1. What is the upper bound for comparison-based sorting?

 notes:
 - quicksort \(O(n^2) \) in worst case
 - insertion sort \(O(n) \) in best case
 - merge sort \(O(n \log n) \) in worst case
 - upper bound is \(n \log n \)

2. So what is the lower bound?

 Use the same strategy as before—

 generic decision tree
Generic Decision Tree

For Comparison-Based Sort

1. Assume all input elements are distinct. (makes analysis easier)

2. Then, comparisons can be done with '<'.

3. Model all comparison-based sorts as follows:
 - Input is $a_1, a_2, a_3, \ldots, a_n$
 - Each node in tree is a comparison
 - Path through tree describes comparisons done in one execution of algorithm
 - Leaves are all possible outputs
all possible sorted outputs

if input is a_1, a_2, a_3, a_4 (say 4378)
output is a_2, a_3, a_4 (3478)
path is --- in blue
first comparison

second comparison

third comparison

\[a_1 a_2 a_3 \ldots a_n \quad a_2 a_3 a_4 \ldots a_n \quad a_3 a_4 a_5 \ldots a_n \]

all possible sorted outputs

unique path to all outputs

How Many Outputs are there?
How Many Outputs are there?

Given input a_1, a_2, \ldots, a_n

Possible outputs of a sort algorithm are:

$$\left\{ \begin{array}{c}
 a_1, a_2, \ldots, a_n \\
 a_2, a_1, \ldots, a_n \\
 a_3, a_1, \ldots, a_n \\
 \vdots \\
 a_n, a_{n-1}, \ldots, a_1 \\
\end{array} \right.$$

how many?

$$n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

↑ possibilities for first value
↑ possibilities for second value

$n!$ possible outputs
leaves = all possible sorted outputs

leaves = n!

max # comparisons in a path = \(\log_2(n!) \) (#levels - 1)

Lower bound of \(\Theta(\log(n!)) \) for sorting
So in worst case, sorting in herently takes $\log_2(n!)$ comparisons!

How does that compare to the upper bound?
\[\log(n!) \in O(n \log n) \]

\[\log(n!) \leq cn \log n \]

Note: \(n! < n^n \)

\[\frac{n(n-1)(n-2) \ldots 1}{n \cdot n \cdot n \cdot n \cdot n} \]

so

\[\log(n!) < \log(n^n) \]

New goal:

\[\log(n^n) \leq cn \log n \]

\[n \log n \leq cn \log n \]

Let \(c = 1, \ n_0 = 1. \)
\[\log(n!) \in \Omega(n \log n) \]

\[c n \log n \leq \log(n!) \]

\[c n \log n \leq \log[(n)(n-1)\ldots 1] \]

\[\log AB = \log A + \log B \]

\[c n \log n \leq \log n + \log n-1 + \ldots \log 1 \]

\[c n \log n \leq \sum_{i=2}^{n} \log i \]

\[\int_{1}^{n} \log i \, di = \left[\log i \right]_{1}^{n} - \int_{1}^{n} 1 \, di \]

\[= n \log n - n + 1 \]

So new goal:

\[c n \log n \leq n \log n - n + 1 \]
\[cn \log_e n \leq n \log_e n - n + 1 \]

New goal:

\[cn \log_e n \leq n \log_e n - n \]

\[c \log_e n \leq \log_e n - 1 \]

\[(c-1) \log_e n \leq -1 \]

Need \(c < 1 \)

Let \(c = \frac{1}{2} \)

\[-\frac{1}{2} \log_e n \leq -1 \]

\[\log_2 n \geq 2 \log_2 e \]

\[n \geq 2^{2 \log_2 e} = (2^{\log_2 e})^2 = e^2 \approx 7.39 \]

Let \(n_0 = 8 \)

So \(\log(n!) \in \Theta(n \log n) \)