
What does it mean for a value to be
randomly selected?

How can we make use of randomness?

Monte Carlo Algorithms
• Don’t always give the correct answer.
• The runtime can be described

consistently.

Las Vegas Algorithms
• They always give the correct answers.
• Their runtime is not consistent.

Algorithm
• Select a value at random, call it p.
• Partition the list around p.
• See if it was the median (same

number in each side of the
partitioning).

• If it is, great. If it wasn’t, oh well,
try again…

Question #1: Does this work?
Question #2: Is it a good algorithm?

Algorithm
• Select a value at random, call it p.
• Partition around p.
• See if it was the median (same number in

each side of the partitioning).
• If it wasn’t, then we have still found the

xth smallest value in the list (the value of
x will be based on the size of the
partitions).

• If x is “before” the median, take the right
side and find the (n/2-x)th smallest.

• Otherwise, take the “left” side and find the
(n/2)th smallest.

Note: If this ends up being a good idea,
we’d end up coding general selection.

Question #1: Does this work?
Question #2: Is it a good algorithm?

How do we analyze the runtime of
something like this?

Partitioning takes n-1 comparisons.
Random number generation may take

some time (we'll ignore this for now).
The recursion may or may not be

needed, and we don’t know exactly
how many values will be passed into
that recursion.

T(n) = n + T(???)

The best case is easy, we find it on the
first shot and it’s n-1 comparisons.

What about worst case and average case?

We will assume unique values in the list.
We’ll round things and say the partitioning

takes n comparisons.
We will look at “worst” expected runtime.
We’ll compute assuming we have to look in

the larger of the two sub-lists (which is true
for median finding).

We won’t worry about floor/ceiling issues in
this initial exploration.

