
Lecture Notes CMSC 251

Sincen/5 and3n/4 are both less thann, we can apply the induction hypothesis, giving

T (n) ≤ c
n

5
+ c

3n

4
+ n = cn

(
1
5

+
3
4

)
+ n

= cn
19
20

+ n = n

(
19c
20

+ 1
)

.

This last expression will be≤ cn, provided that we selectc such thatc ≥ (19c/20) + 1.
Solving forc we see that this is true provided thatc ≥ 20.

Combining the constraints thatc ≥ 1, andc ≥ 20, we see that by lettingc = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it
works for any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and
see what happens.)

Lecture 10: Long Integer Multiplication

(Thursday, Feb 26, 1998)
Read: Todays material on integer multiplication is not covered in CLR.

Office hours: The TA, Kyongil, will have extra office hours on Monday before the midterm, from 1:00-2:00.
I’ll have office hours from 2:00-4:00 on Monday.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applica-
tions of divide-and-conquer. The problem that we want to consider is how to perform arithmetic on
long integers, and multiplication in particular. The reason for doing arithmetic on long numbers stems
from cryptography. Most techniques for encryption are based on number-theoretic techniques. For
example, the character string to be encrypted is converted into a sequence of numbers, and encryption
keys are stored as long integers. Efficient encryption and decryption depends on being able to perform
arithmetic on long numbers, typically containing hundreds of digits.

Addition and subtraction on large numbers is relatively easy. Ifn is the number of digits, then these
algorithms run inΘ(n) time. (Go back and analyze your solution to the problem on Homework 1). But
the standard algorithm for multiplication runs inΘ(n2) time, which can be quite costly when lots of
long multiplications are needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It
would seem surprising if there were, since for centuries people have used the same algorithm that we
all learn in grade school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We nor-
mally think of this algorithm as applying on a digit-by-digit basis, but if we partition ann digit number
into two “super digits” with roughlyn/2 each into longer sequences, the same multiplication rule still
applies.

To avoid complicating things with floors and ceilings, let’s just assume that the number of digitsn is
a power of 2. LetA andB be the two numbers to multiply. LetA[0] denote the least significant digit
and letA[n − 1] denote the most significant digit ofA. Because of the way we write numbers, it is
more natural to think of the elements ofA as being indexed in decreasing order from left to right as
A[n− 1..0] rather than the usualA[0..n− 1].

Let m = n/2. Let

w = A[n− 1..m] x = A[m− 1..0] and
y = B[n− 1..m] z = B[m− 1..0].

36



Lecture Notes CMSC 251

w

y

x

z

xzwz

xywy

wy wz + xy xz

n
n/2 n/2

A

B

Product

Figure 9: Long integer multiplication.

If we think of w, x, y andz asn/2 digit numbers, we can expressA andB as

A = w · 10m + x

B = y · 10m + z,

and their product is

mult(A,B) = mult(w, y)102m + (mult(w, z) + mult(x, y))10m + mult(x, z).

The operation of multiplying by10m should be thought of as simply shifting the number over by
m positions to the right, and so is not really a multiplication. Observe that all the additions involve
numbers involving roughlyn/2 digits, and so they takeΘ(n) time each. Thus, we can express the
multiplication of two long integers as the result of 4 products on integers of roughly half the length of
the original, and a constant number of additions and shifts, each takingΘ(n) time. This suggests that
if we were to implement this algorithm, its running time would be given by the following recurrence

T (n) =
{

1 if n = 1,
4T (n/2) + n otherwise.

If we apply the Master Theorem, we see thata = 4, b = 2, k = 1, anda > bk, implying that Case
1 holds and the running time isΘ(nlg 4) = Θ(n2). Unfortunately, this is no better than the standard
algorithm.

Faster Divide-and-Conquer Algorithm: Even though the above exercise appears to have gotten us nowhere,
it actually has given us an important insight. It shows that the critical element is the number of multi-
plications on numbers of sizen/2. The number of additions (as long as it is a constant) does not affect
the running time. So, if we could find a way to arrive at the same result algebraically, but by trading
off multiplications in favor of additions, then we would have a more efficient algorithm. (Of course,
we cannot simulate multiplication through repeated additions, since the number of additions must be a
constant, independent ofn.)

The key turns out to be a algebraic “trick”. The quantities that we need to compute areC = wy,
D = xz, andE = (wz + xy). Above, it took us four multiplications to compute these. However,
observe that if instead we compute the following quantities, we can get everything we want, using only
three multiplications (but with more additions and subtractions).

C = mult(w, y)
D = mult(x, z)
E = mult((w + x), (y + z))− C −D = (wy + wz + xy + xz)− wy − xz = (wz + xy).

37



Lecture Notes CMSC 251

Finally we have
mult(A,B) = C · 102m + E · 10m + D.

Altogether we perform 3 multiplications, 4 additions, and 2 subtractions all of numbers withn/2
digitis. We still need to shift the terms into their proper final positions. The additions, subtractions, and
shifts takeΘ(n) time in total. So the total running time is given by the recurrence:

T (n) =
{

1 if n = 1,
3T (n/2) + n otherwise.

Now when we apply the Master Theorem, we havea = 3, b = 2 and k = 1, yielding T (n) ∈
Θ(nlg 3) ≈ Θ(n1.585).

