
Lecture Notes CMSC 251

Lecture 2: Analyzing Algorithms: The 2-d Maxima Problem

(Thursday, Jan 29, 1998)
Read: Chapter 1 in CLR.

Analyzing Algorithms: In order to design good algorithms, we must first agree the criteria for measuring
algorithms. The emphasis in this course will be on the design of efficient algorithm, and hence we
will measure algorithms in terms of the amount ofcomputational resourcesthat the algorithm requires.
These resources include mostly running time and memory. Depending on the application, there may
be other elements that are taken into account, such as the number disk accesses in a database program
or the communication bandwidth in a networking application.

In practice there are many issues that need to be considered in the design algorithms. These include
issues such as the ease of debugging and maintaining the final software through its life-cycle. Also,
one of the luxuries we will have in this course is to be able to assume that we are given a clean, fully-
specified mathematical description of the computational problem. In practice, this is often not the case,
and the algorithm must be designed subject to only partial knowledge of the final specifications. Thus,
in practice it is often necessary to design algorithms that are simple, and easily modified if problem
parameters and specifications are slightly modified. Fortunately, most of the algorithms that we will
discuss in this class are quite simple, and are easy to modify subject to small problem variations.

Model of Computation: Another goal that we will have in this course is that our analyses be as independent
as possible of the variations in machine, operating system, compiler, or programming language. Unlike
programs, algorithms to be understood primarily by people (i.e. programmers) and not machines. Thus
gives us quite a bit of flexibility in how we present our algorithms, and many low-level details may be
omitted (since it will be the job of the programmer who implements the algorithm to fill them in).

But, in order to say anything meaningful about our algorithms, it will be important for us to settle
on a mathematical model of computation. Ideally this model should be a reasonable abstraction of a
standard generic single-processor machine. We call this model arandom access machineor RAM.

A RAM is an idealized machine with an infinitely large random-access memory. Instructions are exe-
cuted one-by-one (there is no parallelism). Each instruction involves performing somebasic operation
on two values in the machines memory (which might be characters or integers; let’s avoid floating
point for now). Basic operations include things like assigning a value to a variable, computing any
basic arithmetic operation (+, −, ∗, integer division) on integer values of any size, performing any
comparison (e.g.x ≤ 5) or boolean operations, accessing an element of an array (e.g.A[10]). We
assume that each basic operation takes the same constant time to execute.

This model seems to go a good job of describing the computational power of most modern (nonparallel)
machines. It does not model some elements, such as efficiency due to locality of reference, as described
in the previous lecture. There are some “loop-holes” (or hidden ways of subverting the rules) to beware
of. For example, the model would allow you to add two numbers that contain a billion digits in constant
time. Thus, it is theoretically possible to derive nonsensical results in the form of efficient RAM
programs that cannot be implemented efficiently on any machine. Nonetheless, the RAM model seems
to be fairly sound, and has done a good job of modeling typical machine technology since the early
60’s.

Example: 2-dimension Maxima: Rather than jumping in with all the definitions, let us begin the discussion
of how to analyze algorithms with a simple problem, called2-dimension maxima. To motivate the
problem, suppose that you want to buy a car. Since you’re a real swinger you want the fastest car
around, so among all cars you pick the fastest. But cars are expensive, and since you’re a swinger on
a budget, you want the cheapest. You cannot decide which is more important, speed or price, but you
know that you definitely do NOT want to consider a car if there is another car that is both faster and

3

Lecture Notes CMSC 251

cheaper. We say that the fast, cheap cardominatesthe slow, expensive car relative to your selection
criteria. So, given a collection of cars, we want to list those that are not dominated by any other.

Here is how we might model this as a formal problem. Let a pointp in 2-dimensional space be given
by its integer coordinates,p = (p.x, p.y). A point p is said todominated bypoint q if p.x ≤ q.x and
p.y ≤ q.y. Given a set ofn points,P = {p1, p2, . . . , pn} in 2-space a point is said to bemaximalif it
is not dominated by any other point inP .

The car selection problem can be modeled in this way. If for each car we associated(x, y) values where
x is the speed of the car, andy is the negation of the price (thus highy values mean cheap cars), then
the maximal points correspond to the fastest and cheapest cars.

