
We define “strongly connected” to mean
that for every pair of vertices (u,v) in
the component, there is a path from u
to v and from v to u.

In the following graph, what are the
strongly connected components?

This is a GREEDY algorithm.

 //finds shortest path between start and all other vertices

Initialize a predecessor array for vertices to all null
 Initialize a cost array which represents cost to start to all �
 Set the cost of start to itself as 0

 Q=all vertices in V
 while Q is not empty {
 u = remove the vertex which has the lowest cost from start
 for each vertex v which is adjacent to u {
 if (cost from start to v) > (cost from start to u + cost of u to v)
 then {

update the cost from start to v
mark u as the predecessor of v

 }
 }
 }
}

- The cost of the shortest path to any destination is known.

- The path to this destination can be reverse engineered by starting
at the destination, and going backwards based on the predecessor
list until reaching the starting point

• Let’s think about the while loop:
• It executes exactly |V| times.
• What are the costly things and how much

do they cost?
• Removing the vertex with the lowest cost

from the starting point. Is this a fixed cost or
does it depend upon the properties of the
graph?

• Let’s think about the for loop:
• It executes exactly |E| times over the

entire course of the search.
• What are the costly things and how much

do they cost?
• Looking up costs, comparing values, storing

new costs. Is this a fixed cost or does it
depend upon the properties of the graph?

• Assume you want to run cables to
connect n locations to each other
using existing tunnels and pipes, and
you want to do this using the least
amount of fibre.

• You can view the locations as vertices
and the physical distances between
each pair through the different
existing conduits as a weighted edge
on a complete graph.

• This could easily be adjusted to allow
the edge weight to be a combined cost
that included the fibre cost as well as
the costs for the
installation/leasing/etc. within the
existing space.

• There are two greedy algorithms to do
this “fast”:
• Kruskal’s which is O(|E|log|V|)
• Prim’s which is either

• O(|E|log|V|) using a heap
• O(|E|+Vlog|V|) using a Fibonacci Heap

• Notice that again we have two
variables to consider; the number of
vertices and the number of edges.

• Both of these algorithms use the same
basic greedy algorithm at a high level,
but they utilize different approaches
and data structures in their
implementations.

MST_edges = {}
while (MST_edges doesn’t include every

vertex OR isn’t a connected graph yet)
do

find an edge to grow the current MST set and
add that edge to MST_edges

• Finding the next edge to use is the
challenging part of this.
• Need to find an edge that belongs in the

MST.
• Don’t necessarily need to add edges in an

order that makes the tree grow “from the
root”.

Definitions
A cut (S,V-S) of an undirected graph G(V,E)

is a partition of V.
(u,v)∈E crosses the cut if one of the two

endpoints is in S and the other is in V-S.
A cut is said to respect a set of edges if no

edge in that set crosses the cut.
An edge that crosses a cut is a light edge if its

weight is less than or equal to the weight of
the other edges that cross that cut.

To select an edge to add to the MST_edges set,
we need an edge (u,v) such that given any
cut of the graph (S,V-S) that respects
MST_edges, (u,v) is a light edge.

• We could formally prove that adding
each light edge brings us closer to our
MST.

• We would do this using induction on
the edge set.
• Our base case would be MST_edges as

empty.
• Our inductive hypothesis would be that

MST_edges is a subset of the MST so far.
• Our inductive step would be that the next

light edge is part of the MST we are
trying to build.

• We would actually show that if the next light
edge were NOT in the MST, then we’d have
a contradiction.

• We will not do this proof this
semester.

• The key to implementing this
efficiently is to be able to find light
edges quickly.

• Kruskal’s Algorithm makes use of
data structures designed for use with
disjoint sets (often referred to as
Union-Find problems).

• In Union-Find problems you have the
ability to quickly:
• MakeSet(x) – make a set containing only

x, where x is in no other set yet
• Union(x,y) – merge the set that contains x

and the set that contains y
• Find(x) – find the set that contains x

MST_edges = {}
foreach v in V MakeSet(v);
sort the edges by weight
foreach (u,v) in sorted edge list {

if Find(u)!=Find(v) {
MST_edges += (u,v);
Union(u,v);

}
}

Reminder: This is a GREEDY algorithm.
Note: Its speed relies on the speed of the

MakeSet, Union, and Find operations.