Is this really an improvement? This algorithm carries a larger constant factor because of the overhead
of recursion and the additional arithmetic operations. But asymptotics says that ifn is large enough,
then this algorithm will be superior. For example, if we assume that the clever algorithm has overheads
that are 5 times greater than the simple algorithm (e.g.5n1.585 versusn2) then this algorithm beats the
simple algorithm forn ≥ 50. If the overhead was 10 times larger, then the crossover would occur for
n ≥ 260.

Review for the Midterm: Here is a list topics and readings for the first midterm exam. Generally you are
responsible for anything discussed in class, and anything appearing on homeworks. It is a good idea to
check out related chapters in the book, because this is where I often look for ideas on problems.

Worst-case, Average-case:Recall that a worst-case means that we consider the highest running time
over all inputs of sizen, average case means that we average running times over all inputs of size
n (and generally weighting each input by its probability of occuring). (Chapt 1 of CLR.)

General analysis methods:Be sure you understand the induction proofs given in class and on the
homeworks. Also be sure you understand how the constructive induction proofs worked.

Summations: Write down (and practice recognizing) the basic formulas for summations. These in-
clude the arithmetic series

∑
i i, the quadratic series,

∑
i i2, the geometric series

∑
i xi, and the

harmonic series
∑

i 1/i. Practice with simplifying summations. For example, be sure that you
can take something like ∑

i

3i
( n

2i

)2

and simplify it to a geometric series
n2
∑

i

(3/4)i.

Also be sure you can apply the integration rule to summations. (Chapt. 3 of CLR.)

Asymptotics: Know the formal definitions forΘ, O, andΩ, as well as how to use the limit-rule.
Know the what the other forms,o andω, mean informally. There are a number of good sample
problems in the book. I’ll be happy to check any of your answers. Also be able to rank functions
in asymptotic order. For example which is largerlg

√
n or
√

lg n? (It is the former, can you see
why?) Remember the following rule and know how to use it.

lim
n→∞

nb

an
= 0 lim

n→∞
lgb n

nc
= 0.

(Chapt. 2 of CLR.)

Recurrences: Know how to analyze the running time of a recursive program by expressing it as a
recurrence. Review the basic techniques for solving recurrences: guess and verify by induction
(I’ll provide any guesses that you need on the exam), constructive induction, iteration, and the
(simplified) Master Theorem. (You are NOT responsible for the more complex version given in
the text.) (Chapt 4, Skip 4.4.)

38



Lecture Notes CMSC 251

Divide-and-conquer: Understand how to design algorithms by divide-and-conquer. Understand the
divide-and-conquer algorithm for MergeSort, and be able to work an example by hand. Also
understand how the sieve technique works, and how it was used in the selection problem. (Chapt
10 on Medians; skip the randomized analysis. The material on the 2-d maxima and long integer
multiplication is not discussed in CLR.)

Lecture 11: First Midterm Exam

(Tuesday, March 3, 1998)
First midterm exam today. No lecture.

Lecture 12: Heaps and HeapSort

(Thursday, Mar 5, 1998)
Read: Chapt 7 in CLR.

Sorting: For the next series of lectures we will focus on sorting algorithms. The reasons for studying sorting
algorithms in details are twofold. First, sorting is a very important algorithmic problem. Procedures
for sorting are parts of many large software systems, either explicitly or implicitly. Thus the design of
efficient sorting algorithms is important for the overall efficiency of these systems. The other reason is
more pedagogical. There are many sorting algorithms, some slow and some fast. Some possess certain
desirable properties, and others do not. Finally sorting is one of the few problems where there provable
lower bounds on how fast you can sort. Thus, sorting forms an interesting case study in algorithm
theory.

In the sorting problem we are given an arrayA[1..n] of n numbers, and are asked to reorder these
elements into increasing order. More generally,A is of an array of records, and we choose one of these
records as thekey valueon which the elements will be sorted. The key value need not be a number. It
can be any object from atotally ordereddomain. Totally ordered means that for any two elements of
the domain,x, andy, eitherx < y, x =, or x > y.

There are some domains that can be partially ordered, but not totally ordered. For example, sets can
be partially ordered under the subset relation,⊂, but this is not a total order, it is not true that for any
two sets eitherx ⊂ y, x = y or x ⊃ y. There is an algorithm calledtopological sortingwhich can be
applied to “sort” partially ordered sets. We may discuss this later.

Slow Sorting Algorithms: There are a number of well-known slow sorting algorithms. These include the
following:

Bubblesort: Scan the array. Whenever two consecutive items are found that are out of order, swap
them. Repeat until all consecutive items are in order.

Insertion sort: Assume thatA[1..i − 1] have already been sorted. InsertA[i] into its proper position
in this subarray, by shifting all larger elements to the right by one to make space for the new item.

Selection sort: Assume thatA[1..i − 1] contain thei − 1 smallest elements in sorted order. Find the
smallest element inA[i..n], and then swap it withA[i].

These algorithms are all easy to implement, but they run inΘ(n2) time in the worst case. We have
already seen that MergeSort sorts an array of numbers inΘ(n log n) time. We will study two others,
HeapSort and QuickSort.

39