2-dimensional Maxima: Given a set of pointsP = {p1, p2, . . . , pn} in 2-space, each represented by
its x andy integer coordinates, output the set of the maximal points ofP , that is, those pointspi,
such thatpi is not dominated by any other point ofP . (See the figure below.)

(2,5)

2 4 6 8 10

2

4

6

8

10

12 14

(9,10)

(13,3)

(15,7)

(14,10)

(12,12)
(7,13)

(11,5)

(4,11)

(7,7)

(5,1)

(4,4)

14

12

16

Figure 1: Maximal Points.

Observe that our description of the problem so far has been at a fairly mathematical level. For example,
we have intentionally not discussed issues as to how points are represented (e.g., using a structure with
records for thex andy coordinates, or a 2-dimensional array) nor have we discussed input and output
formats. These would normally be important in a software specification. However, we would like to
keep as many of the messy issues out since they would just clutter up the algorithm.

Brute Force Algorithm: To get the ball rolling, let’s just consider a simple brute-force algorithm, with no
thought to efficiency. Here is the simplest one that I can imagine. LetP = {p1, p2, . . . , pn} be the
initial set of points. For each pointpi, test it against all other pointspj . If pi is not dominated by any
other point, then output it.

This English description is clear enough that any (competent) programmer should be able to implement
it. However, if you want to be a bit more formal, it could be written in pseudocode as follows:

Brute Force Maxima

Maxima(int n, Point P[1..n]) { // output maxima of P[0..n-1]
for i = 1 to n {

maximal = true; // P[i] is maximal by default
for j = 1 to n {

if (i != j) and (P[i].x <= P[j].x) and (P[i].y <= P[j].y) {

4

Lecture Notes CMSC 251

maximal = false; // P[i] is dominated by P[j]
break;

}
}
if (maximal) output P[i]; // no one dominated...output

}
}

There are no formal rules to the syntax of this pseudocode. In particular, do not assume that more
detail is better. For example, I omitted type specifications for the procedureMaxima and the variable
maximal , and I never defined what aPoint data type is, since I felt that these are pretty clear
from context or just unimportant details. Of course, the appropriate level of detail is a judgement call.
Remember, algorithms are to be read by people, and so the level of detail depends on your intended
audience. When writing pseudocode, you should omit details that detract from the main ideas of the
algorithm, and just go with the essentials.

You might also notice that I did not insert any checking for consistency. For example, I assumed that
the points inP are all distinct. If there is a duplicate point then the algorithm may fail to output even
a single point. (Can you see why?) Again, these are important considerations for implementation, but
we will often omit error checking because we want to see the algorithm in its simplest form.

Correctness: Whenever you present an algorithm, you should also present a short argument for its correct-
ness. If the algorithm is tricky, then this proof should contain the explanations of why the tricks works.
In a simple case like the one above, there almost nothing that needs to be said. We simply implemented
the definition: a point is maximal if no other point dominates it.

Running Time Analysis: The main purpose of our mathematical analyses will be be measure the execution
time (and sometimes the space) of an algorithm. Obviously the running time of an implementation of
the algorithm would depend on the speed of the machine, optimizations of the compiler, etc. Since we
want to avoid these technology issues and treat algorithms as mathematical objects, we will only focus
on the pseudocode itself. This implies that we cannot really make distinctions between algorithms
whose running times differ by a small constant factor, since these algorithms may be faster or slower
depending on how well they exploit the particular machine and compiler. How small is small? To
make matters mathematically clean, let us just ignore all constant factors in analyzing running times.
We’ll see later why even with this big assumption, we can still make meaningful comparisons between
algorithms.

In this case we might measure running time by counting the number of steps of pseudocode that are
executed, or the number of times that an element ofP is accessed, or the number of comparisons that
are performed.

Running time depends on input size. So we will define running time in terms of a function of input
size. Formally, theinput sizeis defined to be the number of characters in the input file, assuming some
reasonable encoding of inputs (e.g. numbers are represented in base 10 and separated by a space).
However, we will usually make the simplifying assumption that each number is of some constant
maximum length (after all, it must fit into one computer word), and so the input size can be estimated
up to constant factor by the parametern, that is, the length of the arrayP .

Also, different inputs of the same size may generally result in different execution times. (For example,
in this problem, the number of times we execute the inner loop before breaking out depends not only on
the size of the input, but the structure of the input.) There are two common criteria used in measuring
running times:

Worst-case time: is the maximum running time over all (legal) inputs of sizen? LetI denote a legal
input instance, and let|I| denote its length, and letT (I) denote the running time of the algorithm

5

Lecture Notes CMSC 251

on inputI.
Tworst(n) = max

|I|=n
T (I).

