
Lecture Notes CMSC 251

Using Decision Trees for Analyzing Sorting: Consider any sorting algorithm. LetT (n) be the maximum
number of comparisons that this algorithm makes on any input of sizen. Notice that the running time
fo the algorithm must be at least as large asT (n), since we are not counting data movement or other
computations at all. The algorithm defines a decision tree. Observe that the height of the decision
tree is exactly equal toT (n), because any path from the root to a leaf corresponds to a sequence of
comparisons made by the algorithm.

As we have seen earlier, any binary tree of heightT (n) has at most2T (n) leaves. This means that this
sorting algorithm candistinguishbetween at most2T (n) different final actions. Let’s call this quantity
A(n), for the number of different final actions the algorithm can take. Each action can be thought of as
a specific way of permuting the oringinal input to get the sorted output.

How many possible actions must any sorting algorithm distinguish between? If the input consists ofn
distinct numbers, then those numbers could be presented in any ofn! different permutations. For each
different permutation, the algorithm must “unscramble” the numbers in an essentially different way,
that is it must take a different action, implying thatA(n) ≥ n!. (Again, A(n) is usually not exactly
equal ton! because most algorithms contain some redundant unreachable leaves.)

SinceA(n) ≤ 2T (n) we have2T (n) ≥ n!, implying that

T (n) ≥ lg(n!).

We can useStirling’s approximationfor n! (see page 35 in CLR) yielding:

n! ≥
√

2πn
(n

e

)n

T (n) ≥ lg
(√

2πn
(n

e

)n)
= lg

√
2πn + n lg n− n lg e ∈ Ω(n log n).

Thus we have, the following theorem.

Theorem: Any comparison-based sorting algorithm has worst-case running timeΩ(n log n).

This can be generalized to show that theaverage-casetime to sort is alsoΩ(n log n) (by arguing about
the average height of a leaf in a tree with at leastn! leaves). The lower bound on sorting can be
generalized to provide lower bounds to a number of other problems as well.

Lecture 17: Linear Time Sorting

(Tuesday, Mar 31, 1998)
Read: Chapt. 9 of CLR.

Linear Time Sorting: Last time we presented a proof that it is not possible to sort faster thanΩ(n log n)
time assuming that the algorithm is based on making 2-way comparisons. Recall that the argument
was based on showing that any comparison-based sorting could be represented as a decision tree, the
decision tree must have at leastn! leaves, to distinguish between then! different permutations in which
the keys could be input, and hence its height must be at leastlg(n!) ∈ Ω(n lg n).

This lower bound implies that if we hope to sort numbers faster than inO(n log n) time, we cannot
do it by making comparisons alone. Today we consider the question of whether it is possible to sort
without the use of comparisons. They answer is yes, but only under very restrictive circumstances.

55



Lecture Notes CMSC 251

Many applications involve sorting small integers (e.g. sorting characters, exam scores, last four digits
of a social security number, etc.). We present three algorithms based on the theme of speeding up
sorting in special cases, bynotmaking comparisons.

Counting Sort: Counting sort assumes that each input is an integer in the range from 1 tok. The algorithm
sorts inΘ(n + k) time. If k is known to beΘ(n), then this implies that the resulting sorting algorithm
is Θ(n) time.

The basic idea is to determine, for each element in the input array, itsrank in the final sorted array.
Recall that the rank of a item is the number of elements in the array that are less than or equal to it.
Notice that once you know the rank of every element, you sort by simply copying each element to the
appropriate location of the final sorted output array. The question is how to find the rank of an element
without comparing it to the other elements of the array? Counting sort uses the following three arrays.
As usualA[1..n] is the input array. Recall that although we usually think ofA as just being a list of
numbers, it is actually a list of records, and the numeric value is thekeyon which the list is being
sorted. In this algorithm we will be a little more careful to distinguish the entire recordA[j] from the
keyA[j].key .

We use three arrays:

A[1..n] : Holds the initial input.A[j] is a record.A[j].key is the integer key value on which to sort.

B[1..n] : Array of records which holds the sorted output.

R[1..k] : An array of integers.R[x] is the rank ofx in A, wherex ∈ [1..k].

The algorithm is remarkably simple, but deceptively clever. The algorithm operates by first construct-
ing R. We do this in two steps. First we setR[x] to be the number of elements ofA[j] whose key
is equal tox. We can do this initializingR to zero, and then for eachj, from 1 ton, we increment
R[A[j].key ] by 1. Thus, ifA[j].key = 5, then the 5th element ofR is incremented, indicating that we
have seen one more 5. To determine the number of elements that are less than or equal tox, we replace
R[x] with the sum of elements in the subarrayR[1..x]. This is done by just keeping a running total of
the elements ofR.

Now R[x] now contains the rank ofx. This means that ifx = A[j].key then the final position ofA[j]
should be at positionR[x] in the final sorted array. Thus, we setB[R[x]] = A[j]. Notice that this
copies the entire record, not just the key value. There is a subtlety here however. We need to be careful
if there are duplicates, since we do not want them to overwrite the same location ofB. To do this, we
decrementR[i] after copying.

