
This is another example of a “divide and
conquer” algorithm.

Step 1 (divide)
Select a “pivot” value and logically

partition the list into two sub-lists:
L1: values less than the pivot
L2: values greater than the pivot

Your list is now: L1,pivot,L2

Step 2 (conquer)
Sort L1 and L2

SORTED!

Algorithm
Let’s assume that our list L is held in an

array and that we want to use as little
extra space as possible.

QuickSort(array L, int first, int last) {
if (first<last) {

pivotpos = Partition(L,first, last)
QuickSort(L, first, pivotpos-1)
QuickSort(L,pivotpos+1,last);

}
}

NOTE: We would still need to write the
partition algorithm. The easiest thing to
code would probably be to pick the last
value in the list as the pivot and then
partition based on that.

There are many ways to implement the
partition algorithm, but in terms of
data comparisons, what should its
runtime be?

Start with T(0) = T(1) = 0

For the recurrence, what is:
• The worst case split?
• The best case split?
• The average/expected runtime?

Let’s return to the idea of expected
values.

Let’s assume that every “division
situation” is equally likely.

If we let posp represent the position of p,
then we could represent the expected
runtime as being:

