
We define “strongly connected” to mean 
that for every pair of vertices (u,v) in 
the component, there is a path from u 
to v and from v to u.

In the following graph, what are the 
strongly connected components?





This is a GREEDY algorithm.

 //finds shortest path between start and all other vertices

Initialize a predecessor array for vertices to all null
 Initialize a cost array which represents cost to start to all �
 Set the cost of start to itself as 0

 Q=all vertices in V
 while Q is not empty {
    u = remove the vertex which has the lowest cost from start
    for each vertex v which is adjacent to u {
       if (cost from start to v) > (cost from start to u + cost of u to v)
       then {

update the cost from start to v 
mark u as the predecessor of v

         }
    } 
 }
}

- The cost of the shortest path to any destination is known.

- The path to this destination can be reverse engineered by starting 
at the destination, and going backwards based on the predecessor 
list until reaching the starting point





• Let’s think about the while loop:
• It executes exactly |V| times.
• What are the costly things and how much 

do they cost?
• Removing the vertex with the lowest cost 

from the starting point.  Is this a fixed cost or 
does it depend upon the properties of the 
graph?

• Let’s think about the for loop:
• It executes exactly |E| times over the 

entire course of the search.
• What are the costly things and how much 

do they cost?
• Looking up costs, comparing values, storing 

new costs. Is this a fixed cost or does it 
depend upon the properties of the graph?



• Assume you want to run cables to 
connect n locations to each other 
using existing tunnels and pipes, and 
you want to do this using the least 
amount of fibre.  

• You can view the locations as vertices 
and the physical distances between 
each pair through the different 
existing conduits as a weighted edge 
on a complete graph.

• This could easily be adjusted to allow 
the edge weight to be a combined cost 
that included the fibre cost as well as 
the costs for the 
installation/leasing/etc. within the 
existing space.



• There are two greedy algorithms to do 
this “fast”:
• Kruskal’s which is O(|E|log|V|)
• Prim’s which is either

• O(|E|log|V|) using a heap
• O(|E|+Vlog|V|) using a Fibonacci Heap

• Notice that again we have two 
variables to consider; the number of 
vertices and the number of edges.

• Both of these algorithms use the same 
basic greedy algorithm at a high level, 
but they utilize different approaches 
and data structures in their 
implementations.



MST_edges = {}
while (MST_edges doesn’t include every 

vertex OR isn’t a connected graph yet) 
do

find an edge to grow the current MST set and 
add that edge to MST_edges

• Finding the next edge to use is the 
challenging part of this.
• Need to find an edge that belongs in the 

MST.
• Don’t necessarily need to add edges in an 

order that makes the tree grow “from the 
root”.



Definitions
A cut (S,V-S) of an undirected graph G(V,E) 

is a partition of V.
(u,v)∈E crosses the cut if one of the two 

endpoints is in S and the other is in V-S.
A cut is said to respect a set of edges if no 

edge in that set crosses the cut.
An edge that crosses a cut is a light edge if its 

weight is less than or equal to the weight of 
the other edges that cross that cut.

To select an edge to add to the MST_edges set, 
we need an edge (u,v) such that given any 
cut of the graph (S,V-S) that respects 
MST_edges, (u,v) is a light edge.









• We could formally prove that adding 
each light edge brings us closer to our 
MST.

• We would do this using induction on 
the edge set.
• Our base case would be MST_edges as 

empty.
• Our inductive hypothesis would be that 

MST_edges is a subset of the MST so far.
• Our inductive step would be that the next 

light edge is part of the MST we are 
trying to build.

• We would actually show that if the next light 
edge were NOT in the MST, then we’d have 
a contradiction.

• We will not do this proof this 
semester.



• The key to implementing this 
efficiently is to be able to find light 
edges quickly.

• Kruskal’s Algorithm makes use of 
data structures designed for use with 
disjoint sets (often referred to as 
Union-Find problems).

• In Union-Find problems you have the 
ability to quickly:
• MakeSet(x) – make a set containing only 

x, where x is in no other set yet
• Union(x,y) – merge the set that contains x 

and the set that contains y
• Find(x) – find the set that contains x



MST_edges = {}
foreach v in V MakeSet(v);
sort the edges by weight
foreach (u,v) in sorted edge list {

if Find(u)!=Find(v) {
MST_edges += (u,v);
Union(u,v);

}
}

Reminder: This is a GREEDY algorithm.
Note: Its speed relies on the speed of the 

MakeSet, Union, and Find operations.


