
Lecture Notes CMSC 251

Here is an example.

576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
296 =⇒ 57[6] =⇒ 2[7]8 =⇒ [2]96 =⇒ 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

The running time is clearlyΘ(d(n + k)) whered is the number of digits,n is the length of the list, and
k is the number of values a digit can have. This is usually a constant, but the algorithm’s running time
will be Θ(dn) as long ask ∈ O(n).

Notice that we can be quite flexible in the definition of what a “digit” is. It can be any number in the
range from 1 tocn for some constantc, and we will still have anΘ(n) time algorithm. For example,
if we haved = 2 and setk = n, then we can sort numbers in the rangen ∗ n = n2 in Θ(n) time. In
general, this can be used to sort numbers in the range from 1 tond in Θ(dn) time.

At this point you might ask, since a computer integer word typically consists of 32 bits (4 bytes), then
doesn’t this imply that we can sort any array of integers inO(n) time (by applying radix sort on each
of the d = 4 bytes)? The answer is yes, subject to this word-length restriction. But you should be
careful about attempting to make generalizations when the sizes of the numbers are not bounded. For
example, suppose you haven keys and there are no duplicate values. Then it follows that you need
at leastB = dlg ne bits to store these values. The number of bytes isd = dB/8e. Thus, if you were
to apply radix sort in this situation, the running time would beΘ(dn) = Θ(n log n). So there is no
real asymptotic savings here. Furthermore, the locality of reference behavior of Counting Sort (and
hence of RadixSort) is not as good as QuickSort. Thus, it is not clear whether it is really faster to use
RadixSort over QuickSort. This is at a level of similarity, where it would probably be best to implement
both algorithms on your particular machine to determine which is really faster.

Lecture 18: Review for Second Midterm

(Thursday, Apr 2, 1998)

General Remarks: Up to now we have covered the basic techniques for analyzing algorithms (asymptotics,
summations, recurrences, induction), have discussed some algorithm design techniques (divide-and-
conquer in particular), and have discussed sorting algorithm and related topics. Recall that our goal is
to provide you with the necessary tools for designing and analyzing efficient algorithms.

Material from Text: You are only responsible for material that has been covered in class or on class assign-
ments. However it is always a good idea to see the text to get a better insight into some of the topics
we have covered. The relevant sections of the text are the following.

• Review Chapts 1: InsertionSort and MergeSort.

• Chapt 7: Heaps, HeapSort. Look at Section 7.5 on priority queues, even though we didn’t cover
it in class.

• Chapt 8: QuickSort. You are responsible for the partitioning algorithm which we gave in class,
not the one in the text. Section 8.2 gives some good intuition on the analysis of QuickSort.

• Chapt 9 (skip 9.4): Lower bounds on sorting, CountingSort, RadixSort.

58



Lecture Notes CMSC 251

• Chapt. 10 (skip 10.1): Selection. Read the analysis of the average case of selection. It is similar
to the QuickSort analysis.

You are also responsible for anything covered in class.

Cheat Sheets:The exam is closed-book, closed-notes, but you are allowed two sheets of notes (front and
back). You should already have the cheat sheet from the first exam with basic definitions of asymp-
totics, important summations, Master theorem. Also add Stirling’s approximation (page 35), and the
integration formula for summations (page 50). You should be familiar enough with each algorithm
presented in class that you could work out an example by hand, without refering back to your cheat
sheet. But it is a good idea to write down a brief description of each algorithm. For example, you might
be asked to show the result of BuildHeap on an array, or show how to apply the Partition algorithm
used in QuickSort.

Keep track of algorithm running times and their limitations. For example, if you need an efficient
stable sorting algorithm, MergeSort is fine, but both HeapSort and QuickSort are not stable. You
can sort short integers inΘ(n) time through CountingSort, but you cannot use this algorithm to sort
arbitrary numbers, such as reals.

Sorting issues: We discussed the following issues related to sorting.

Slow Algorithms: BubbleSort, InsertionSort, SelectionSort are all simpleΘ(n2) algorithm. They are
fine for small inputs. They are all in-place sorting algorithms (they use no additional array stor-
age), and BubbleSort and InsertionSort are stable sorting algorithms (if implemented carefully).

MergeSort: A divide-and-conquerΘ(n log n) algorithm. It is stable, but requires additional array
storage for merging, and so it is not an in-place algorithm.

HeapSort: A Θ(n log n) algorithm which uses a clever data structure, called a heap. Heaps are a
nice way of implementing a priority queue data structure, allowing insertions, and extracting the
maximum inΘ(log n) time, wheren is the number of active elements in the heap. Remember that
a heap can be built inΘ(n) time. HeapSort is not stable, but it is an in-place sorting algorithm.

QuickSort: The algorithm is based on selecting a pivot value. If chosen randomly, then the expected
time is Θ(n log n), but the worst-case isΘ(n2). However the worst-case occurs so rarely that
people usually do not worry about it. This algorithm is not stable, but it is considered an in-place
sorting algorithm even though it does require some additional array storage. It implicitly requires
storage for the recursion stack, but the expected depth of the recursion isO(log n), so this is not
too bad.

Lower bounds: Assuming comparisons are used, you cannot sort faster thanΩ(n log n) time. This is
because any comparison-based algorithm can be written as a decision tree, and because there are
n! possible outcomes to sorting, even a perfectly balanced tree would require height of at least
O(log n!) = O(n log n).

Counting sort: If you are sortingn small integers (in the range of 1 tok) then this algorithm will sort
them inΘ(n + k) time. Recall that the algorithm is based on using the elements as indices to an
array. In this way it circumvents the lower bound argument.

Radix sort: If you are sortingn integers that have been broken intod digits (each of constant size),
you can sort them inO(dn) time.

What sort of questions might there be? Some will ask you to about the properties of these sorting
algorithms, or asking which algorithm would be most appropriate to use in a certain circumstance.
Others will ask you to either reason about the internal operations of the algorithms, or ask you to extend
these algorithms for other purposes. Finally, there may be problems asking you to devise algorithms to
solve some sort of novel sorting problem.

59


