
Simply stated: “Given a list of n unique
values, find the ith smallest.”

Common Examples
• 1st smallest (Minimum)
• nth smallest (Maximum)
• n/2th smallest (Median)

How can we approach solving such
problems?

Trivial Way: Sort the list and then return the ith
position.

This is clearly not a good approach for
things such as minimum and maximum.

This may or may not be a good approach
for other problems such as median
finding.

• In the worst case, finding the minimum requires n-
1 comparisons.

• Finding the minimum can easily be done using at
worst n-1 comparisons:
• Call the first item in the list the smallest.
• For each item remaining, compare it to the item

currently considered smallest and if it is smaller than
that item, set this new item as the smallest.

• Do other algorithms exist? Sure, but are they
better? What would the runtime be of the
following recursive algorithm?
• Split the list in half.
• Find the minimum of each half.
• Take the minimum of the two “local” minima returned.

Consider the following scenario:
You are given a list of coordinates and are asking to

return a bounding box for these points.

Your getBoundingBox() method would need to find
both the minimum x-coordinate as well as the
maximum x-coordinate (and then do the same for
the y-coordinates).

In general, given a list of items, it is easy to find the
minimum and the maximum using 2(n-1)
comparisons.

Can we do better?

What is the runtime of the following algorithm to
find the minimum and maximum “at the same
time” and will it always give the correct results?

• Traverse the list once, two at a time, comparing pairs.
• As this is done, create two sub-lists: SubList1 for the

greater of the pair-wise comparisons and SubList2 for
the lesser.

• Call the regular maximum algorithm on SubList1 and
the regular minimum algorithm on SubList2.

What is the runtime of the following algorithm to
find the minimum and maximum “at the same
time” and will it always give the correct results?

• Compare the first two elements in the list. Set the
smaller as min and the larger as max.

• For the remaining elements of the list:
• Pair up and compare the items in each pair.
• Compare the smaller of the pair to the current min, replacing

it if we have a new min.
• Compare the larger of the pair to the current max, replacing it

if we have a new max.