Counting Sort

CountingSort(int n, int k, array A, array B) { // sort A[1..n] to B[1..n]
for x = 1 to k do R[x] = 0 // initialize R
for j = 1 to n do R[A[j].key]++ // R[x] = #(A[j] == x)
for x = 2 to k do R[x] += R[x-1] // R[x] = rank of x
for j = n downto 1 do { // move each element of A to B

x = A[j].key // x = key value
B[R[x]] = A[j] // R[x] is where to put it
R[x]-- // leave space for duplicates

}
}

There are four (unnested) loops, executedk times,n times,k − 1 times, andn times, respectively,
so the total running time isΘ(n + k) time. If k = O(n), then the total running time isΘ(n). The
figure below shows an example of the algorithm. You should trace through a few examples, to convince
yourself how it works.

56



Lecture Notes CMSC 251

s

s

r

r

r

e

ea

4321 5
4321

5422

s

3

1 3

331

4331

43311

v

v

v

v

v

s

5

14321 5

A R R

R

R

R

R

R

B

B

B

B

B

Key

Other data

2

322

5321

5221

4221

4220

43

e
120231341

a s vr

Figure 17: Counting Sort.

Obviously this not an in-place sorting algorithm (we need two additional arrays). However it is a stable
sorting algorithm. I’ll leave it as an exercise to prove this. (As a hint, notice that the last loop runs
down fromn to 1. It would not be stable if the loop were running the other way.)

Radix Sort: The main shortcoming of counting sort is that it is only really (due to space requirements) for
small integers. If the integers are in the range from 1 to 1 million, we may not want to allocate an
array of a million elements. Radix sort provides a nice way around this by sorting numbers one digit
at a time. Actually, what constitutes a “digit” is up to the implementor. For example, it is typically
more convenient to sort by bytes rather than digits (especially for sorting character strings). There is a
tradeoff between the space and time.

The idea is very simple. Let’s think of our list as being composed ofn numbers, each havingd decimal
digits (or digits in any base). Let’s suppose that we have access to a stable sorting algorithm, like
Counting Sort. To sort these numbers we can simply sort repeatedly, starting at the lowest order digit,
and finishing with the highest order digit. Since the sorting algorithm is stable, we know that if the
numbers are already sorted with respect to low order digits, and then later we sort with respect to high
order digits, numbers having the same high order digit will remain sorted with respect to their low
order digit. As usual, letA[1..n] be the array to sort, and letd denote the number of digits inA. We
will not discuss how it is thatA is broken into digits, but this might be done through bit manipulations
(shifting and masking off bits) or by accessing elements byte-by-byte, etc.

Radix Sort

RadixSort(int n, int d, array A) { // sort A[1..n] with d digits
for i = 1 to d do {

Sort A (stably) with respect to i-th lowest order digit;
}

}

57



Lecture Notes CMSC 251

Here is an example.

576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
296 =⇒ 57[6] =⇒ 2[7]8 =⇒ [2]96 =⇒ 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

The running time is clearlyΘ(d(n + k)) whered is the number of digits,n is the length of the list, and
k is the number of values a digit can have. This is usually a constant, but the algorithm’s running time
will be Θ(dn) as long ask ∈ O(n).

Notice that we can be quite flexible in the definition of what a “digit” is. It can be any number in the
range from 1 tocn for some constantc, and we will still have anΘ(n) time algorithm. For example,
if we haved = 2 and setk = n, then we can sort numbers in the rangen ∗ n = n2 in Θ(n) time. In
general, this can be used to sort numbers in the range from 1 tond in Θ(dn) time.

At this point you might ask, since a computer integer word typically consists of 32 bits (4 bytes), then
doesn’t this imply that we can sort any array of integers inO(n) time (by applying radix sort on each
of the d = 4 bytes)? The answer is yes, subject to this word-length restriction. But you should be
careful about attempting to make generalizations when the sizes of the numbers are not bounded. For
example, suppose you haven keys and there are no duplicate values. Then it follows that you need
at leastB = dlg ne bits to store these values. The number of bytes isd = dB/8e. Thus, if you were
to apply radix sort in this situation, the running time would beΘ(dn) = Θ(n log n). So there is no
real asymptotic savings here. Furthermore, the locality of reference behavior of Counting Sort (and
hence of RadixSort) is not as good as QuickSort. Thus, it is not clear whether it is really faster to use
RadixSort over QuickSort. This is at a level of similarity, where it would probably be best to implement
both algorithms on your particular machine to determine which is really faster.

Lecture 18: Review for Second Midterm

(Thursday, Apr 2, 1998)

General Remarks: Up to now we have covered the basic techniques for analyzing algorithms (asymptotics,
summations, recurrences, induction), have discussed some algorithm design techniques (divide-and-
conquer in particular), and have discussed sorting algorithm and related topics. Recall that our goal is
to provide you with the necessary tools for designing and analyzing efficient algorithms.

Material from Text: You are only responsible for material that has been covered in class or on class assign-
ments. However it is always a good idea to see the text to get a better insight into some of the topics
we have covered. The relevant sections of the text are the following.

• Review Chapts 1: InsertionSort and MergeSort.

• Chapt 7: Heaps, HeapSort. Look at Section 7.5 on priority queues, even though we didn’t cover
it in class.

• Chapt 8: QuickSort. You are responsible for the partitioning algorithm which we gave in class,
not the one in the text. Section 8.2 gives some good intuition on the analysis of QuickSort.

• Chapt 9 (skip 9.4): Lower bounds on sorting, CountingSort, RadixSort.

58


