starting point

Find the Shortest Path

Dijhstra Run Time

o [et’s think about the while loop:
¢ [t executes exactly VI times.

e What are the costly things and how much
do they cost?

e Removing the vertex with the lowest cost
from the starting point. Is this a fixed cost or
does it depend upon the properties of the
graph?

e [et’s think about the for loop:

e [t executes exactly |IEl times over the
entire course of the search.

e What are the costly things and how much
do they cost?

¢ [ooking up costs, comparing values, storing
new costs. Is this a fixed cost or does it
depend upon the properties of the graph?

I
M:mmum B_P_anmna 77‘46—
),

¢ Assume you want to run cables to
connect n locations to each other
using existing tunnels and pipes, and
you want to do this using the least
amount of fibre.

® You can view the locations as vertices
and the physical distances between
each pair through the different
existing conduits as a weighted edge
on a complete graph.

e This could easily be adjusted to allow
the edge weight to be a combined cost
that included the fibre cost as well as
the costs for the
installation/leasing/etc. within the
existing space.

Doing Fest MST

® There are two greedy algorithms to do
this “fast™:
e Kruskal’s which 1s O(IEllog|VI)

e Prim’s which 1s either
¢ O(IElloglVI) using a heap
e O(IEI+VloglVI) using a Fibonacci Heap

e Notice that again we have two
variables to consider; the number of
vertices and the number of edges.

e Both of these algorithms use the same
basic greedy algorithm at a high level,
but they utilize different approaches
and data structures in their
implementations.

“G‘row;n\o)“ o MST
MST_edges = {}
while (MST_edges doesn’t include every

vertex OR 1sn’t a connected graph yet)
do

find an edge to grow the current MST set and
add that edge to MST_edges

¢ Finding the next edge to use 1s the
challenging part of this.

e Need to find an edge that belongs 1n the
MST.

¢ Don’t necessarily need to add edges in an
order that makes the tree grow “‘from the
root”.

ch{'}lﬁl an Edgg 4»0 /-\CU

Definitions

A cut (S,V-S) of an undirected graph G(V,E)
1s a partition of V.

(u,v)e E crosses the cut if one of the two
endpoints 1s in S and the other 1s in V-S.

A cut 1s said to respect a set of edges if no
edge 1n that set crosses the cut.

An edge that crosses a cut 1s a light edge 1f 1ts
weight 1s less than or equal to the weight of
the other edges that cross that cut.

To select an edge to add to the MST_edges set,
we need an edge (u,v) such that given any
cut of the graph (S,V-S) that respects
MST_edges, (u,v) 1s a light edge.

E xample

Let's 4race s alyothm on —+he
Q)Hoow/y 3raf>14:

. C D wf [owey
MST_ Edjes . ; B - - - wlc':;m:
H-G © T
B C D
G-F & »nB 17 E
HG >
-)
F-C & ABE 1 " E
“HGCEC ™

A- R @ E

Whot- (P we let an aclV&ﬂSa.iy
Ftck the cut?

A’d»VCI’Sa/\?j Ptc/cd‘ Cart

/A\d vel/‘.squ pzok,s S

D%F (%6 tvy +o

gL{&L n /’; 'PMJ

===

;Vl_S T_ CC!7£S>

But, C has o be on one side
or Hie other Which w.ll [ead

to etther C-D or C-F being
Q l:jhl—cr edge,,’

PrOVl/lj 'H/lls a[jOrz-Hnm u)C?riﬁS

e We could formally prove that adding

each light edge brings us closer to our
MST.

¢ We would do this using induction on
the edge set.

¢ Our base case would be MST_edges as
empty.

¢ Our inductive hypothesis would be that
MST_edges is a subset of the MST so far.

e Our inductive step would be that the next
light edge 1s part of the MST we are
trying to build.

e We would actually show that if the next light

edge were NOT 1n the MST, then we’d have
a contradiction.

e We will not do this proof this
semester.

Tmple mem‘/hj +hus ﬂ{forlﬁnm

e The key to implementing this
efficiently 1s to be able to find light
edges quickly.

o Kruskal’s Algorithm makes use of
data structures designed for use with
disjoint sets (often referred to as
Union-Find problems).

¢ In Union-Find problems you have the
ability to quickly:
e MakeSet(x) — make a set containing only
X, where X 1s 1n no other set yet

e Union(x,y) — merge the set that contains x
and the set that contains y

¢ Find(x) — find the set that contains x

/(rvulcc\/ ’S PSe,udoc_c)cle_

MST_edges = {} (V] cavs
foreach v in V MakeSet(Vv); o Make Set
sort the edges by weight [€] I« ‘E‘
foreach (u,v) in sorted edge list {
if Find(u)!=Find(v) { E| Find
MST_edges += (u,v); :
Union(u,v); | Unen

J
j

Reminder: This 1s a GREEDY algorithm.
Note: Its speed relies on the speed of the
MakeSet, Union, and Find operations.