Average-case time:is the average running time over all inputs of sizen? More generally, for each
input I, let p(I) denote the probability of seeing this input. The average-case running time is the
weight sum of running times, with the probability being the weight.

Tavg(n) =
∑
|I|=n

p(I)T (I).

We will almost always work with worst-case running time. This is because for many of the problems
we will work with, average-case running time is just too difficult to compute, and it is difficult to specify
a natural probability distribution on inputs that are really meaningful for all applications. It turns out
that for most of the algorithms we will consider, there will be only a constant factor difference between
worst-case and average-case times.

Running Time of the Brute Force Algorithm: Let us agree that the input size isn, and for the running
time we will count the number of time that any element ofP is accessed. Clearly we go through the
outer loopn times, and for each time through this loop, we go through the inner loopn times as well.
The condition in the if-statement makes four accesses toP . (Under C semantics, not all four need be
evaluated, but let’s ignore this since it will just complicate matters). The output statement makes two
accesses (toP [i].x andP [i].y) for each point that is output. In the worst case every point is maximal
(can you see how to generate such an example?) so these two access are made for each time through
the outer loop.

Thus we might express the worst-case running time as a pair of nested summations, one for thei-loop
and the other for thej-loop:

T (n) =
n∑

i=1

2 +

n∑
j=1

4

 .

These are not very hard summations to solve.
∑n

j=1 4 is just4n, and so

T (n) =
n∑

i=1

(4n + 2) = (4n + 2)n = 4n2 + 2n.

As mentioned before we will not care about the small constant factors. Also, we are most interested in
what happens asn gets large. Why? Because whenn is small, almost any algorithm is fast enough.
It is only for large values ofn that running time becomes an important issue. Whenn is large, then2

term will be much larger than then term, and so it will dominate the running time. We will sum this
analysis up by simply saying that the worst-case running time of the brute force algorithm isΘ(n2).
This is called theasymptotic growth rateof the function. Later we will discuss more formally what
this notation means.

Summations: (This is covered in Chapter 3 of CLR.) We saw that this analysis involved computing a sum-
mation. Summations should be familiar from CMSC 150, but let’s review a bit here. Given a finite
sequence of valuesa1, a2, . . . , an, their suma1+a2+ · · ·+an can be expressed insummation notation
as

n∑
i=1

ai.

If n = 0, then the value of the sum is the additive identity, 0. There are a number of simple algebraic
facts about sums. These are easy to verify by simply writing out the summation and applying simple

6

Lecture Notes CMSC 251

high school algebra. Ifc is a constant (does not depend on the summation indexi) then

n∑
i=1

cai = c

n∑
i=1

ai and
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi.

There are some particularly important summations, which you should probably commit to memory (or
at least remember their asymptotic growth rates). If you want some practice with induction, the first
two are easy to prove by induction.

Arithmetic Series: Forn ≥ 0,

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
= Θ(n2).

Geometric Series: Let x 6= 1 be any constant (independent ofi), then forn ≥ 0,

n∑
i=0

xi = 1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

If 0 < x < 1 then this isΘ(1), and ifx > 1, then this isΘ(xn).

Harmonic Series: This arises often in probabilistic analyses of algorithms. Forn ≥ 0,

Hn =
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · ·+ 1
n
≈ lnn = Θ(lnn).

Lecture 3: Summations and Analyzing Programs with Loops

(Tuesday, Feb 3, 1998)
Read: Chapt. 3 in CLR.

Recap: Last time we presented an algorithm for the 2-dimensional maxima problem. Recall that the algo-
rithm consisted of two nested loops. It looked something like this:

Brute Force Maxima

Maxima(int n, Point P[1..n]) {
for i = 1 to n {

...
for j = 1 to n {

...
...

}
}

We were interested in measuring the worst-case running time of this algorithm as a function of the
input size,n. The stuff in the “. . . ” hasbeen omitted because it is unimportant for the analysis.

Last time we counted the number of times that the algorithm accessed a coordinate of any point. (This
was only one of many things that we could have chosen to count.) We showed that as a function ofn
in the worst case this quantity was

T (n) = 4n2 + 2n.

7

